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Non-Gaussian self-dynamics of liquid hydrogen
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The Gaussian approximation (GA) is widely employed in the description of single-molecule dynamics in
liquids. In the GA framework it is assumed that the motion of particles is only determined by the time
autocorrelation function of the particle velocity, in the whole wave-vector Q range of time- and space-dependent
diffusive dynamics. Although often adopted, the validity of GA is not yet well assessed in different Q ranges,
especially for the so-called quantum Boltzmann fluids. Liquid hydrogen, the most relevant test case for quantum
dynamics simulation techniques, is also the canonical choice for experiments in self-dynamics, thanks to its ideal
suitability to inelastic incoherent neutron scattering studies. Experimental evidence of the GA breakdown in
hydrogen was recently achieved, but, to the best of our knowledge, the localization in Q space of non-Gaussian
behavior was still undetermined, and no quantitative assessment has been obtained yet. These issues have been
tackled and solved by a recent neutron investigation in conjunction with a quantum simulation of the velocity
autocorrelation function.
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Understanding the single-particle, or self-, dynamics of
liquids is a longstanding research theme in condensed-matter
physics.1,2 One of the most important approaches to this
problem is based on the so-called Gaussian approximation
(GA),3 which owes its name to the assumption that the
self-intermediate scattering function is given by

Fs(Q,t) = exp[−Q2w(t)]. (1)

According to the standard definition4 for an
isotropic system of N identical particles, Fs(Q,t) =
( 1
N

)
∑N

j=1〈exp[−iQ · rj (0)] exp[iQ · rj (t)]〉 is the time
autocorrelation of the spatial Fourier components, with
wave vector Q, of the microscopic density fluctuations, rj (t)
is the Heisenberg position operator for the j th particle at
time t , 〈· · ·〉 indicates a quantum statistical average, and
Q = |Q|. Equation (1) states that in the whole dynamical
range between hydrodynamic diffusion (Q → 0 and long
times) and free-particle motion (Q → ∞ and short times)
there exists a function of time only w(t) that completely
determines the motion of a particle. The GA finds its rationale
in the fact that in a fluid Eq. (1) is valid in both the above
limit conditions, so that large deviations from GA should not
be reasonably expected at the nanometer-picosecond length
and time scales relevant to molecular motions. Equation (1) is
also exact for an isotropic harmonic crystal.

Rahman et al.5 have shown that in an isotropic system one
can rigorously write

Fs(Q,t) = exp

⎡
⎣ ∞∑

p=1

(iQ)2pγp(t)

⎤
⎦ . (2)

Here

γ1(t) = −i
h̄t

2M
+ 1

3

∫ t

0
dt1(t − t1)u(t1), (3)

where u(t) = 〈v(0) · v(t)〉 is the velocity autocorrelation func-
tion (VACF), v(t) is the velocity of any tagged particle in
the fluid, and Eq. (3) also includes the free-recoil effect for
particles of mass M (h̄ is the Planck constant). The GA is
obtained from the simple neglect of all γp(t) with p > 1, the
self-dynamics being then derivable from knowledge of u(t)
alone, through the use of its power spectrum f (ω) defined
below.5

The non-GA terms in the expansion (2) contain functions
γp(t) expressed as multiple integrals of correlation functions of
increasing order which involve the velocity of a tagged particle
at various points in time. While GA assumes that higher-order
correlations can be factored as the product of two-time
velocity correlation functions evaluated at different instants,
the non-GA behavior is bound to the presence of irreducible
many-velocity correlations. Rigorous definitions of the γp(t)
are given in Ref. 5, although the treatment is rather formal. A
more intuitive insight may be gained by noting that, in the high-
Q regime, the Gaussian behavior stems from the assumptions
of a Maxwell equilibrium distribution of velocities and of
uncorrelated binary collisions. Non-Gaussianity may then set
on with decreasing Q due to the role played by sequences
of collisions where the particle velocities are not statistically
independent. Another clue is also provided by the remark1 that
non-Gaussian dynamics is associated with spatial correlations
in the fluid described by higher-order moments of the Van Hove
self-correlation function Gs(r,t), i.e., the real-space transform
of Fs(Q,t), leading to the concept of a generalized, effective
space-dependent diffusion constant.

The VACF is best, and usually, determined from computer
simulations. Molecular dynamics (MD) computations have
been able to reproduce to an ever-growing degree the behavior
of classical fluids, in comparison to theory as well as
experiments.6 On the other hand, the accurate description
of the dynamics remains an open problem for the so-called
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quantum Boltzmann liquids (QBLs),7 which feature relevant
quantum delocalization effects but can still be thought of
as consisting of distinguishable particles obeying Boltzmann
statistics. Molecular hydrogen, which at the temperature of the
liquid state is found in its para species where the molecules
have zero nuclear spin and populate the J = 0 rotational level
only, is the prototypical and most studied QBL. In fact, apart
from the obvious interest in the system itself, liquid para-H2

has become a standard benchmark8 for the development of
QBL dynamics simulation techniques, a subject to which much
effort has been devoted in recent years.8–10 Also, hydrogen is
by far the best sample for such experimental studies due to
its very large cross section for incoherent neutron scattering,
which is the most important probe of the self-dynamics in the
microscopic (Q,ω) range of interest.

To the best of our knowledge, a critical assessment of
GA is still lacking. Although neutron scattering11 and MD
simulations12 on classical fluid argon have shown that regions
of the (Q,ω) plane exist, where GA is not rigorously valid, that
approximation was widely used as a working hypothesis, es-
pecially in QBL studies,7,13 despite its need of an experimental
validation or rebuttal.

In the case of H2, neutron scattering provided an im-
portant result a few years ago,14 although the data were
not obtained as constant-Q spectra. Without resorting to a
quantum-simulated VACF, the center-of-mass self-dynamic
structure factor Ss(Q,ω) = 1

2π

∫ ∞
−∞ dt exp(−iωt)Fs(Q,t) was

computed within GA with an adjustable model of f (ω), fitted
to reproduce the neutron spectrum in a Q range ∼20 nm−1.
This f (ω) was then used, again within GA, to compute the
spectrum in a higher-Q range (∼40 nm−1), where a clear
discrepancy appeared with respect to the measurements. The
breakdown of GA in liquid para-H2 was then inferred, since
it turned out to be impossible to find a unique Q-independent
f (ω) reproducing the experimental data in both investigated
regions of Q. Nevertheless, the question whether Ss(Q,ω) can
actually be derived, at specific Q values, using the GA with the
true but unknown VACF, remained unanswered. In particular,
while at first sight the above result might suggest a loss of
validity of GA with increasing Q, at least in the range explored,
this may well be too simple a conclusion, as indeed reported
below. The works in Ref. 14 pointed out the need for a wider
exploration of the (Q,ω) plane at constant-Q conditions. This
prompted us to perform a new neutron study accompanied by
a quantum simulation of the VACF performed with the path
integral centroid molecular dynamics (PICMD) algorithm.9

Here we report on the results of this investigation as far as the
validity of GA is concerned.

The inelastic scattering of neutrons from a liquid para-H2

sample, at temperature T = 15.7 K and a molecular number
density of 22.53 nm−3,15 was recorded with two time-of-flight
spectrometers at the Institut Laue-Langevin (ILL, Grenoble,
France). The small-angle setup of the Brillouin spectrometer
(BRISP) with an incident neutron energy E0 = 50 meV was
used for Q values not exceeding 10 nm−1, while for 20 �
Q/nm−1 � 45 the experiment was carried out on the IN4C
spectrometer (E0 = 65.2 meV).

Neutron spectra of fluid hydrogen are well described
by the Young-Koppel model16 based on the fact that H2

molecules can be treated as vibrating free rotors even in
the condensed phases.17 Neglecting the very small coher-
ent scattering, and taking into account the population of
rotational levels and the fact that no transitions from the
vibrational ground state are permitted by the available neutron
energy, the double-differential cross section is made of
replicas of Ss(Q,ω) shifted by the rotational energies of
the J = 0 → odd transitions.18 Due to the light molecular
weight, these lines are well separated and only the most
intense of them, the J = 0 → 1 transition corresponding to
a shift h̄ω0→1 = 14.69 meV, is probed in the energy window
of the experiment. The double-differential cross section is
then

d2σ

d�dω
= k′

k
a(Q)0→1Ss(Q,ω − ω0→1), (4)

where k and k′ are the neutron wave vectors before and after
scattering. a(Q) is a known, transition-specific form factor
given in this case by19

a(Q)0→1 = 3b2
inc

∣∣∣∣
∫ 1

−1
dx x exp(−α2x2/2) sin(ηx)

∣∣∣∣
2

, (5)

where binc is the bound incoherent scattering length of the hy-
drogen nucleus and the integral can be evaluated numerically
with η = Qre/2 and α2 = h̄Q2

4Mωv
. Here, re is the equilibrium

distance between the H atoms in the molecule and ωv is the
vibrational quantum.

Through Eq. (4), a constant-Q experimental Ss(Q,ω) was
obtained to within a normalization factor, although the result
was still broadened by a resolution function R(ω), measured
from the scattering of a vanadium sample to be a Gaussian with
a half width at half maximum (HWHM) of 0.55 and 1.39 meV
for BRISP and IN4C, respectively.

Despite their importance and partial successes, PICMD
and similar methods (e.g., ring polymer molecular dynamics)
do not capture the full quantum character of a many-
body molecular system, as far as exchange effects and
treatment of quantized rotations are concerned. Fortunately,
in the case of liquid para-H2, these deficiencies have no
consequences, since quantum exchange was shown to be
irrelevant,20 and quantum rotations are actually factored out
of our calculation, as already discussed. Indeed, almost
all published quantum simulation results on liquid para-
hydrogen, based on such assumptions, provide results in quite
satisfactory agreement with the experimental measurements
of mean kinetic energy, diffusion coefficient, and structural
properties.

The PICMD method was applied to a system of
256 molecules interacting via the Silvera-Goldman potential.21

The Trotter number, i.e., the number of beads on the classical
ring polymers replacing the quantum mechanical particles, was
64. In contrast to the usual implementation, the calculation of
the quantum mechanical forces, which are required at each
time step of the otherwise classical simulation, was performed
by the path integral Monte Carlo method, rather than MD,
thus avoiding sampling problems associated with the stiff
“intramolecular” modes of the polymers and allowing for a
much larger time step. The simulation was extended up to
1 ns in the isokinetic ensemble, ensuring thermal stability and
statistically very reliable data. The velocity correlation was
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calculated up to a maximum time lag of 1.5 ps. A shorter
test run with 500 particles confirmed that the shape of the
VACF was not noticeably influenced by finite-size effects.
The output of a PICMD simulation is the canonical (or
Kubo-transformed22) VACF

uc(t) = 1

β

∫ β

0
dλ〈eλHv(0) · e−λHv(t)〉, (6)

where β = 1/(kBT ), kB is the Boltzmann constant, v(t) is the
center-of-mass velocity, and H is the Hamiltonian operator of
the system. From uc(t), the spectral function

f (ω) = Mβ

3π

∫ ∞

−∞
dt e−iωtuc(t) (7)

was then obtained, and the GA expression for the intermediate
scattering function5

Fs(Q,t) = exp

{
−h̄Q2

2M

∫ ∞

0
dω

f (ω)

ω

×
[

[1 − cos(ωt)] coth

(
βh̄ω

2

)
− i sin(ωt)

]}
,

(8)

calculated at the experimental Q values, was finally Fourier
transformed and convoluted with R(ω). The resulting spectra
were compared with the experimental ones normalized by
a factor determined at the highest Q values, where they
turned out to have the same shape as the computed ones
(see below). Also, we made allowance for the presence in
the data of a possible residual background, to be subtracted in
the form of a low-degree polynomial function of frequency,
in much the same way as done in Ref. 14. A linear function
of ω, with coefficients only weakly dependent on Q, was
found to be sufficient. These results make us confident
that, while eliminating minor spurious effects, no significant
distortion of the system response was introduced. Figure 1
shows the measured and the GA-computed spectra for one
Q value in the BRISP range and five values in the IN4C
case.

As far as the low-Q data are concerned, the agreement is
good, and the validity of GA in this range can be confirmed.
This statement has to be taken with caution, however, since
the resolution broadening strongly affects the shape of an
intrinsically narrow line. On the other hand, assuming that
GA produces an Ss(Q,ω) really different from the true one
would then require to admit that the resolution broadening
is such as to exactly mask the non-Gaussian contributions, a
result which seems a rather unlikely coincidence.

With the IN4C data, we find substantial agreement at the
highest Q, while an increasing discrepancy emerges with
decreasing Q. The deficiencies of GA are thus evident, but
we now obtain as further results that (a) non-Gaussian effects
in Fs(Q,t) practically vanish at Q below 10 nm−1 and again
at ∼40 nm−1 and above; (b) the maximum deviation from
GA is located somewhere between 10 and 20 nm−1, where
its detection is, unfortunately, severely hampered by intrinsic
resolution limitations. In fact, the lower frames of Fig. 1 show
that this deviation gradually decreases by increasing Q above
20 nm−1.

-4 -2 0 2 4
0

20

40

-5 0 5 10 15
0

5

10

-10 0 10 20
0

4

8

-10 0 10 20 30
0

2

4

0 20 40
0

2

4

0 20 40
0

2

4

0 20 40

0.0

0.5

1.0

0 20 40

0.0

0.5

1.0

0 20 40

0.0

0.5

1.0

0 20 40

0.0

0.5

1.0
10

2
S s

(Q
,E

)
(m

eV
-1

)

10

E (meV)

21

26 31

36 41

10
2

SΔ
s(

Q
,E

)
(m

eV
-1

)

20 22

25 27

FIG. 1. The top six frames show the self-dynamic structure factor
obtained from neutron data (dots) and within GA calculated with the
quantum simulated VACF (line). The number in the top right-hand
corner of each frame is the Q value in units of nm−1. In the top
left-hand frame the neutron data are from the BRISP experiment, and
in the five other frames from the IN4C experiment. All the spectra are
broadened by the instrumental resolution. The peak position shifts to
the right-hand side with increasing Q due to the molecular recoil.
The bottom four frames display the difference between experimental
and calculated data, at four additional Q values.

We restrict ourselves to using IN4C data in order to
extract the maximum information available about non-
Gaussianity. We write the Fourier transform from ω to t

space of the resolution-broadened experimental spectra in the
form

F̃ (Q,t) = R(t)Fs(Q,t) = R(t)e−Q2[A′(Q,t)+iA′′(Q,t)], (9)

where the prime and double prime denote the real and
imaginary parts of complex quantities, R(t) is the Fourier
transform of R(ω), and

A(Q,t) = γ1(t) − Q2γ2(t) + Q4x(t). (10)

x(t) is meant to be a remainder including all possible
contributions beyond the Q2 term and modeled, somewhat
roughly, in the simplest possible way, as we make here
the assumption that most of the non-Gaussian dynamical
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FIG. 2. Short-time behavior of the real (a) and imaginary (b) parts
of γ1(t) as calculated by PICMD, and of the real (c) and imaginary
(d) parts of the first non-Gaussian term γ2(t) as derived through the
procedure described in the text. In the top frames, the dashed line
shows the large-time linear behavior, determined as a straight line
fitted to the data in the time interval between 0.6 and 1.0 ps. In
the bottom frames the large-time limit is calculated from γ ′′

p (t) ≈
−(h̄β/2)Dp , where Dp is the real-part asymptotic slope.

behavior is accounted for by γ2(t) and no attempt is
made at characterizing higher-order corrections. At each
t , with γ ′

1(t) and γ ′′
1 (t) fixed to their PICMD values,

parabolic fits of A′ and A′′ as functions of Q2 provide
γ ′

2(t) and γ ′′
2 (t) as initial-slope coefficients, as displayed in

Fig. 2.
We first observe that γ2(t) is nearly three orders

of magnitude smaller than γ1(t), while the remainder
x(t) (not shown) is of the order of 106 times smaller,
supporting the assumption that its contribution is fully
negligible.

Second, we note that γ2(t) can only be studied at short
times. This is due to the fact that, in order to obtain A′ and A′′,
one has to divide F̃ (Q,t) by R(t), that is a Gaussian function
with a HWHM of ∼0.6 ps. At times larger than ∼1 ps the fast
decrease of the R(t) tails produce meaningless data since the
main effect of the division becomes noise amplification. At
present, this appears to be an intrinsic limitation, due to the
lack of instruments able to better resolve a spectral line located
at ∼15 meV, thus requiring for its excitation a neutron energy
of tens of meV. Nevertheless, at t = 1 ps, γ ′

2(t) seems to have
already approached an asymptotic linear behavior as predicted
by theory, with γ ′

p(t) ≈ Dpt − C ′
p at large times.5 The same,

in fact, happens with γ ′
1(t), which has the expected slope given

by the self-diffusion coefficient D = D1. As for the imaginary
part, known to tend to the large-time-limit negative constant
value γ ′′

p (t) ≈ −C ′′
p = −(h̄β/2)Dp,5 the asymptotic regime is

attained by γ ′′
1 (t) at t ∼ 1 ps. Besides the resolution limitation,

the extraction of A′′(Q,t) as the argument of an oscillatory
function (a complex exponential) is a further difficulty, and we
can only obtain γ ′′

2 (t) as a semiquantitative estimate, which,
however, shows the correct order of magnitude and seems
to approach the expected asymptote in the explorable time
range.
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FIG. 3. Non-Gaussianity parameter α2(t) in argon and para-H2.
The argon data are read off from Fig. 14 of Ref. 11, which shows the
authors’ experimental data and the simulation results by Levesque and
Verlet quoted therein. These data are displayed here as black squares
and circles, respectively. The present para-hydrogen result (solid line),
reduced by a factor of 4 to allow for an easier comparison, refers to
the real part of α2(t), which also has a much smaller imaginary
component.

The expansion in Eq. (2) can also be written in the
equivalent form1

Fs(Q,t) = e−Q2γ1(t){1 + [Q2γ1(t)]2α2(t)/2 − · · ·}, (11)

where the first non-Gaussian term is expressed by the function
α2(t) = 2γ2(t)/γ 2

1 (t). An estimate of this quantity can be
obtained from our determination of the first two γ ’s, at least
at times not so close to zero as to suffer from the numerical
problems related to taking the ratio of vanishing quantities.
In Fig. 3 we compare our results for para-H2 with those
reported in Ref. 11 for argon, expressed in terms of α2(t).
The hydrogen data are limited to the real part of α2(t) and,
for ease of comparison, have been divided by a factor of 4.
In the time range where data on both fluids are available, the
results appear to be qualitatively similar, but the effect of the
first non-Gaussian correction is clearly larger in H2.

Summarizing, a careful neutron study of the self-dynamics
of liquid para-hydrogen has not only confirmed the presence
of non-Gaussian dynamics, but also provided knowledge
about the specific Q range in which the experimental data
cannot be properly analyzed within the framework of the
GA. The comparison with GA spectra computed from the
PICMD-simulated VACF reveals non-Gaussian behavior be-
low Q ∼ 40 nm−1 and a smooth approach to the expected
high-Q recovery of Gaussian dynamics. On the other hand,
detecting where exactly the onset of non-Gaussianity starts
in the low-Q regime remains far more demanding, since the
narrower the spectra the severer the resolution limitations of
available neutron spectrometers. This work has also provided
a determination of non-Gaussian effects in the γp(t) expansion
of Eq. (2) for a quantum liquid in the important subpicosecond
regime.
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