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Scheme to measure Majorana fermion lifetimes using a quantum dot

Martin Leijnse and Karsten Flensberg
Nano-Science Center & Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen @, Denmark
(Received 30 August 2011; published 3 October 2011)

We propose a setup to measure the lifetime of the parity of a pair of Majorana bound states. The proposed
experiment has one edge Majorana state tunnel coupled to a quantum dot, which in turn is coupled to a metallic
electrode. When the Majorana fermions overlap, even a small relaxation rate qualitatively changes the nonlinear

transport spectrum, and for strong overlap the lifetime can be read off directly from the height of a current peak.
This is important for the usage of Majorana fermions as a platform for topological quantum computing, where

the parity relaxation is a limiting factor.
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Topological superconductors are currently attracting mas-
sive interest, partly due to the Majorana bound states (MBSs)
which form at edges or vortices of such systems. Majorana
fermions are non-Abelian anyons,! meaning that particle
exchanges are nontrivial operations which in general do not
commute and can be used to perform quantum computational
operations, called topological quantum computing.>? Non-
Abelian statistics has been predicted for the quasiparticle
excitations of the v = 5/2 fractional quantum Hall state,® and
appear as a consequence of p-wave-type pairing,* and such su-
perconductors should host MBSs in vortices. Recently, it was
realized that p-wave-like pairing may also occur in topological
insulators,’ and even in ordinary semiconductors with strong
spin-orbit coupling,®® when brought into proximity with an
s-wave superconductor.

A particularly simple system is a one-dimensional semi-
conducting wire with strong spin-orbit coupling, brought into
proximity with an s-wave superconductor.”'? The original idea
of MBSs in wires is much older,'! the more recent proposals
being possible experimental realizations of that model system.
Particle exchanges (braiding) could be accomplished by
crossing two or more wires.'>!*> However, the first step would
be to verify the existence of MBSs, which could, e.g., be
achieved by tunnel spectroscopy.'*!> The presence of a MBS
gives rise to a characteristic zero-bias conductance peak, while
a more complicated peak structure arises if many MBSs are
coupled to each other.'®

The main advantage of topological quantum computing is
the robustness against decoherence: The computational basis
consists of pairs of MBSs which are spatially separated and the
state normally cannot be modified by perturbations which do
not couple simultaneously to more than one MBS.?> However,
perturbations which change the parity degree of freedom of
the superconductor can change the state of the Majorana
system and thus lead to decoherence.” The presence of such
parity-changing processes, called quasiparticle poisoning,'”:!8
is in fact a well-known problem in superconducting charge
qubits. In order to determine whether Majorana bound states
in different topological materials are actually suitable for
topological quantum computing, it is therefore crucial to be
able to measure the lifetime of the parity degree of freedom.
In this Rapid Communication we show how this can be done
in an experimentally rather simple transport setup, which does
not require braiding or interferometry.

1098-0121/2011/84(14)/140501(4)

140501-1

PACS number(s): 74.78.Na, 74.45.4-c, 74.25.F—, 85.35.Gv

The parity lifetime cannot be measured in a normal metal—
MBS tunnel junction as studied in Refs. 14-16, and we
consider instead a setup including a quantum dot between the
normal metal and the topological superconductor—see Fig. 1.
We focus here on a wire-type topological superconductor,
which seems experimentally most attractive, but the main
conclusions are independent of such details. Systems of several
coupled quantum dots and MBSs have been suggested as
probes of the nonlocality of Majorana fermions'® and very
recently as an alternative way to perform non-Abelian rotations
within the degenerate Majorana ground-state manifold.?’
However, the nonequilibrium transport properties of a normal
metal-quantum dot-MBS junction have, to our knowledge,
not been investigated previously and therefore the possibility
to probe the parity lifetime in such a setup has also not been
discovered. As we will show, even a small coupling between
the two MBSs strongly suppresses the current. A finite parity
relaxation rate partially restores the current but qualitatively
changes the transport spectrum, allowing a finite lifetime to be
detected, and in addition its precise value can be measured if
the MBS coupling or tunnel rates can be controlled.

We solve exactly the problem of a strongly interacting
quantum dot coupled to a MBS and treat the coupling to the
normal metal perturbatively, yielding a set of master equations
for the state of the combined dot-MBS system. From these
equations we calculate the nonlinear current as a function of
the bias voltage applied to the normal lead and of the gate
voltage which controls the quantum dot energy. In addition,
in the supporting information we provide an exact solution of
the transport problem for the case of a noninteracting quantum
dot.”!

The basic properties of MBSs in semiconducting systems
with induced superconductivity have been described in e.g.,
Refs. 6,7,9, and 10. For suitable parameters, MBSs are formed
at the ends of the wire—see Fig. 1. These are zero-energy
solutions to the Boguliubov-de Genne equations and are
described by the operators

Yo = / dz Y [8om(@¥a(2) + 85, QW @1 (1)

where W/ (z) creates an electron with spin projectiono =1, |
at position z in the wire. The exact form of the envelope
functions g,,,(z), describing the spatial form of the MBSs,
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FIG. 1. (Color online) Sketch of the proposed setup. An s-wave
superconductor induces superconductivity in a semiconducting wire
with strong spin-orbit coupling. A magnetic field can then induce a
topological phase where MBSs are formed at the ends of the wire. A
quantum dot is formed, e.g., by separating a short segment from the
main wire by a tunnel barrier, and it is tunnel coupled to a metallic
normal lead.

depends on the details of the wire, but g,; and g,, have their
main weight close to opposite ends and decay exponentially
inside the wire. Clearly, the MBS operators satisfy y,, = y,l
and we assume them to be normalized, such that y;y, =
—¥271, 2 = 1. One end of the wire is tunnel coupled to a
quantum dot. The coupled dot-MBS system is described by

i
— E _ax gt
HO == HD + E%_VIVZ + - ()"O'dcr )"gdg)yla (2)

where Hp =) €sn, + Unyn, describes the dot, n, =
dld, is the number operator, and U is the Coulomb charging
energy for electrons on the dot. The low-energy Hamiltonian
describing the two MBSs was discussed in Ref. 11 and has
been used in a transport setup in, e.g., Refs. 10,14-16,19;
the coupling of the two MBS is given by &, and A, is the
coupling between electrons on the dot and the MBS at the
corresponding end of the wire. To be specific, we assume the
wire to have a Rashba-type spin-orbit coupling along the x
direction, and apply a magnetic field B along z, leading to a
Zeeman splitting on the dot Ap = €4 — €. For definiteness,
we take the MBS wave function at the dot side of the wire to
be o<\IJL(z) + ¥, (2) (see e.g., Ref. 9), where |, means spin
along the negative y axis, and therefore couples only to the
y component of the dot spin, equal in amplitude but different
in phase for the two dot spin directions Ay = A, A = —iA.

The metallic normal lead is described by Hy = > ko EkC;L, Cko

and it couples to the dot via Hy = Zk{, tkdgc,t” + H.c., where

c,td creates an electron in the normal lead with energy €;, and

where #; is the amplitude for dot<>normal lead tunneling.

It is useful to switch to a representation where the two
Majorana fermions are combined to form one ordinary
fermion: y, = f + fT, y» =i(ff — f), where fT creates
a fermion and f!'f =0,1 counts the occupation of the
corresponding state. The Hamiltonian (2) now becomes

1
HOZHD+$(fo_§)
+ ) (hody [T+ Aody f + H.co). 3)

When A = 0, the eigenstates of (3) are given by |ngn ), where
ng=0,1,J,2and ny = 0,1 describe the states of the dot
and the MBS system, respectively. Also when X # 0, the
Hamiltonian (3) is block diagonal in this basis, with an even
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block Hég) , acting on |00),|o'1),|20), and an odd block Héo),
acting on |[60),]01),]|21). The fermion number is not conserved
by (3), but, because of the block structure, the parity of the
total fermion number of the dot-MBS system is conserved.
When & = 0, H\” and H\” are identical, but & # 0 breaks this
parity symmetry.

Diagonalizing (3) yields odd/even parity eigenstates
loi/ei) =3 .m0t o nan 7). The tunnel Hamiltonian Hy
changes the dot electron number by +1 and thus connects the

even and odd parity sections: (¢;|Hrlo;) =), ,f:,o’ ,Tm +
H.c., where the many-body tunnel matrix elements are
given by

e,oj _

Z andn/otn, , (nan gldynyn’s). 4)
ngny € e
n’dn’f €o
In the presence of strong electron-electron interactions, the
tunneling between the normal lead and the dot-MBS system
cannot be solved exactly (in the limit U = 0 we provide an
exact solution in the supporting information®'). To leading
order in Hy, the problem can be formulated in terms of
master equations,”> which we modify to account for the lack
of particle conservation. The occupations P, of the dot-MBS
eigenstates |a) = |e;),|o0;) are calculated from

0= (WaaPu ~ D P=1 O

a
War = ) T8 F(Ea) + T4l = F(Eg)l},  (6)
(e

where E,, = E, — E,, with E, the energy of eigenstate
la), and F(E) = 1/(eE=#¥)/T 4 1) is the Fermi function of
the normal lead with electron temperature 7T and chemical
potential uy =V. (We set kg =e =h = 1.) The tunnel
couplings are Fg“' = 271,0N|Kg“/ |2, with py being the density
of states in the normal lead. Note that due to the lack of
particle conservation, any pair of states a,a’ are connected
both by processes removing and adding an electron to the
normal lead, described by the first and second term in Eq. (6),
respectively. We here assumed an energy-independent density
of states and tunnel amplitude, but the eigenstates a,a’ depend
on the dot level position and the effective tunnel couplings F““'
vary between 0 and 2 py|t|*> = I'. The physics described by
Eq. (5) is easily understood. The occupation probability of
state a is given by the sum of all tunnel processes starting
from any state a’ and ending with occupation of state a (first
term), minus all processes depopulating state a (second term).
The occupations are normalized to one. Note that the rates
in Eq. (6) describe electron tunneling only, rates related to
parity relaxation can be added to W,, as described below.
The particle current flowing into the dot from the normal lead
is given by I = >, W/, P,/, where the current rate matrix
Wa’a, is similar to (6), but with a minus sign on the second term,

corresponding to electrons tunneling into the normal lead.
The restriction to lowest-order perturbation theory is valid
when 7 > T. In addition, we neglected off-diagonal elements
of the density matrix, valid when all eigenstates are well
separated on a scale set by the tunnel broadening, satisfied
when A > I'. Neglecting all states in the superconductor
except the MBS is valid when the induced superconducting gap

Wa’a Pa)’
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A is larger than the other energy scales. Moreover, U can be
several meV in small quantum dots formed in semiconducting
wires,?>2* which is likely = A, and the same holds for the level
spacing, motivating the single-orbital model used here.

Next, we present solutions of the master equations for
specific choices of parameters, and with the above energy
scales and limitations in mind, we take U = o0 and T =
A =10 = Ap/100, with T < 100 mK. The voltage de-
pendence of the energy cost for adding an electron to the
dot can be included in the orbital energies (e, + €4)/2 =
€o —aV, + BV, where a (gate coupling) and B depend on
the capacitances associated with the dot-superconductor and
dot-normal metal tunnel junctions. We take § = 1/2 and ¢y =
0 (other choices affect only the slope and absolute position
of resonances, respectively). The differential conductance
d1/dV plotted on a color (gray) scale as a function of V and V,
(“stability diagram”), is shown in Fig. 2 for different values of
X andé&.

To develop an understanding of the physics underlying the
stability diagrams, we consider first the case without parity
relaxation, described by Egs. (5) and (6). We start with the
simplest case of & = O—see Fig. 2(a). A significant current
can only flow when one of the dot spin states is energetically
aligned with the MBS, allowing electrons to tunnel resonantly
between the dot and superconductor, resulting in a current
peak of width ~A and height I;,,x = I'/2 and therefore in
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FIG. 2. (Color online) Stability diagrams: d1/dV normalized by
0.02¢2/ h, plotted on color (gray) scale as a function of V and V,,
with (a) € =0, (b) £ = 10T, (c) € = 107, and finite parity relaxation
A = 0.04I". Note the different scales in (b) and (c) showing the
dramatic effect of the finite parity lifetime and the characteristic shift
in gate voltage position between the positive and negative bias peaks
in(c). (d) I(V,) at V = 75T with parameters as in (c), but increasing
&/x =0,2.5,5,10,20,30 (increasing as indicated by the arrow). For
A > T'A?/£2%, A can be read off directly from the height of the shifted
current peaks. (e) Sketch of resonant transport processes for € = &
when V > 01in (c). Similar resonant processes exist for e = —& when
V <O.
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narrowly spaced positive and negative conductance lines.
Thus, the sharp nature of the MBS gives rise to negative
differential resistance in transport through the dot. The peak
associated with o =1 terminates at large positive V, when
an electron can tunnel from the normal lead into the o = |
state, blocking transport through the o =1 channel (via the
Coulomb charging energy) since it cannot tunnel out again
into the normal lead (due to energy conservation) or into the
MBS (due to the energy mismatch). Similarly, the ¢ = | peak
vanishes above a negative threshold V, when o = 1 falls below
wn. Thus, properly accounting for the Coulomb blockade is
essential to understand the qualitative conductance features.
In Fig. 2(b), a finite £ introduces an energy splitting between
the even and odd parity sectors, suppressing the current for
|V| < &. Even for |V| > & the conductance is significantly
lower compared to & = 0 [note the different scales in Figs. 2(a)
and 2(b)]. To understand why, consider, e.g., electrons being
transported from the normal lead to the superconductor (V >
0) by sequential tunneling through the dot, which in the
basis of the unperturbed number states |ngn ) involves the
processes [00) T |00) 7~ |01) T |o1) 7~ |00). Because
we consider here the case without parity relaxation in the
superconductor, any process changing the parity of the dot-
MBS system must involve tunneling to or from the normal lead,
and therefore two electrons are transferred before the system
returns to its initial state. When the even-odd degeneracy is
split by & # 0, both dot-MBS tunnel processes cannot be
resonant at the same voltage, suppressing the conductance by
a factor ocA? /£2. Instead, horizontal conductance lines appear,
corresponding to inelastic cotunneling? through the dot,
exciting the parity degree of freedom, i.e., a direct processes
|00) T |01), energetically allowed for |V| > & and involving
only virtual occupation of the intermediate state |o0). Note that
all tunnel process «xI"A" are included in our master equations,
since the dot-MBS coupling is treated exactly. Interestingly,
due to the sharp MBS, inelastic cotunneling gives rise to
conductance peaks, rather than steps. Similarly, horizontal
lines at V. = £ Az correspond to inelastic cotunneling exciting
the dot, e.g., | 1 0) 77 | J 0).

Next, we introduce a finite relaxation of the fermion parity
in the superconductor, caused by quasiparticle poisoning,'”:!8
and show that this has a striking effect on the stability
diagrams. Rather than starting from a microscopic model of
the quasiparticle generation, we focus on the generic effects
and assume that transitions between dot-MBS eigenstates
la’y — |a) are induced with rate A, if E, > E, and rate
Aqo expl(Ey — E,)/T] otherwise, where A,, is obtained
by assuming a rate A for transitions [ngn ) — |ngiis) 1=
0,0 = 1), and then transforming to the dot-MBS eigenbasis—
cf. Eq. (4). These rates are then added to the rate matrix
in Eq. (6). As is seen by comparing Figs. 2(c) and 2(b),
which differ only by such a small relaxation rate, this has a
dramatic effect on the conductance (note the different scales).
To understand the increased conductance, consider transport
at V > 0, which for A # 0 is dominated by the processes
[00) T |o0) 5~ |01) 2~ |00)—see sketch in Fig. 2(e).
Hence, parity relaxation allows the total dot-MBS system to
return to its initial state after transferring only a single electron,
and this electron tunnels through the system fully resonantly
when €, = &£. Similarly, at V < O transport is dominated by
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[00) &~ |ol) " |o0) T |00), which is fully resonant at
€; = —&. Thus, parity relaxation leads to resonant transport
even for finite £, but the resonance condition is different for
positive and negative bias and therefore the peaks are shifted
by 2¢.

The shifted peak behavior is observed when the parity
relaxation rate exceeds the suppressed transport rates discussed
in connection with Fig. 2(b), i.e., when A > ['A?/£2. If, in
addition, I" > A, parity relaxation is the slowest process in
Fig. 2(e) and the peak current is equal to A.?® Experimentally,
& could be changed by moving the MBS corresponding to y»
with “keyboard” gates, as suggested in Ref. 13. I(V,) curves
for increasing & are shown in Fig. 2(d), allowing the parity
relaxation to be directly read off from the height of the current
peaks at large £. Alternatively, one could change instead I"
and/or A via additional gates. Note that A can be directly
measured without knowing the precise values of, e.g., I' and
A. We emphasize that even at finite £, the two-Majorana state
described by y;, or fT,f can only relax by also changing
the parity of the superconductor. Therefore, even though our
proposed measurement has to be done at finite &, the relaxation
rate measured is the parity relaxation rate, which is arguably
independent of €.
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In conclusion, we have suggested a relatively simple
setup in which to measure the lifetime of the parity of
a Majorana system, being of crucial importance in topo-
logical quantum computing schemes.? Our suggestion does
not involve (experimentally problematic) interferometry or
braiding operations. Thus, one can test different realizations
of topological superconductors and different material choices,
selecting the most suitable ones, before going through the
difficult process of actually constructing a topological quan-
tum computer. The setup we propose is a normal metal—
quantum dot—topological superconductor junction. We have
calculated the nonlinear conductance of this system as a
function of the applied gate and bias voltages within a
master equation approach and shown that the lifetime of
the parity of the Majorana system can be directly read off
from the height of the current peaks at finite Majorana
coupling.
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