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First-principles density functional theory study of native point defects in Bi2Te3
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We present a first-principles study of the native point defects in the thermoelectric material Bi2Te3. Calculated
formation energies of defects and electronic densities of states were analyzed in detail. The most prominent
native point defects considered are vacancies and antisite defects on the Bi, Te1, and Te2 sublattices of the Bi2Te3

structure. Vacancies on all three sublattices are found to have much higher formation energies than antisite
defects. The most dominant antisite defects are found to be BiTe1 at Bi-rich conditions, and TeBi at Te-rich
conditions. These lead to the formation of resonant defect states at the top of the valence band and bottom of the
conduction band, respectively. Hence they are expected to impact charge and energy transport in a profound way.
Furthermore antisite defect pairs tend to form at nearest-neighbor distances, and lead to substantial changes in
the electronic structure and hence in the thermoelectric properties of Bi2Te3.
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I. INTRODUCTION

Some of the best thermoelectric materials known for
applications at room temperature are based on Bi2Te3 and its
alloys, such as Bi2−xSbxTe3 and Bi2Te3−xSex (see, e.g., Refs. 1
and 2). The energy conversion efficiency of a thermoelectric
material is typically characterized by the dimensionless figure
of merit ZT = S2σT/κ , where S is the Seebeck coefficient, σ
is the electrical conductivity, κ is the thermal conductivity,
and T is temperature. Substantial efforts have been made
to enhance the thermoelectric properties of Bi2Te3-based
thermoelectric materials in order to get the figure of merit ZT

at room temperature increased to more than 1. Such efforts
are by chemical synthesis of bulk nanostructured materials
with a precise control of the composition,3–6 or by various
thin-film deposition techniques.7–10 A prerequisite for optimal
thermoelectric performance is materials with well-defined
electrical and thermal conductivities, high mobility of free
current carriers, and thermoelectric power. However, these
properties are influenced by the presence of impurities and
their interaction with native point defects. Therefore the
investigation of the nature of native point defects in Bi2Te3 is
vital both for an understanding of the thermoelectric properties
and for their optimization for practical devices.

Bi2Te3 is a narrow-band-gap semiconductor (Eg =
0.13 eV11) having a tetradymite crystal structure with the space
group R3̄m. The rhombohedral primitive unit cell contains two
nonequivalent sites for the Te atoms, Te1 and Te2, and one
for the Bi atoms; see Fig. 1(a). The conventional hexagonal
unit cell shown in Fig. 1(b) contains three formula units of
Bi2Te3 and exhibits the layered crystal structure of tetradymite
materials. The fundamental building block is composed of five
atomic layers in the sequence [Te1-Bi-Te2-Bi-Te1]; these are
repeated periodically along the c axis, as shown in Fig. 1(b).
The Te1-Te1 interaction is commonly assumed to be of the van
der Waals type12 and is characterized by a large interatomic
separation (3.66 Å compared to 3.25 Å and 3.07 Å13 for Bi-Te2
and Bi-Te1, respectively).

Deviations from stoichiometry or the presence of impurities
have been shown to affect the type, density, and mobility of
charge carriers and hence also the thermoelectric properties of
Bi2Te3-based materials.6,7,14–17 In particular, the nature of the

carrier type was found to be strongly dependent on intrinsic
point defects, leading to intensive efforts to understand
the role of these defects in variation of the thermoelectric
properties.5,7,10,14–16,18–23

Consistent with the general behavior of AV
2 BV I

3 semi-
conductors, Bi2Te3 crystals grown from stoichiometric melts
show an enhanced overstoichiometry of the group-V element.
Excess Bi can be accommodated in single-crystalline Bi2Te3

by means of the following point-defect mechanisms: (i) antisite
(AS) defects, i.e., by replacement of Te atoms on a Te sublattice
by Bi atoms, denoted as BiTe; (ii) by additional regular Bi sites,
i.e., BiBi, accompanied by the creation of vacancies on a Te
sublattice, denoted as VTe; (iii) by interstitial Bi atoms. On one
hand, Miller and Li19 found, based on high-precision density
measurements, that stoichiometric Bi2Te3 has 62.8 at. % Te
content, and that the crystals were p type, in agreement with
the phase diagram found by Satterthwaite et al.,18 On the other
hand, da Silva et al.,23 found that a 60 at. % Te is sufficient to
result in n-type conduction, and that higher concentrations of
Te could not be maintained as it evaporated from their lattices.
This indicates a strong dependence of the concentration and
mechanism of antisite defects on the chemical environment.

Furthermore, Miller and Li19 found that the dominant
point defects for Bi-rich conditions were BiTe antisite defects,
confirming the earlier suggestion of Harman et al.,24 and
that interstitials of Bi and vacancies of Te were unlikely to
appear. For Te-rich samples, their results further suggest that
antisite defects may still be favorable although did not exclude
vacancies. The work of Satterthwaite et al.,18 Brebrick,20 and
more recently of Cho et al.10 proposed that singly ionized BiTe

and TeBi antisite defects are present at Bi-rich and Te-rich
conditions as acceptors and donors, respectively, and they
accounted for the charge carrier concentration assuming solely
these two defects. Since more Te sites than Bi sites exist in
the lattice (3:2 ratio), it is expected that there will be a bias
toward an excess of BiTe defects, leading in most cases to
p-type semiconduction.

Point-defect models suggested by Drašar, Bludská, Lošt’ák,
et al.,14–16 which are based on Hall-effect measurements,
assume that overstoichiometric Bi should be accommodated
by the formation of vacancies of Te, VTe, in addition to
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FIG. 1. (Color online) (a) The rhombohedral primitive and
(b) the hexagonal conventional unit cells of Bi2Te3.

BiTe defects and in order to satisfy charge balance, vacancies
of Bi, VBi, were also assumed to form. Frangis et al.,25

suggested a qualitatively different model to accommodate
overstoichiometry. Based on high-resolution transmission
electron microscopy they observed, in addition to the five-layer
lamella structures, lamellae of seven and nine layers, which are
characterized by an addition of one or two Bi-Te pairs into the
five-layer structure, respectively. This mechanism is equivalent
therefore to a defect model which excludes the formation of
vacancies.

All the above models do not take into account explicitly
the energy costs associated with creating each of these
point defects. Furthermore, although most studies suggest
that antisite defects are more likely to be found on the Te1
sublattice, no direct calculation of the formation energy was
reported so far, hence no distinction could be made between
AS on the Te1 or Te2 sublattices. However, it is believed
that vacancies on the Te1 sites are more favorable due to
the large van der Waals gap, hence they are assumed to
be dominating. The concentration of native defects depends
on the formation energy by the well-known expression of
statistical mechanics:26 c ∝ exp (−Ef /KBT ), where c is the
defect concentration, Ef is the defect formation energy, and
kB is Boltzmann’s constant; knowledge of the formation
energies is vital for a better understanding of native doping
mechanisms and the possible role of point defects for ther-
moelectric properties in Bi2Te3. Nevertheless, information
on the formation energies is scarce. Horák et al.,19,22 have
estimated experimentally the formation energy of BiTe under
Bi-rich conditions to be about 0.4 eV, which is substantially
smaller than typical vacancy formation energies which are
usually of the order of 1 eV. Theoretical studies of Pecheur
and Toussaint,27 based on a tight-binding model, suggested
that BiTe antisite defects are favorable, but they did not give

any estimates for the formation energy. First-principles density
functional theory calculations of Thonhauser et al.,28 on the
closely related compound Sb2Te3 did include a calculation of
vacancy and antisite defect formation energies. They showed
that in Sb2Te3, the defects with lowest formation energy are
the antisite SbTe1, while vacancy formation energies are well
above 1 eV. However, they did not consider the effect of the
chemical environment, which is expected to be significant.29

In order to determine which of the point-defect types
are most probable at various experimental conditions, and
hence most relevant for the optimization of the thermoelectric
properties, it is necessary to know the formation energies of
the various defects, and their dependence on the chemical
environment, as characterized by chemical potentials. In the
present study, we investigate the formation of point defects
in Bi2Te3 by first-principles calculations based on the density
functional theory (DFT). Vacancies and stoichiometric as well
as nonstoichiometric antisite defects are considered, taking
into account the variation of chemical potentials. We also
analyze the electronic structure of the point defects and their
doping mechanism, i.e., their contribution to charge carrier
type and mobility.

This paper is organized as follows: In Sec. II we describe
the point defects considered in this study and the details of
the computational approach. In Sec. III, the results of our
calculations of formation energies for the vacancy and antisite
defects are presented and discussed. The paper is concluded
in Sec. IV.

II. THE MODEL SYSTEM

The calculations of formation energies are performed as-
suming the dilute limit of point defects using a supercell setup
with periodic boundary conditions (PBCs) in all directions.
Introducing a point defect into the conventional hexagonal
unit cell shown in Fig. 1(b), for example, by replacing one
Bi atom for Te to obtain a BiTe1 antisite defect, would be
equivalent to replacing a whole layer of Te1 atoms by Bi,
which would result in a completely different structure. In the
present study we use a hexagonal 2 × 2 × 1 supercell model
for our calculations, which is produced by repeating twice the
hexagonal conventional unit cell in the two directions of the
basal plane. The resulting supercell, shown schematically in
Fig. 2, is composed of 12 formula units of Bi2Te3, i.e., 24 Bi
and 36 Te atoms.

Introducing a single point defect in this system results
in a distribution of isolated point defects, where the rest of
the periodic images of each defect are separated laterally by
a distance of 2a, where a is the basal lattice parameter of
the hexagonal conventional unit cell. The experimental lattice
parameters are given in Table I.

The employed PBCs lead inherently to a finite interaction
energy between each defect and all its images. This interaction
energy cancels out only in the limit of an infinite system. In
order to estimate this interaction energy for a finite system,
and the influence of system size on the calculated formation
energies, one normally performs several calculations with
increasing system size and separation of the point defects.
Since the hexagonal 2 × 2 × 1 unit cell used in this study
is already large, for the sake of computational efficiency
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FIG. 2. (Color online) The hexagonal 2 × 2 × 1 supercell used
for the calculations of the point defects. Indexes are attached to the
different atoms to facilitate identification of point defects. In each
layer, smaller indices indicate atoms nearer to the observer.

we instead introduce an additional defect into the hexagonal
2 × 2 × 1 supercell, and calculate the formation energy at
various distances between the pairs of defects within the same
hexagonal 2 × 2 × 1 supercell.

Calculations are performed for the most prominent defects
in Bi2Te3, namely vacancies on the Bi, Te1, and Te2 sub-
lattices, denoted as VBi, VTe1, and VTe2, respectively, and
antisite defects on the Bi, Te1, and Te2 sublattices, denoted
as TeBi, BiTe1, and BiTe2, respectively. By introducing these
defects individually into the hexagonal 2 × 2 × 1 supercell

TABLE I. Lattice parameters as calculated in this study for
Bi (rhombohedral, space group R3̄m), Te (trigonal phase, space
group P 3121), and Bi2Te3, compared to experimental data and other
theoretical calculations.

a (Å) c/a uBi vTe

Bi
This work 4.538 2.548 0.233

Ref. 30 4.474 2.594 0.234
Exp. (Ref. 31) 4.535 2.611 0.234

Te
This work 4.308 1.373 0.292

Ref. 32 4.302 1.380 0.291
Ref. 33 4.280 1.376 0.287

Exp. (Ref. 34) 4.451 1.331 0.263
Bi2Te3

This work 4.390 6.783 0.400 0.209
Ref. 35 4.530 6.761 0.400 0.209

Exp. (Ref. 13) 4.384 6.955 0.400 0.212

the overall stoichiometry of the system is altered. Similarly
to Ref. 28 we consider in addition a third type of defect
created by exchanging the positions of two atoms with opposite
types within the supercell. Two kinds of these so-called
exchange pairs are possible, depending on whether a Bi atom
is exchanged with a Te atom on the Te1 or Te2 sublattices,
denoted as XBi-Te1 and XBi-Te2, respectively. Such exchange-
pair defects are equivalent to introducing two opposite antisite
defects, i.e., a BiTe1 and a TeBi, in the case of XBi-Te1 or a BiTe2

and a TeBi in the case of XBi-Te2, and therefore do not affect
the stoichiometry of the system.

Depending on which atoms are being exchanged, the
two antisite defects composing the exchange pair may be
at different separations. Hence a direct estimation of the
interaction between the antisite defects of opposite types can
thus be estimated.

A. Details of the computational method

The first-principles method used in the present study is
based on DFT. Calculations of total energies and electronic
structures are done by means of the computational mixed-
basis pseudopotential (MBPP) method36–38 employing the
local-density approximation for exchange and correlation
(LDA)39,40 and norm-conserving pseudopotentials.41 Pseu-
dopotentials for both Bi and Te were constructed from all-
electron valence states for free atoms according to Ref. 42.
Atomic reference configurations that include the semicore d
states in the valence orbitals were used: Bi(5d106s26p3) and
Te(4d105s25p4). A second set of pseudopotentials without
inclusion of the semicore d states in the valence was also
considered. However this failed to reproduce the layered struc-
ture because the Te1-Te1 interatomic distance was severely
underestimated. A mixed-basis was used with plane waves
up to a cutoff energy of Epw = 16 Ry (1 Ry = 13.606 eV)
and localized functions confined to atom-centered spheres
with radii Rl0 = 2.5 bohrs for d semicore states of Bi and
Te (1 bohr = 0.529 Å).

For the hexagonal 2 × 2 × 1 Bi2Te3 systems, the intensive
calculations of formation energies, which include relaxation
of all atomic positions, were performed with a 2 × 2 × 1
Monkhorst-Pack mesh.43 The calculations of lattice param-
eters and total energies of elemental Te (space group P 3121)
were performed using the hexagonal primitive unit cell
containing 3 atoms. For the corresponding calculations for
elemental Bi (space group R3̄m) the hexagonal conventional
unit cell containing three formula units (6 atoms) was used
instead of the rhombohedral primitive unit cell. Since all
systems are represented by hexagonal unit cells, maximum
cancellation of errors in energy differences can be achieved
by choosing, as much as possible, equivalent k-point meshes
in all systems. This can be obtained by scaling the k-point
meshes according to the size of the Brillouin zones of the
corresponding systems. For Te a 4 × 4 × 5 k-point mesh and
for Bi a 4 × 4 × 3 k-point mesh result in the best equivalence
with the hexagonal 2 × 2 × 1 Bi2Te3 system. For the electronic
structure calculations a 6 × 6 × 1 k-point mesh was used
for the hexagonal 2 × 2 × 1 Bi2Te3 system. For comparison,
a rhombohedral Bi2Te3 unit cell with 12 × 12 × 12 k-point
mesh was also used for bulk DOS calculations. For the
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determination of the Fermi level a Gaussian smearing by
0.2 eV was used.44,45 These k-point settings led to sufficient
convergence of differences in total energies to less than
0.05 eV/atom. The site- and angular-momentum-projected
densities of states (PDOSs) were calculated by integrating the
wave functions in atom-centered spheres of radius 2.5 bohrs,
which is approximately half of the nearest-neighbor distance
between the atoms. A Gaussian broadening of 0.1 eV full width
at half maximum (FWHM) was applied to the discrete energy
eigenvalues of the k-point mesh.

B. Calculation of the formation energy

The formation energy of a point defect Ef is calculated
according to the ab initio thermodynamics approach29 by the
equation

Ef = Edef
tot − Ebulk

tot −
∑

i

�niμi − q(εv − εF ), (1)

where Edef
tot and Ebulk

tot are the total energies of the supercell
with and without a defect, respectively. �ni is the change in
the number of atoms of species i, i.e., of either Bi or Te, in the
unit cell relative to the ideal bulk one. The μi is the chemical
potential of the element i. The last term gives the variation in
the energy due to the charge state of a defect. In the present
study, due to the small band gap of Bi2Te3 only charge neutral
defects are considered and therefore this term is neglected. See
Refs. 29,46, and 47 for more specific details.

In previous calculations by Thonhauser et al.28 for the
closely related system of Sb2Te3, the chemical potentials in
Eq. (1) were considered to be total energies of ideal elemental
bulk Bi and Te crystals. This implies that the system is at the
same time in equilibrium with both a Bi-rich and a Te-rich
phase. In this work a more realistic assumption is made,
whereby the system is in equilibrium with a bulk Bi2Te3

reservoir. Hence the chemical potentials of Bi and Te are
related through

μbulk
Bi2Te3

= 2μBi + 3μTe, (2)

where μbulk
Bi2Te3

is the chemical potential of one formula unit of
Bi2Te3. The Gibbs free energy of formation of one formula
unit of Bi2Te3 is given as

�G0(Bi2Te3) = μbulk
Bi2Te3

− 2μ0
Bi − 3μ0

Te. (3)

From Eqs. (2) and (3), the following expression for the
formation energy as a function of �μTe = μTe − μ0

Te is
obtained, where μ0

Te is the reference chemical potential of
bulk Te:

Ef (�μTe) = E0
f + 1

2�G0
f �nBi + (

�nTe − 3
2�nBi

)
�μTe.

(4)

A corresponding expression can be written for the formation
energy as a function of �μBi. Equations (2) and (3) also
fix bounds on the values of μTe, and μBi, which ensure that
Bi2Te3 is maintained stable against elemental precipitation
in the range of conditions from Te-rich (Bi-poor) to Te-poor
(Bi-rich):

1
2�G0 � �μBi � 0, (5)
1
3�G0 � �μTe � 0. (6)

Notice that according to Eq. (1), the formation energy of the
exchange-pair defects XBi-Te1 and XBi-Te2 do not depend on the
values of the chemical potentials.

III. RESULTS AND DISCUSSION

A. Structure optimization

The lattice structures of ideal elemental bulk Bi and Te, as
well as that of Bi2Te3, were calculated. This is a prerequisite
to obtaining proper estimates of defect formation energies
using Eq. (1). The optimal lattice parameters are found
by minimization of the total energy as a function of both
lattice parameters and internal coordinates. The results of the
calculations are summarized and compared to experimental
data and other theoretical calculations in Table I. In spite of
omitting spin-orbit coupling and the known systematic LDA
underestimation of the lattice parameters and unit-cell volume,
a good agreement of our calculated optimal lattice parameters
for Bi, Te, and Bi2Te3 with the corresponding experimental
data is obtained. Due to the fitting process, some lattice
parameters are slightly overestimated, but the total volume
of the unit cell,

√
3 a2c/2, is underestimated by 2.2% for Bi,

by 6.7% for Te, and by 2.1% for Bi2Te3. We note that a good
agreement for the internal coordinates was obtained only by
explicit inclusion of the semicore d states as valence states in
our pseudopotentials. When using a pseudopotential with the
d states in the core, the internal coordinates were off such that
the Te1-Te1 interaction was underestimated and the layered
quintuple structure was not obtained. All calculations are
therefore done with the pseudopotentials with d states treated
as valence states. Our calculated lattice parameters are also in
agreement with previous theoretical calculations based on the
LDA for Te by Kresse et al.32 and by Kirchhoff et al.,33 and for
Bi by Dı́az-Sánchez et al.30 For Bi2Te3 our calculated lattice
parameters are also in agreement with the calculations by Wang
and Cagin35 who used a generalized gradient approximation
(GGA) with the Teter-Pade parametrization for exchange and
correlation.

The various defects, namely vacancies, antisite, and
exchange-pair defects, are introduced into the ideal bulk
hexagonal 2 × 2 × 1 Bi2Te3 system, and the system is relaxed
until all forces are smaller than 0.05 eV/Å. In all cases, most
atoms relaxed only slightly from their perfect bulk equilibrium
positions, by at most 0.05 Å. The largest relaxations occurred
for antisite defect pairs in the van der Waals gap, i.e., antisite
pairs of BiTe1 and exchange pairs XBi-Te1. The atoms in the
gap relaxed out of plane into the gap, causing a reduction of
the gap width from the ideal Te1-Te1 distance of 3.58 Å by at
most 0.15 Å.

B. Vacancies and antisite defects

The results for the formation energies for vacancies and
antisite defects calculated according to Eq. (1) as a function
of �μTe and �μBi are shown in Fig. 3 and are summarized in
Tables II and III for Bi-rich, and Te-rich conditions, respec-
tively. The atom indices in the tables refer to those shown
in Fig. 2. In addition to calculations with a single defect in
the hexagonal 2 × 2 × 1 supercell, calculations with pairs of
defects within the same supercell are performed. The pairs of
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FIG. 3. (Color online) The formation energy of the vacancy and
antisite defects in Bi2Te3 as a function of the chemical potentials of
Te (bottom axis) and Bi (upper axis).

defects were introduced at different separations as indicated in
Tables II and III, to allow an estimate of the effect of system
size and PBC on the calculated formation energies. The forma-
tion energy, to within the obtained numerical accuracy, turns
out to be practically independent of the separation between
the defects. The hexagonal 2 × 2 × 1 system is therefore large
enough that defects in each supercell are effectively screened
from their own images. This was demonstrated also for the
case of Sb2Te3 by Thonhauser et al.28 As depicted in Fig. 3
and Tables II and III, the vacancy formation energies are
consistently larger than the antisite-defect formation energies.
For vacancies on the Te2 sublattice the formation energy is

TABLE II. The formation energies Ef for vacancies at Bi-rich
(�μBi = 0) and Te-rich conditions (�μTe = 0). The indices refer to
the atoms removed according to Fig. 2; d is either the closest distance
of a defect and its nearest periodic image in the case of systems with
only one defect, or the closest distance between the defects in the
case of a pair of defects.

Ef (eV)

System Index d (Å) Bi-rich Te-rich

VBi

1 25 8.78 2.11 1.65
2 25–37 5.95 2.13 1.67
3 45–20 14.8 2.15 1.69
VTe1

1 13 8.78 1.18 1.49
2 13–49 12.45 1.20 1.51
3 29–36 5.66 1.20 1.50
VTe2

1 1 8.78 1.42 1.73
2 21–44 11.14 1.48 1.79

TABLE III. The formation energies Ef for antisite defects at
Bi-rich (�μBi = 0) and Te-rich conditions (�μTe = 0). The indices
refer to the atoms removed according to Fig. 2; d is either the closest
distance of a defect and its nearest periodic image, in the case of
systems with only one defect, or the closest distance between the
defects in case of a a pair of defects.

Ef (eV)

System Index d (Å) Bi-rich Te-rich

TeBi

1 25 8.78 1.19 0.42
2 25–37 5.95 1.19 0.42
3 45–20 14.8 1.20 0.43
BiTe1

1 13 8.78 0.29 1.06
2 13–49 12.45 0.29 1.06
3 29–36 5.66 0.27 1.04
BiTe2

1 1 8.78 0.72 1.49
2 21–44 11.14 0.70 1.46

higher than that for vacancies on the Te1 sublattice. This
lower vacancy formation energy of VTe1 may be a explained
as a result of the weak Te1-Te1 bond and of the larger
separation between the quintuple blocks. Vacancies on the Bi
sublattice have the highest formation energy at all conditions.
A surprising result is that even for Te-rich conditions, where
one expects vacancies on the Bi sublattice to be dominating,
VTe1 still has the lowest vacancy formation energy.

The situation for the antisite-defect formation energies
is rather different; the type of most stable antisite defect
is dependent on the stoichiometry. For Bi-rich conditions,
characterized by �μBi = 0, the lowest formation energy is
the one for BiTe1, which is 0.4 eV and 0.9 eV lower than
the corresponding formation energies for BiTe2 and TeBi,
respectively. This indicates that for Bi-rich conditions the
most significant antisite defect is BiTe1. On the other hand for
Te-rich conditions, the lowest formation energy is obtained for
TeBi which is 0.7 eV and 1.1 eV lower than the corresponding
formation energies of BiTe1 and BiTe2, respectively. This means
that for Te-rich conditions, TeBi is the dominating defect in the
system.

Horák et al.,22 suggested, based on experimental data, the
formation of BiTe antisite defects for small concentrations of
Bi overstoichiometry, while Frangis et al.,25 observed that
lamellae of seven or nine layers (instead of five) become
preferable. This supports our finding that vacancies cannot
compensate for the excess of Bi in the system due to their
high formation energy in the whole range of allowed chemical
potentials. Hence point defects which essentially preserve the
main framework of the tetradymite structure, but which allow
for a change in the occupation by antisite defects, would be
more probable than vacancies.

We therefore conclude that vacancies are not likely to
play an important role for the thermoelectric properties of
the system. This is further manifested by considering that
the calculated formation energy per formula unit of the
Bi2Te3 composed from elemental Bi and Te is found to be
0.92 ± 0.05 eV (experimental enthalpies of formation are

144117-5
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found to be in the range 0.41–0.83 eV48), which is lower
than the calculated energy of formation of vacancies. This
may explain the extrusion of Te out of Bi2Te3 from the
system observed experimentally10,20,23 upon increasing the Te
concentration. It is energetically much more favorable for the
system to disintegrate rather than to accommodate the excess
Te and the associated VBi vacancies.

This also poses some challenges in particular on previously
proposed point-defect models14–16 that rely on the formation of
vacancies on the Bi and Te sublattices as the main compensator
mechanism for antisite BiTe defects under Bi-rich conditions.
On the other hand, it supports those models suggesting that
the charge carrier density is determined solely based on the
formation of antisite defects.10,18,20,25

C. Exchange antisite defect pairs

Although our model is based on the dilute limit of defects,
it is nonetheless useful to calculate the formation energy for a
pair of opposite antisite defects which are in close proximity.
Table IV presents the results for the exchange pairs XBi-Te1,
with the exchange of a Bi atom with a Te1 atom in the same
supercell. For completeness we also included the exchange
pairs XBi-Te2, with the exchange of a Bi with a Te2 atom (see
Table V). As expected, the formation energy for XBi-Te1 is
lower than that for XBi-Te2. Furthermore, the formation energy
in either case is almost constant for all pairs which are not
direct nearest neighbors (cf. systems No. 1 in Tables IV and
V). Similarly to Ref. 28, we may describe the exchange pair as
formed by two separate antisite defects. An interaction energy
between the separated antisite defects can then be defined as

Ei(XBi-Te) = Ef (XBi-Te) − Ef (BiTe) − Ef (TeBi). (7)

The interaction energies are also given in the last column of
Tables IV and V. It can be seen that apart from nearest-neighbor
exchange pairs, the interaction energies are very small. Only
for nearest-neighbor Bi-Te exchange pairs, the formation
energy is substantially lower than the sum of the formation
energies of the corresponding isolated antisite defects. We
believe this to be a result of efficient screening typically found
in small-band-gap semiconductors as in metallic systems. The
nearest-neighbor XBi-Te1 exchange pair is bound particularly
strongly: The binding energy is about 0.5 eV, which is
comparable to the formation energies of antisite defects.
Exchange pairs are therefore strongly bound in the system
when they are on nearest-neighbor sites, and as such should

TABLE IV. The formation energies for exchange antisite pair
XBi-Te1 and the interaction energy Ei calculated relative to separated
antisites. The indices refer to the Bi atoms replaced according to
Fig. 2. The replaced Te atom is No. 13 in Fig. 2.

System Index Distance (Å) Ef (eV) Ei (eV)

1 19 3.04 0.98 −0.49
2 7 4.8 1.39 −0.08
3 25 5.87 1.31 −0.16
4 57 8.5 1.40 −0.07
5 37 11.66 1.30 −0.17
6 48 14.25 1.40 −0.08

TABLE V. The formation energies for exchange antisite pair
XBi-Te2 and the interaction energy Ei calculated relative to separated
antisites. The indices refer to the Bi atoms replaced according to
Fig. 2. The replaced Te atom is No. 1 in Fig. 2.

System Index Distance (Å) Ef (eV) Ei (eV)

1 5 3.01 1.54 −0.36
2 6 5.46 1.78 −0.12
3 45 8.28 1.78 −0.12
4 18 9.17 1.66 −0.24
5 25 11.92 1.81 −0.09
6 26 12.73 1.81 −0.09

be considered effectively as a defect couple. We also note that
the nearest-neighbor exchange pair also leads to the formation
of a seven-layer lamella, with one normal five-layer lamella,
and a layer composed of only three atoms [Te1-Bi-Te1]. The
low energy of the nearest-neighbor XBi-Te1 may therefore be
an indicator for the feasibility of the seven-layer structures
observed by Frangis et al.25

D. Electronic structure analysis

The thermoelectric properties are certainly influenced by
the electronic and thermal properties of the material. In
the following we consider the bulk electronic structure and
changes therein caused by the most probable point defects,
i.e., the ones with the lowest formation energies. The analysis
is done by means of total and partial (site- and angular-
momentum-projected) densities of electronic states (PDOSs).
The total and partial DOSs for an ideal bulk Bi2Te3 crystal
are shown in Fig. 4, as calculated both with the hexagonal
2 × 2 × 1 supercell and the rhombohedral unit cell. The
total DOSs (top panel) coincide very well, demonstrating the
reasonable equivalence of the k-point meshes as described in
Sec. II A. The spin-orbit coupling was not included in our

FIG. 4. (Color online) Total densities of states for Bi2Te3

(a) comparing the DOS calculated for the hexagonal and rhombo-
hedral unit cells, and the partial DOS from (b) Te2, (c) Te1, and (d)
Bi atoms.
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calculations. However this was shown to have a negligible
effect on the PDOSs,49,50 as can be seen as well by comparing
our PDOSs in Fig. 4 with results of previous calculations which
included spin-orbit interaction; see, e.g., Fig. 4 in Ref. 49. We
note that from Fig. 4 no information regarding the band gap can
be extracted. We have conducted a further calculation of the
total DOS using the rhombohedral bulk unit cell of Bi2Te3 with
a very dense Monkhorst-Pack mesh of 32 × 32 × 32 k points,
employing the linear tetrahedron method for Brillouin-zone
summations.51 This gave a band gap of 0.097 eV, which is
underestimated by about 30% with respect to the experimental
value of 0.13 eV,11 as expected from LDA.

Referring to the DOSs in Fig. 4, it is found that the
valence and conduction bands consist mainly of p-orbitals
only. In the region near the lower conduction band, the Bi-p
and, to a lesser extent, Te2-p states dominate, while for the
region near the upper valence band, the Te1-p states are
dominating, in agreement with previous calculations.49,50,52

Larson and Lambrecht50 suggested that n-type transport is
primarily influenced by the Bi-p states in the conduction band,
while Te1-p valence states contribute the most to the p-type
conduction. This is also approximately in line with the model
of formal charges, or ionic-like bonding for Bi2Te3.15,16,22

Namely, Te is assumed to gain two electrons, to close the
p shell, while each Bi atom is assumed to give up three of its
valence electrons. However, the electronegativity of Te is only
slightly larger than that of Bi (XBi = 1.9, XTe = 2.153), which
would, as suggested by the calculated DOSs in Fig. 4, result in
metallic bonding, in agreement also with the tight-binding
calculations of Pecheur and Toussiant.27 Nevertheless, the
results suggest that Te1 would contribute electrons while
Bi would contribute holes to the charge carriers; i.e., Te is
expected therefore to be a donor and Bi an acceptor. The s
states are about 10 eV below the Fermi level and hence do not
play any significant role in bonding or transport properties.

The site-projected densities of states for the antisite defects
are shown in Fig. 5. There are two main effects, the first one
is the shift of the Fermi level into the valence band in the case
of BiTe1 and BiTe2, or into the conduction band in the case of

(c)

FIG. 5. The site-projected DOS for individual (a) BiTe1, (b) BiTe2,
and (c) TeBi antisite defects.

FIG. 6. The site-projected DOS for (a) BiTe1 and (b) TeBi of the
XBi-Te1 nearest-neighbor exchange pair defect.

TeBi. The second effect is the appearance of a sharp peak at the
band-gap edges, corresponding to the formation of a flat-band
defect level, which in the case of BiTe1 and BiTe2 is an acceptor
level at the valence band edge, leading to p-type conduction,
while in the case of TeBi is a donor level at the conduction
band edge, leading to n-type conduction. The antisite defects
lead therefore to charge carriers with heavy effective masses,
which would affect the transport and hence the thermoelectric
properties in a profound way. Only very small changes to the
PDOSs of the other atoms which are more distant from the
defect in the unit cell were found, suggesting that the antisite
defects have only a short-ranged effect on the electronic
structure. For the case of an exchange antisite defect pair,
the site-projected DOSs are shown in Fig. 6 for the exchange
on nearest-neighbor Bi and Te1 sites (cf. exchange No. 1 in
Table IV). Compared to the PDOSs of the separated antisite
defect pairs in Figs. 5(a) and 5(c), the peaks corresponding to
the flat defect bands are lower, and due to stoichiometry, there
is no shift of the Fermi level, indicating that in this case, no
net contribution to the charge carrier concentration exists, as
expected.

A closer look at the defect levels is given in Fig. 7, where
the total DOS is shown near the Fermi level for the perfect
bulk, BiTe1, and TeBi, and for exchange antisite defect pair
(No. 1 in Table IV) systems. The total DOSs of the defect
systems are shifted so that the core states (not shown) coincide
with that of the perfect bulk system. As seen in Fig. 7, the
defect levels cause an increase of the DOS at the top of the
valence band for the case of BiTe1 antisite defects, and at
the bottom of the conduction band for TeBi antisite defects.
Furthermore, these defect states clearly overlap the valence

FIG. 7. (Color online) The total DOS near the Fermi energy of
the perfect bulk, BiTe1, and TeBi, and of the XBi-Te1 nearest-neighbor
exchange pair defect.
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band states for BiTe and the conduction band states for TeBi.
This may suggest that these defect states are resonance states,
which contribute to the energy and charge transport, and may
lead to an enhanced thermopower factor. Although the k-point
sampling, broadening, and neglect of spin-orbit coupling, as
well as the effectively high density of defects imposed by
the periodic boundary conditions, may affect the positions
of the peaks, the appearance of such pronounced features in
the DOS strongly suggests that these are indeed resonance
defect states rather than deep or shallow defect states in the
band gap.

IV. SUMMARY AND CONCLUSIONS

We have a studied the most prominent point defects in
the thermoelectric material Bi2Te3. The formation energies
of vacancies on the Bi, Te1, and Te2 sublattices have
been calculated from first principles based on the ab initio
thermodynamics formalism. The electronic structure effects
were studied by means of the projected densities of electronic
states (PDOSs). We find, in contradiction to several previous
point-defect models,14–16,19,21,22 that vacancies in Bi2Te3 are
not expected to play a significant role for the thermoelectric
properties of Bi2Te3. The most dominant defects are antisite
defects on both the Te1 and Bi sublattices, where BiTe1 is
dominant at Bi-rich conditions, while TeBi is dominant for
Te-rich conditions. Near stoichiometry both antisite defects
may be equally probable. The existence of antisite defects has

a profound impact on the band structure of Bi2Te3; flat defect
bands, which are likely resonances, are formed near the bulk
band edges. For BiTe, the defect levels lie at the top of the
valence band, and thus may act as acceptor levels leading to
p-type conduction. For TeBi, the defect levels lie at the bottom
of the conduction band, and thus may act as donor levels
leading to n-type conduction. We show that growth conditions
may lead to either BiTe or TeBi antisite defects, as depicted by
the dependence of their formation energies on the chemical
potentials. This explains the observed sensitivity of charge
carrier type and thermopower of Bi2Te3-based thermoelectric
materials on the growth conditions.6–10,14

Entropy contributions to the formation energies, most
notably configuration entropy, have not been included in
the present model. Nevertheless the large formation energy
difference between the vacancies and antisite defects indicates
that our conclusions are unlikely to be altered by including
entropy. Another limitation of our current model is that defects
are assumed to be charge neutral. For a semiconducting system
with a small band gap, this is also not expected to have a crucial
influence.
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