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Theory of the reentrant quantum rotational phase transition in high-pressure HD

Yanier Crespo,1,2,3 Alessandro Laio,2,3 Giuseppe E. Santoro,2,3,1 and Erio Tosatti2,3,1

1International Center for Theoretical Physics (ICTP), IT-34014 Trieste, Italy
2SISSA, Via Bonomea 265, IT-34136 Trieste, Italy

3Democritos CNR/INFM National Simulation Center, Via Bonomea 265, IT-34136 Trieste, Italy
(Received 8 August 2011; revised manuscript received 29 September 2011; published 28 October 2011)

The phase diagram of HD near 50 GPa exhibits a reentrant phase transition where a rotationally ordered
(“broken symmetry”) crystalline phase surprisingly transforms into a rotationally “disordered” high-symmetry
phase upon cooling. The qualitative reason for reentrance is the higher entropy of the broken symmetry phase, due
to the inequivalence of H and D, as opposed to the low entropy of the high-symmetry phase where the rotational
melting is quantum mechanical—a Pomeranchuk-like mechanism. Aiming at a quantitative understanding of this
system, we present path integral Monte Carlo (MC) constant-pressure calculations for HD based on empirical
but very realistic intermolecular interactions. Ignoring quantum mechanics at first, we use a metadynamics-based
classical MC method to seek the lowest-energy zero-temperature classical state, which we identify as a very
similar hcp-based structure C2/c as hypothesized by Surh et al. [Phys. Rev. B 55, 11330 (1997)]. Upon turning
quantum rotational effects on, we calculate the pressure-temperature phase diagram by monitoring a lattice biased
order parameter, and find a reentrant phase boundary in good agreement with experiment. The entropy jump
across the transition is found to be comparable with ln 2, the value expected for a Pomeranchuk mechanism.
A comparison with earlier studies is also presented, yielding relevant information about the role of factors that
quantitatively determine the reentrant part of the phase diagram.
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I. INTRODUCTION

The molecular hydrogen solids, para-H2, ortho-D2, and HD
exhibit very interesting pressure-temperature phase diagrams,
where the quantum motion of nuclei dominates at low
temperatures. Whereas the molecular centers form in all cases
a hexagonal closed-packed (hcp) lattice, the angular molecular
orientations undergo a quantum mechanically driven “rota-
tional melting” phase transition, between a high-pressure or-
dered phase, sometimes called “phase II” or “broken symmetry
phase” (BSP),1–3 and a low-pressure rotationally symmetric
phase. In para-H2 and ortho-D2 isolated molecules, only
even values of the total angular momentum J are allowed.4,5

The large rotational kinetic energy gap between the J = 0
ground state and the lowest J = 2 excited state stabilizes the
rotationally melted symmetric phase at low pressures. At large
pressures, the crystal field mixes higher rotational states (J �
2) with J = 0 in the molecular ground state to an extent that
depends on the intermolecular interaction. That interaction,
mainly of electric quadrupole-quadrupole (EQQ) origin, favors
orthogonal orientations of nearby molecules. As the volume
decreases under pressure, symmetry-breaking intermolecular
interactions increasingly compete against rotational kinetic
energy, eventually overcoming it, and driving the BSP onset
at high pressures; at T = 0, this is a first-order quantum
phase transition. While the phase diagrams for hydrogen
and deuterium are qualitatively similar, especially at high
temperatures where quantum effects are less important, the
low-temperature transition pressure to the BSP phase is much
larger in para-H2 (≈110 GPa) than in ortho-D2 (≈28 GPa,
see Fig. 1). This mass dependence is a quantum signature,
reflecting the lower rotational kinetic energy of D2 relative to
H2. No accompanying structural change of the lattice formed
by molecular centers has been experimentally revealed at these

transitions. Infrared and Raman spectra are compatible with
an hcp lattice of molecules persisting from the high-symmetry
phase inside the BSP phase for both H2 and D2

7,8 apparently
excluding a competing face center cubic (fcc) Pa3 lattice
ordering. In solid HD, which is the subject of this study, the
same phase transition also takes place. Not surprisingly, it
occurs at ≈69 GPa, a pressure intermediate between those
of hydrogen and deuterium. There is, however, a major
difference in HD with respect to H2 and D2, a difference that
is our present focus. The low-temperature phase diagram of
HD exhibits a reentrance, whereby the rotationally ordered
(“broken symmetry”) crystalline phase somewhat surprisingly
reverts back to a rotationally disordered high-symmetry phase
upon cooling—apparently the same rotationally melted phase
seen at high temperatures. By contrast, in solid para-H2 and
ortho-D2, the broken symmetry phase only transforms to a
rotationally disordered one upon heating, and there is no
reentrance.

The difference between para-H2 or ortho-D2 and HD begins
right at the molecular quantum-mechanical level. Since H and
D are distinguishable, the lack of inversion symmetry permits
all integer values of J , and not just the even ones. As is
long known from time honored mean-field approaches,9–12

a broken-symmetry phase of rotors with all allowed J values
and quadrupolar-type interactions has a higher entropy than
the rotationally isotropic (“disordered”) state,11 causing a
characteristic reentrant shape of the transition line.9 The
underlying physics is easily rationalized at the qualitative
level. Since the intermolecular interactions are independent
of the isotopic difference between H and D (neglecting the
very small dipole moment of HD13), the BSP molecular
solid phase is made up with HD- or DH-oriented molecules
occupying with equal probability each site. This gives rise to
an additional entropy of order ln 2 from the two molecular
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FIG. 1. (Color online) Schematic experimental phase diagram for
H2, ortho-D2, and HD. Data reported in Ref. 6.

orientations. That entropy term is missing in the quantum
rotationally melted state, where the ground state is a single
nondegenerate quantum state. The overall situation bears
an analogy with the well-known Pomeranchuk effect14,15 in
He3, the two orientations HD and DH here acting as a
pseudospin variable, in place of real nuclear spin in solid
He3.

This simple qualitative picture leaves several important
issues still quite open. The main one is a quantitative
understanding. A proper theoretical approach, based, for
example, on quantum Monte Carlo simulations, should yield
an accurate description of the phase diagram, in particular
of the reentrant behavior of HD. Important side goals are
to clarify the role of different multipole components on the
interatomic potential, the role of the lattice structure including
the precise nature of the broken symmetry phase, and the
difference expected between hcp and fcc ordering of the
molecular centers of mass. Other goals to be addressed later
will be to clarify the nature of the quantum orientational
disorder that sets in below the BSP transition line, and,
eventually, to address nucleation phenomena in this unusual
regime.

Previous theoretical approaches are mainly based on path-
integral Monte Carlo (PIMC), using empirical potentials.
Runge et al.16,17 used a potential derived from ab initio
calculations to address the BSP transition pressure of ortho-D2

and assumed an fcc lattice. Using a similar potential, Cui
et al.18 described the high-temperature transition lines of
para-H2 and ortho-D2 between BSP and classical rotational
disorder in both the fcc and the hcp lattices. The phase diagram
of HD was studied in Ref. 19 using PIMC and a potential
taking into account only an EQQ interaction of the form given
in Ref. 5 [see Eq. (14) and Ref. 20]. Assuming an fcc lattice,
a transition line with a qualitatively correct reentrance was
obtained, however, at a pressure of 10 GPa, way below the
experimental value.

An important starting element for these studies is a cor-
rect BSP crystal structure. Despite many experimental7,21–26

and ab initio27–30 theoretical studies, that structure is still
somewhat uncertain. Some data26 point to an hcp structure
of molecular centers. The anisotropic molecular orientations
in the BSP phase are not yet well defined, however, as

experiments do not provide conclusive evidence for a specific
structure. The problem of the BSP phase structure has been
extensively studied using empirical potentials. Ref. 31 stud-
ied the ground-state arrangement of quadrupoles interacting
via EQQ interaction on an hcp lattice, concluding that a
structure with a space group Pca21 has the lowest EQQ
interaction energy. That configuration was also considered in
an ab initio calculation using the local density approximation
(LDA),28,32 which suggests that a Pca21 structure has the
lowest energy and wider band gaps. In the end, as in
other cases, an accurate empirical modeling of intermolecular
interactions offers the best chance to make and to validate
the delicate adjustments that comparison with experiment
requires.

In this paper, we model the HD solid as an assembly of
rigid molecules that have both rotational and translational
degrees of freedom, and interact with an empirical potential
including isotropic and anisotropic terms. We considered
several different potential forms, performing extensive tests
in order to select the most appropriate (see Sec. II A). As
basic molecular lattices, both hcp and fcc structures are
considered and compared. To determine the optimal classical
molecular orientations in the BSP range of pressures, we
apply a metadynamics-based33 Monte Carlo search method.34

The optimal BSP structure obtained in this way has a C2/c
symmetry, same as that proposed in Ref. 17 (see Fig. 2).
Using this structure as the classical starting point, we study
next the low-temperature quantum phase diagram of HD
and its reentrant transition line by implementing an accurate
PIMC approach. PIMC results place the reentrant phase
transition edge at a pressure of ≈56 GPa and a temperature
of ≈ 25 K in good agreement with the experimental values
of ≈53 GPa and ≈30 K. Comparison with results obtained
with slightly different potentials, with increasing Trotter
numbers and frozen versus deformable underlying lattice
structures, sheds light on the influence of these different
ingredients in determining the experimental reentrance and its
features.

II. THEORY

A. The Hamiltonian of the system

We aim at describing a hydrogen-like molecular solid in a
regime of pressures where the molecules are still well-defined
objects moderately interacting among each other, via an
intermolecular potential Û . That potential can be seen as the
Born-Oppenheimer total energy of electrons plus nuclei as a
function of all molecular coordinates. In principle, accessible
through ab initio electronic calculations, the total energy
would at the same be computationally expensive and difficult
to translate in our desired pairwise form, Û = ∑

i<j U
pair
ij .

Good semiempirical pairwise forms of Û have been adopted,
some tested against LDA ab initio simulations,16–18 and
we will follow suit. We neglect the vibrational degree of
freedom within each molecule, and consider each molecule
as a rigid rotor with a center of mass (CM) at the position
RCMi

and orientation �i = (θi,φi), with (θi,φi) the inclination
and azimuthal angles in spherical coordinates. The molecules

144119-2



THEORY OF THE REENTRANT QUANTUM ROTATIONAL . . . PHYSICAL REVIEW B 84, 144119 (2011)

FIG. 2. (Color online) The new structure having the lowest
classical energy as seen along the HCP axis. The primitive cell has
a diamond shape (dashed line) and contains 16 molecules. The cell
consist of two layers AB and A′B ′. Molecules in the upper layers
(B,B ′) are shown in solid line, while the lower layer is shown with
dashed line. The AB layers (a) lie above the A′B ′ layers (b). This
structure belongs to the space group C2/c.

have therefore just translational and rotational degrees of
freedom, and the Hamiltonian is a sum of kinetic and potential
terms:

Ĥ = K̂ + Û ({RCMi
,�i}), (1)

K̂ = K tra + K rot = −λ

N∑
i=1

∇̂2
RCMi

+ B

N∑
i=1

L̂2
i , (2)

where N is the number of molecules, λ = h̄2

2MT
with MT

is the total mass of the molecule, B = h̄2

2I
is the rotational

constant with I the molecular moment of inertia, ∇̂2 is the
Laplacian, and L̂ is the angular momentum operator. Quantum
effects appear through the relatively large values of λ and
B. The effect of quantum statistics is, in principle, twofold
(i) intramolecular, where the statistics governs the allowed
values of the angular momentum operator L̂, and (ii) inter-
molecular, with all molecules being identical indistinguishable
and interchangeable. We include and treat in full the effects
(i), whereas we neglect the effect (ii), since intermolecular
exchanges are totally unimportant at the regimes of pressure
and temperatures we are interested in. The pairwise interaction

potential is expanded in spherical harmonics

U pair(�1,�2,R12)

= (4π )3/2
∑
l1,l2,l

Bl1l2l(R12)
∑

m1,m2,m

(l1,m1,l2,m2|l1,l2,l,m)

×Yl1,m1 (�1)Yl2,m2 (�2)Y ∗
l,m(�̂12)

where (l1,m1,l2,m2|l1,l2,l,m) are Clebsch-Gordan
coefficients,5 R12 is the vector connecting the geometric
center points of two molecules (which can be easily calculated
in terms of RCM1,2 and �1,2), the sum being restricted to
even values of l1 and l2. By far, the dominant contribution
at low pressures (large R12) is the isotropic component
associated to l1 = l2 = l = 0. Next in importance is the
EQQ interaction, l1 = 2, l2 = 2, l = 4 and the atom-diatom
terms20 l1 = 2, l2 = 0, l = 2 and l1 = 0, l2 = 2, l = 2 whose
radial part (Bl1,l2,l) becomes more important than the EQQ
interaction at high pressure. The atom-diatom terms cancel out
exactly on an ideal fcc or hcp lattices because of symmetry.
Therefore in a finite but low-temperature configuration, their
values will be small, compared with the EQQ interaction.
Finally, nonnegligible at closer distances are terms with
l1 = l2 = 2, l = 0 and l1 = l2 = 2, l = 2. In summary, in the
range of pressure of interest, 0–100 GPa, the EQQ interaction
is the leading contribution. The associated coefficients
Bl1l2l(R12) have been extensively studied, for instance, by
Schaefer et al.35 and by Burton et al.36 (see also Refs. 37–39).

Following a well established practice, we con-
struct the interaction potential in the solid phase, by
an appropriate rescaling of the gas-phase ingredients.
The resulting hybrid potential is essentially that of
Cui et al.,18

Upot =
∑
i<j

Uiso(Rij ) + η
∑
i<j

U pair
ani (�i ,�j ,Rij ). (3)

Here, the isotropic component Uiso (related to B000) is tailored
so as to lead to a good agreement with the known equation of
state (EOS) of both H2 and D2:40

P = 3K0

(
V

V0

)− 2
3

[
1 −

(
V

V0

) 1
3

]

× exp

{
3

2
(K ′

0 − 1)

[
1 −

(
V

V0

) 1
3

]}
, (4)

(V0 is the volume at zero pressure, and K0 = 0.252 79 and
K ′

0 = 7.0642 are calculated by fitting Eq. (4) to the results ob-
tained from the simulation of an HD system using the constant
pressure PIMC technique, see Sec. II C); the anisotropic terms
are included by rescaling the sum of two-body gas-phase in-
teractions with a parameter η ≈ 0.61 + 0.31(Rnn/R

0
nn − 0.5)

(R0
nn and Rnn being the nearest-neighbor distances at zero

pressure and at pressure P, respectively) determined by Runge
et al.16,17 through a fitting of LDA data. The sum over i and j

is cut off at next-nearest neighbors. We refer the reader to
Refs. 16–18 and 35 for the details of Uiso(Rij ) and
U

pair
ani (�i ,�j ,Rij ). We consider here two sources for the

coefficients Bl1l2l(R12) appearing in U
pair
ani : first Schaefer

et al.35 which we denote by USchaefer
Cui ; second, Burton

et al.36 denoted by UBurton
Cui . Remarkably, these two choices
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lead to approximately the same EOS, but show a con-
siderable difference in the BSP transition pressure, see
Sec. III.

B. Path-integral representation of rotors

The path-integral Monte Carlo approach to the quantum
rotor model in Eq. (1) is quite standard, and we refer the
reader to Ref. 18 for details. The PIMC method allows
to obtain a numerical solution of the many-body problem
represented by the Hamiltonian (1) at finite temperatures.
The density matrix e−βĤ , where β = 1/kBT , fully describes
the quantum-statistical properties of the system at finite
temperature T. In the position basis, the density matrix has the
form:

ρ(X′,X,β) = 〈X′| e−τĤ · · · e−τĤ︸ ︷︷ ︸
Q times

|X〉,

where τ = β/Q is the time step, the integer Q is the
number of Trotter slices,41 and we use the shorthand notation
X = RCM1 ,�1, . . . ,RCMN

,�N . The partition function Z =
Tr{e−βĤ } can be calculated as an integral of the diagonal
component of ρ:

Z = 
dX0ρ(X0; X0,β). (5)

Inserting a complete set of states between each exponential,
we obtain

ρ(X′; X,β) = 
dX1 · · · dXQ−1ρX0,X1 · · · ρXQ−1,XQ
, (6)

where we have defined ρXq−1,Xq
= ρ(Xq−1,Xq,τ ), with X0 =

X, XQ = X′, and Xq = {RCM1,q
,�1,q , . . . ,RCMN,q

,�N,q}. For τ

small enough, we can approximate the density matrix operator
using the primitive approximation:41

e−τ (K̂+Û ) ≈ e−τK̂e−τ Û . (7)

For the Hamiltonian (1), the density matrix,
in the primitive approximation, can be written
explicitly:

ρXq−1,Xq
= [4πτλ]−

3N
2 e

[
−∑N

i=1

(RCMi,q−1
−RCMi,q

)2

4τλ

]
×

N∏
i=1

[ ∞∑
l=0

2l + 1

4π
Pl(cos(�i,q))e−τBl(l+1)

]

× e{− τ
2 [U (Xq−1)+U (Xq )]}, (8)

where cos(�i,q) = ni,q−1 · ni,q , with ni,q = [cos(φi,q)
sin(θi,q), sin(φi,q) sin(θi,q), cos(θi,q)], and Pl(•) are Legendre
polynomials.

C. Constant-pressure ensemble

An advantage of the Monte Carlo (MC) method is that it
can be readily adapted to the calculation of averages in any
ensemble. As we are interested in studying the temperature
versus the pressure phase diagram of HD, most calculations
were performed in the constant-pressure ensemble, where the
number of molecules N, the pressure P, and the temperature
T are constant. In this ensemble, the partition function

is given by

ZNPT = 
dV
dX VNQe−βPVρ(X; X,β), (9)

where V is the volume of the simulation cell. Note
that in this equation we used a set of scaled
coordinates X = {RCMi=1,...,N,q=1,...,Q

,�i=1,...,N,q=1,...,Q}, where
RCMi,q

= L−1
BoxRCMi,q

. In this case, the configurational integral
in Eq. (9) extends over the unit cube42 and the additional
factor V NQ comes precisely from the volume element
dX = V NQdX. The Metropolis scheme is implemented by
generating a Markov chain41 of states, which has a limiting
distribution proportional to

exp

{
−β

[
PV − NQ

β
ln(V )

]}
ρ(X; X,β). (10)

A new state is generated by displacing a molecule randomly
and/or by making a random volume change. One important
difference between this ensemble and the canonical ensemble
is that when a move involves a change in volume, the density
of the solid changes. In this case, the potential energies
in the initial and final states are different and must be
recalculated from scratch, which is computationally more
expensive than changing the configuration by moving just one
molecule.

As we are working in the rigid-rotor approximation, the
intramolecular distance must not change during a volume
move. This implies the constraint r′

2i,q − r′
1i,q = r2i,q − r1i,q ,

to be satisfied by the coordinates of atoms 1 and 2 in the
same molecule. To satisfy that, we change the atoms positions
according to

r′
1i,q =

(
L

′
Box

LBox
− 1

)
RCMiq

+ r1i,q ,

r′
2i,q =

(
L

′
Box

LBox
− 1

)
RCMiq

+ r2i,q .

III. RESULTS

A. Classical orientational order of hydrogen molecules
on the hcp lattice

In order to determine the BSP-isotropic coexistence line of
HD, it is necessary to establish first of all the BSP molecular
crystal structure at the classical level. If the molecular centers
form an hcp lattice, we need to establish the optimal geometry
of molecular orientations, and an appropriate order parameter
to measure and monitor that angular order. Suppose we know
the structure of the ordered phase; then we can define N unit
vectors ui corresponding to the orientation of molecule on all
sites i = 1,N . Thus, following Runge et al.,16 we define the
order parameter

Op =
⎧⎨
⎩

Q∑
q=1

N∑
i=1

1

2QN
[3 cos2(ni,q · ui) − 1]

⎫⎬
⎭

2

, (11)
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where, as before, ni,q labels the orientation of the molecule i

in the Trotter slice q for a given configuration visited with the
PIMC algorithm. This order-parameter measures the extent
of ordering (and by difference, its deviation) relative to a
given orientational structure defined by the set {ui}. In Ref. 16,
the set {ui} was selected as the four (111) directions of Pa3 on
the fcc lattice, Pa3 being the lowest potential energy state of the
EQQ interaction on the fcc lattice. In the perfect or-
dered state of Pa3, 〈Op〉 = 1, while disorder is signaled
by 〈Op〉 ≈ 0. If, however, solid HD, in the orientational
disordered phase, has an hcp lattice,43 it is necessary
to define a different set of vectors {ui}, corresponding
to the BSP low-energy classical structure, to be used
in Eq. (11).

To find the most likely BSP structure, which minimizes the
potential energy on an hcp lattice, we implement the classical
metadynamics-based MC method proposed in Ref. 34 in a
system of 216 classical molecules whose charge center is fixed
onto an hcp lattice at T = 20 K. The metadynamics simulation
uses as a collective variable the potential energy s = Upot [see
Eq. (3)]. The history-dependent potential is mapped onto a
grid with a spacing of 1 × 10−5 a.u., using Gaussians of height
1 × 10−4 a.u.

We performed several independent runs with the same set
of parameters, always starting from the configuration with
the lowest energy obtained in the previous run. In Fig. 2,
we show the structure of minimum energy found in this
manner. The diamond-shaped primitive cell (dashed line)
contains 16 molecules. This cell consists of two pairs of
layers, AB and A′B ′. Molecules in the upper layers (B,B ′)
are shown as solid, while those in the lower layers are shown
as dashed. The AB layers (a) lie above the A′B ′ layers
(b). The arrows in Fig. 2 are pointing toward the positive
direction of the HCP axis. The lattice parameters and the
atomic coordinates of the optimized structure are given in
Appendix, Table I. This structure is monoclinic and belongs to
the same space group C2/c, same symmetry as that proposed
as the quantum ground state of H2 on the HCP lattice by Surh
et al.17 The potential energy of the new structure is ≈54 meV
lower than that of a structure obtained by optimizing the
molecular orientations starting from a guess similar to that of
Ref. 17.

The order parameter in Eq. (11) suffers from an important
limitation, namely, if the system reaches an ordered structure
different from the reference one associated to the chosen set
{ui}, still Op ≈ 0. Thus the condition Op = 0 is not sufficient
to ensure that the system is in an orientationally disordered
phase. To address this issue further, we monitored a second
order parameter defined as

〈OQ〉 = 1

N

N∑
i=1

1

6

3∑
j,k=1

(
QTotal

jk

)2
, (12)

where

QTotal
jk = 1

TMCQ

2TMCQ∑
a=1

(
3ri

j,ar
i
k,a − r2

0 δjk

)
(13)

with TMC the MC time. QTotal
jk is the quadrupolar moment

of a system of TMCQ molecules with a charge per atom of
(TMCQ)−1. If the molecules rotate in MC or Trotter time
(showing spherical symmetry), then QTotal

jk = 0; if, on the con-
trary, the molecules are frozen in a quadrupolar configuration
both in MC and Trotter time, then 1

6

∑3
j,k=1(QTotal

jk )2 = 1.
Thus 〈OQ〉 signals quadrupolar order in a more general
way than 〈Op〉, which is restricted to a particular choice
of {ui}. We checked nonetheless that both parameters give
essentially the same transition pressure, indicating that the
orientational order of the phase in Fig. 2 is likely to be thermo-
dynamically favored in the range of pressure and temperature
considered here.

B. The transition line from rotationally
spherical to the BSP state

We carried out several simulations aimed at computing the
BSP transition line of solid HD. A transition is detected by
monitoring the value of the order parameter in Eq. (11) as
a function of MC time. Consider, for example, a constant
pressure PIMC (CP-PIMC) for a system of 64 molecules of HD
on an HCP lattice, with a time-step of τ = 4.55 × 10−2B−1

using the UBurton
Cui interaction potential. The inset of Fig. 3 shows

the order parameter as a function of MC time at four pressures:
52 GPa (open circles), 54 GPa (open squares), 56 GPa (solid
diamond), and 58 GPa (solid up triangles). For P < 56 GPa,
after an initial transient, 〈Op〉 converges to a small value
〈Op〉 ≈ 0, while for P = 58 GPa 〈Op〉 shows an upward turn
and converges to a nonzero value 〈Op〉 ≈ 0.3. This abrupt

0 20 40 60 80 100 120 140
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)

Experiment
Shin  et al., (Ref. 17)    
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P
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FIG. 3. (Color online) The temperature-pressure phase diagram
of solid HD. The open circles are the experimental data.3 The up
open triangles are the CV-PIMC results reported by Shin et al.19

The down triangles are CP-PIMC results considering the system of
Fig. 4 using the USchaefer

Cui potential. The solid squares and solid circles
are CP-PIMC results for a system of 64 molecules of HD on an
HCP lattice and a time step of τ = 4.55 × 10−2B−1 using USchaefer

Cui

and UBurton
Cui , respectively. Inset: lattice biased order parameter as a

function of the MC time for four pressures: 52 GPa (open circles),
54 GPa (open squares), 56 GPa (solid diamond), and 58 GPa (solid
up triangles).
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change in the order parameter indicates the presence of a
phase transition from a disordered phase to an ordered one,
suggesting that HD, at a temperature of T = 30 K, orders at
≈58 GPa. We carried out several checks aimed at assessing
the robustness of our results with respect to the simulation
details. In particular, we found that (i) the Hamiltonian in
Eq. (1) requires that translations and rotations are related to
the centers of mass of the molecules, while the intermolecular
potential needs to be calculated starting from the geometric
centers of the molecules.5 If one theoretically wanted to
nail down the molecules in some fixed lattice, accounting
only for rotational degrees of freedom, the question arises
of which centers to keep fixed: centers of mass, or geometric
centers? We have addressed this point and found that if in
Eq. (1) one neglects the translational degrees of freedom and
assumes that the molecules just rotate around the center of
mass, the transition pressure decrease drastically and unrealis-
tically to a few GPa. The transition becomes crossover-like
where the order parameter increases slowly and smoothly
with pressure, and the re-entrance becomes imperceptible. We
suppose that the reason for this behavior is the symmetry of
the interaction potential with respect to the geometrical center.
This discourages motion, keeping the center of mass fixed,
strongly favoring the ordered phase. (Indeed, an expansion of
the pairwise interaction around the centers of mass of the two
molecules would involve extra contributions, which have been
discussed in Ref. 44.) Therefore, assuming fixed centers of
mass appears to be a poor choice, and geometrical centers,
which in HD differ from the centers of mass of the molecules,
should make a better one. To test this conjecture, we performed
simulations in which the geometrical centers are now held
fixed in an hcp lattice. This system has a transition pressure
very close to the one obtained allowing translations. The same
behavior can be observed in the case of H2 and D2 (e.g.,
compare the results of Refs. 18 and 16). The conclusion is
that once the symmetry of the interaction of rotors is properly
centered at the geometrical centers, and not at the molecular
centers of mass, then it is relatively unimportant to allow for
translational degrees of freedom. (ii) The number of replicas
does not change significantly the transition pressure, and
changing that number just makes it fluctuate in a small range.
We get a transition pressure of 56 GPa for τ = 0.2B−1, 60 GPa
for τ = 6.83 × 10−2B−1, and 58 GPa for τ = 4.55 × 10−2B−1

for a CP-PIMC calculation at T = 30 K for 64 molecules. (iii)
The transition pressure only gently decreases as the system
size is increased. We get a transition pressure of 56 GPa for
64 molecules, 54 GPa for 128 molecules, and 54 GPa for
256 molecules, for a CP-PIMC calculation at T = 30 K and
τ = 0.2B−1.

With the protocol described above, we then repeated
the procedure shown in the inset of Fig. 3 for several
choices of T, the interaction potential, and lattice. This
allowed estimating approximately the transition pressure as a
function of T.

Figure 3 shows the temperature-pressure phase diagram of
solid HD, along with the experimental transition line (open cir-
cles, from Ref. 3), also compared to theoretical phase diagrams
obtained in previous calculations. The up open triangles are the
constant volume PIMC (CV-PIMC) results reported by Shin
et al.19 The down triangles are CP-PIMC results considering
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FIG. 4. (Color online) EQQ interaction term of the intermolecular
potential as a function of the nearest-neighbor distance from three
sources. Solid squares: EQQ interaction used in Ref. 19, solid down
triangles and stars are the scaled EQQ interaction using the data
reported in Refs. 35 and 36, respectively, and the scale factor of
Ref. 16. The data shown are results from CV-PIMC simulation on
a system consisting of 108 molecules of HD fixed on a fcc lattice
at T = 30 K and a time step of τ = 6.83 × 10−2B−1. The pressure
was calculated using the Vinet et al.40 equation of state with the
fitting parameters K0 = 0.252 79, K ′

0 = 7.0642 obtained with our
CP-PIMC simulation.

the system of Fig. 4 using the USchaefer
Cui potential. The solid

squares and solid circles are CP-PIMC results for a system
consisting of 64 molecules of HD on an hcp lattice using
USchaefer

Cui and UBurton
Cui , respectively (the time step used was

τ = 4.55 × 10−2B−1).
We obtain a reentrant behavior for the HD phase line on

both the realistic hcp and the fictitious fcc lattices, and for
both choices of potentials (USchaefer

Cui and UBurton
Cui ). The reentrant

phase line edge point—the minimum pressure Pe at which the
transition occurs—is Pe ≈ 56 GPa for the hcp lattice with the
UBurton

Cui potential, close to the experimental value of Pe = 53
GPa and in much better agreement than the previous PIMC
calculations reported in Ref. 19, which give Pe ≈ 10 GPa.
Using alternatively USchaefer

Cui yields instead Pe ≈ 70 GPa. The
edge point temperature Te = 25 K is also in good agreement
with the experimental value of Te = 30 K. In general, the BSP
line obtained with the UBurton

Cui potential is in fairly good agree-
ment with the experiment. Interestingly, the BSP transition
line for the fcc lattice is strongly shifted downward by about
30 GPa, regardless of the potential used. In that case, the BSP
structure is Pa3, and the stronger tendency to order is evidently
due to the lack of frustration in fcc. In other words, it is the
angular frustration present in the hcp lattice, and the connected
poorer relative stability of the C2/c structure that renders
the BSP angular structure much more prone to melting than
the Pa3.

It is interesting to analyze the reentrant phase line just
obtained using thermodynamics. The inverse slope of that line
is, according to Clapeyron’s equation, dP/dT = 
S/
V ,
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directly connected to the entropy jump 
S between the
low-temperature quantum rotationally melted phase and the
higher-temperature BSP solid phase. Even though the transi-
tion is always first order, the inverse slope and the entropy
jump vanish both at T = 0 (where due to Nernst’s theorem
entropy vanishes in both phases) and at the reentrant edge
point (where both entropies are finite, and just happen to
coincide). In between, the entropy jump is finite, from the
slope, we estimate a maximum value 
S ∼ 0.4kB ± 0.2 near
60 GPa at 15 K, to be compared with 0.5kB of the experimental
slope at same pressure and temperature (see Fig. 3). In a
Pomeranchuk-type reentrance, the entropy jump should be
comparable to, although smaller than, ln 2 = 0.693; and that is
indeed the case here. The physical interpretation of this result is
that indeed the BSP phase has an entropy close to ln 2 due to the
(HD, DH) disorder at each site, whereas the low-temperature,
quantum rotationally melted phase can at most have an
activated entropy ∼exp −
/kBT , where 
 is the gap above
the nondegenerate ground state. The two (HD, DH) distin-
guishable orientations therefore act as a kind of pseudospin
doublet, raising the entropy of the solid, apparently more
ordered BSP phase, above that of the apparently less ordered
symmetric phase. The reentrant transition of HD therefore rep-
resents, in Frenkel’s language, another “entropy-driven phase
transition.”45

The systematic study that we did of the behavior of
various potentials permits an assessment of the sensitivity
of the BSP transition line to the parameters of the problem.
Besides the entropy terms just mentioned, the BSP transition
occurs from a balance between the rotational kinetic energy
(lowest in the symmetric phase) and EQQ interaction energy
(lowest in the BSP phase). Consider the EQQ interaction
term of the intermolecular potential as a function of the
nearest-neighbor distance for a fixed configuration of the
molecules. This quantity is plotted in Fig. 4 as a function of
the nearest-neighbor distance Rnn. The three different choices
of B224 shown are associated to (i) the 1/R5

nn pure EQQ
choice

B224(Rnn) = 0
(
R0

nn

)5

(4π )3/2

(
1

Rnn

)5

(14)

of Ref. 19 (solid squares), where 0 = 117.7 K20,
(ii) the choice of Ref. 35 rescaled with the factor η ≈
0.61 + 0.31(Rnn/R

0
nn − 0.5) (solid down triangles), and (iii)

the choice of Ref. 36 rescaled with the same factor η (stars).
If we consider, for illustration purposes, a horizontal cut
of the interaction energy term B224 with a fixed value of
2.07 meV (horizontal line in Fig. 4), which we found to be
appropriate to describe the transition in fcc at T = 30 K. The
various choices of B224 attain this fixed value at different
Rnn (see the three boxes in Fig. 4), which we can convert
from volume to pressure by the equation of state of Vinet
et al.40 in Eq. (4) (for this purpose we used the fitting
parameters K0 = 0.252 79, K ′

0 = 7.0642 obtained with our
CP-PIMC simulations). Remarkably, three different CV-PIMC
simulations (with a time step of τ = 6.83 × 10−2B−1) of a
system of 108 HD molecules on a fcc lattice at T = 30 K, with

the three choices of B224 illustrated in Fig. 4 lead to a value
of the transition pressure quite close to the values predicted
by the cut at 2.07 meV. A similar systematic agreement is
observed in all the other cases studied, showing the crucial role
played by the choice of the EQQ interaction in determining
the BSP transition pressure; a EQQ interaction shifted toward
larger values of Rnn is associated to a larger transition volume
and hence a smaller transition pressure, via the EOS in
Eq. (4).

In summary, we have applied PIMC within both the
constant-volume and constant-pressure ensembles to the reen-
trant phase diagram of the HD solid at high pressures and
low temperatures, considering both hcp (realistic) and fcc
(fictitious) lattices. We studied the influence of the potential
chosen, the translational degrees of freedom, and the choice
of the EQQ interaction potential on the BSP transition
line. It was found that while the translational degrees of
freedom have a small effect on the transition pressure (see
Sec. III B), the choice of lattice and interaction potential
strongly affects the transition pressure. Using a metadynamics-
based MC scheme, we found that a C2/c ordered structure,
containing 16 molecules per cell is, with the best available
potentials, energetically preferred for the classical BSP phase
on an hcp lattice. Successive implementation of quantum
molecular rotations by path-integral Monte Carlo permitted a
full calculation of the reentrant BSP-rotationally symmetric
phase line. The transition was identified using two order
parameters, one dependent on the new structure and the second
related to the total quadrupolar moment of the molecule,
particularly sensitive to the rotational state of the molecule.
The phase line was calculated for both the hcp and the
fcc lattices, yielding a realistic reentrant behavior in both
cases.

The best results are obtained with the UBurton
Cui potential on

the hcp lattice, with features of the BSP-symmetric coexistence
line in good agreement with experiment. The orientationally
ordered state edge was found at a minimum pressure Pe ≈
56 GPa for the hcp lattice and the Cui-Burton potential, quite
close to the experimental value Pe = 53 GPa and in much bet-
ter agreement than the previous PIMC calculations reported in
Ref. 19, which gave Pe = 10 GPa. The edge point temperature
Te = 25 K is also in good agreement with the experimental one
Te = 30 K. Finally, the entropy jump at the phase transition
is found to have a maximum value below but not far from
ln 2, in agreement with a Pomeranchuk-like, entropy-driven
picture of the reentrant transition. Further work to investigate
in more detail phenomena such as nucleation connected with
this quantum-classical transition is being planned for the
future.
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APPENDIX: THE OPTIMAL C2/c STRUCTURE

We report here the atomic coordinates for the optimized C2/c structure we have found.

TABLE I. Lattice parameters and atomic coordinates for the optimized C2/c structure shown in Fig. 2. β is the angle between the a and c

axes.

Lattice parameters

b/a = 0.577 235 c/a = 1.373 826 β = 136.7102◦

Atomic coordinates in units of a

x y z x y z x y z

H1 0.45206 0.435922 0.104149 H23 0.69003 0.547808 0.122962 H44 −0.599541 0.174267 0.572134
H2 0.38144 0.429931 0.131383 H24 0.64343 0.0296006 0.112562 H45 −0.17294 0.279394 0.389543
H3 −0.432991 0.402939 0.80761 H25 −0.0479407 0.141313 0.575158 H46 −0.16049 0.297669 0.316923
H4 −0.400461 0.462885 0.840892 H26 −0.118561 0.147305 0.602392 H47 −0.309971 0.318045 0.59397
H5 0.17294 0.568011 0.0814657 H27 0.0670096 0.174296 0.336602 H48 −0.356571 0.259017 0.58357
H6 0.16049 0.00905105 0.154086 H28 0.0995396 0.11435 0.369883 H49 0.047939 0.429931 0.837868
H7 −0.690031 0.0294275 0.819056 H29 −0.327061 0.00922422 0.552474 H50 0.118559 0.435922 0.810634
H8 −0.643431 0.547635 0.829456 H30 −0.339511 0.568184 0.625094 H51 −0.0670102 0.462914 0.134407
H9 0.0479396 0.435922 0.366859 H31 −0.19003 0.547808 0.348047 H52 −0.0995401 0.402968 0.101126
H10 0.11856 0.429931 0.339625 H32 −0.14343 0.0296006 0.358447 H53 −0.672941 0.297842 0.860552
H11 −0.0670107 0.402939 0.605416 H33 −0.0479401 0.147305 0.104149 H54 −0.660491 0.279567 0.787932
H12 −0.0995407 0.462885 0.572134 H34 −0.11856 0.141313 0.131383 H55 0.19003 0.25919 0.122962
H13 0.32706 0.568011 0.389543 H35 0.0670091 0.114321 0.80761 H56 0.14343 0.318218 0.112562
H14 0.33951 0.00905105 0.316923 H36 0.099539 0.174267 0.840892 H57 −0.547941 0.429931 0.575158
H15 0.190029 0.0294275 0.59397 H37 0.67294 0.279394 0.0814657 H58 −0.618561 0.435922 0.602392
H16 0.143429 0.547635 0.58357 H38 0.66049 0.297669 0.154086 H59 0.56701 0.462914 0.336602
H17 −0.452061 0.141313 0.837868 H39 −0.190031 0.318045 0.819056 H60 0.59954 0.402968 0.369883
H18 −0.381441 0.147305 0.810634 H40 −0.143431 0.259017 0.829456 H61 0.172939 0.297842 0.552474
H19 0.43299 0.174296 0.134407 H41 0.54794 0.147305 0.366859 H62 0.160489 0.279567 0.625094
H20 0.40046 0.11435 0.101126 H42 0.61856 0.141313 0.339625 H63 0.30997 0.25919 0.348047
H21 −0.172941 0.00922422 0.860552 H43 −0.567011 0.114321 0.605416 H64 0.35657 0.318218 0.358447
H22 −0.160491 0.568184 0.787932
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