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Density-functional study of paramagnetic iron
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By using density-functional theory in combination with the coherent-potential approximation and the
disordered local magnetic moment picture, we demonstrate that the competing high-temperature cubic phases of
paramagnetic Fe correspond to two distinct total energy minima in the tetragonal (Bain) configurational space.
Both the face-centered-cubic (fcc) and the body-centered-cubic (bcc) lattices are dynamically stable, and at static
conditions the fcc structure is found to be the thermodynamically stable phase. The theoretical bcc and fcc bulk
parameters are in agreement with the experimental data. Due to the shallow energy minimum around the bcc
structure, increasing temperature is predicted to stabilize the bcc (δ) phase against the fcc (γ ) one.
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Owing to its structural strength and high abundance, iron
is a major alloy component in modern industry. At ambient
pressure, bulk Fe crystallizes in the bcc structure with a
ferromagnetic (FM) state (ferrite, α-Fe). Above the Curie
temperature (TC = 1043 K), it first adopts the paramagnetic
(PM) bcc structure and then at 1183 K transforms to the PM
fcc structure (austenite, γ -Fe). The austenite is stable between
1183 and 1667 K, above which the PM bcc structure (δ-Fe) is
restabilized. Iron melts from the δ phase at 1811 K.

The technological importance placed Fe and its alloys
(including steels) in the focus of scientific research. In spite
of numerous theoretical efforts, however, the properties of
the high-temperature phases of Fe and the mechanisms of
the phase transformations have not yet been fully understood.
Former investigations1–6 argued that vibrational and magnetic
contributions to the free energy are the possible driving
forces behind the structural phase transitions in Fe. Recent
density-functional theory (DFT) and dynamical mean-field
theory (DMFT) studies4,6,7 suggested that the magnetic energy
is responsible for the survival of the α phase above TC, and
that γ -Fe is stabilized as a result of diminishing magnetic
correlations with increasing temperature. Although the DFT-
DMFT study gives clear evidence for the crucial role of
the magnetic energy in the α-γ phase transition, it fails
to account for the vibrational effects and thus explain the
reentrance into the bcc phase before melting. In particular,
the DFT-DMFT calculation using a quantum Monte Carlo
(QMC) solver6 predicts (i) increasing stability of the bcc lattice
with temperature (with respect to the fcc lattice), (ii) fcc-bcc
structural energy difference converging toward that obtained
from 0 K nonmagnetic calculations, and (iii) mechanically
unstable bcc structure at high temperature (T > 1.3TC). As a
matter of fact, the latter finding is in line with DFT calculations
employing supercells to model the paramagnetic state.4

In this Rapid Communication, we put forward a DFT
description of paramagnetic Fe, shedding light on the peculiar
γ -δ structural change. In DFT studies, the completely random
PM state may be described by the disordered local magnetic
moment (DLM) picture.8 Since the magnetic short-range
correlations become negligible well above the transition
temperature,5,6 the DLM model, in combination with the

coherent potential approximation (CPA),9,10 is expected to
correctly account for the random distribution of the local
magnetic moments in the PM state.11–13 Here we use the
exact muffin-tin orbitals method14,15 within the generalized
gradient approximation16 and the DLM-CPA model to study
the polymorphous bcc-fcc transformation in PM Fe. We
adopt a two-parameter Bain scheme described by the volume
(represented by the Wigner-Seitz radius w) and the tetragonal
axial ratio (c/a). In order to investigate the mechanical stability
and reveal the effect of phonon contribution to the free energy,
we monitor the theoretical elastic parameters computed for
the two PM cubic phases. We demonstrate that, in contrast to
previous theoretical predictions,4,6 both cubic phases of PM
Fe are dynamically stable. Furthermore, at low temperatures
the fcc phase is thermodynamically stable but the vibrational
effects can stabilize the bcc phase before melting.

The total energy of PM Fe was calculated for Wigner-Seitz
radii 2.40 � w/bohr � 2.75 (with an interval of 0.025) and
the tetragonal lattice parameter 0.8 � c/a � 1.65 (with an
interval of 0.05). For comparison, we also calculated the total
energies of the nonmagnetic (NM) phase for 2.40 � w/bohr �
2.75 and 0.8 � c/a � 1.65. Within the DLM picture, PM Fe
was described as a binary Fe↑Fe↓ alloy with an equal amount of
spin-up (↑) and spin-down (↓) components. In a cubic lattice,
there are three independent elastic constants C11, C12, and C44,
and they are connected to the tetragonal shear elastic constant
C ′ = (C11 − C12)/2 and bulk modulus B = (C11 + 2C12)/3.
Dynamical (mechanical) stability requires that C44 > 0, C ′ >

0, and B > 0. The numerical details of the calculations are
described in Refs. 17–19. The accuracy of our approach may
be assessed by comparing the present and former20 theoretical
results for FM Fe to the experimental data (Table I): The small
discrepancies may be ascribed to the ∼1.0% underestimation
of the experimental lattice parameter21 by the gradient-level
DFT.16

First, we compare the calculated Wigner-Seitz radii of PM
Fe to the experimental data (Table I). At static conditions
(0 K), wbcc and wfcc are 2.4% and 4.5% smaller than those
measured22 at 1189 and 1457 K, respectively. Moreover, the
equilibrium DFT results give (wbcc − wfcc)/wfcc|0 K = 1.84%,
which is much larger than the QMC-DMFT6 (0.77%) and
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TABLE I. Theoretical equilibrium Wigner-Seitz radius w and lattice parameter a (bohrs), magnetic moment μ (μB), bulk modulus B and
cubic shear elastic constants C ′ and C44 (GPa), Zener anisotropy ratio C44/C ′, and elastic Debye temperature � (K) for ferromagnetic bcc
and paramagnetic bcc and fcc Fe. The energy differences �E (mRy/atom) are relative to PM bcc Fe. DFT (1200 K) and DFT (1400 K) are
the theoretical results obtained for Wigner-Seitz radii corresponding to 1200 and 1400 K, respectively (see the text). For comparison, former
theoretical values (Refs. 6 and 20) and some experimental data (indicated by the corresponding temperature) (Refs. 21–24) are also shown.

System Method w a μ B C ′ C44 C44/C ′ � �E

FM bcc DFT 2.6405 5.3628 2.21 193.87 77.97 106.73 1.37 502 −6.80
DFTa 2.6434 5.3687 2.17 186 69 99 1.43
4 Kb 2.6680 5.4187 2.22 173.10 52.5 121.9 2.32

PM bcc DFT 2.6379 5.3575 2.20 172.49 17.86 153.82 8.61 431 0
DFT(1200 K) 2.6837 5.4505 2.34 131.50 19.04 129.30 6.77 412

DMFTc 2.6825 5.4481 2.01 150
1189 K,d 1173 Ke 2.7033d 5.4904d 131.07e 13.3e 99e 7.44e

PM fcc DFT 2.5893 6.6257 1.42 131.02 61.61 213.40 3.46 574 −3.11
DFT (1400 K) 2.6757 6.8468 2.08 90.81 27.92 138.28 4.95 442

DMFTc 2.6621 6.8120 1.89 161
1457 K,d 1428 Kf 2.7110d 6.9371d 132.67f 16f 77f 4.81f

aReference 20.
bReference 21.
cReference 6.
dReference 22.
eReference 23.
fReference 24.

experimental22 (0.34% at 1189 K) values. We note that the
differences between the theoretical and experimental bulk
parameters of fcc Fe are even larger in the case of DFT
calculations performed for the NM state20,25 (not shown).

At equilibrium, the present local magnetic moments differ
by ∼9% for PM bcc Fe and by ∼25% for PM fcc Fe from those
obtained in the QMC-DMFT simulation near the transition
temperature.6 The PM bcc lattice has a rather robust local
magnetic moment as a function of w, but in the PM fcc lattice
there is a magnetic transition at ∼2.55 bohrs (Fig. 1). The PM
fcc energy minimum, located relatively close to this critical
radius, is very shallow (compared to the PM bcc one) and thus
the thermal expansion is expected to have a larger impact on the
fcc lattice than on the bcc lattice. Indeed, the strongly volume-
dependent magnetic pressure results in a significantly larger
linear thermal expansion coefficient for fcc Fe [23.8 × 10−6

1/K (Ref. 22)] than for bcc Fe [14.5 × 10−6 1/K (Ref. 22)].
Correcting the theoretical results for the thermal expansion
(assuming a linear thermal expansion), we find that the
deviation between the theoretical and experimental Wigner-
Seitz radii reduces to 0.7% for bcc at 1200 K and to 1.3% for
fcc at 1400 K [DFT (1200 K) and DFT (1400 K), Table I].
Notice that for both theoretical radii the remaining error after
the thermal expansion correction has been included is of the
order of the DFT error. Around the α-γ transition temperature,
we obtain (wbcc − wfcc)/wfcc|1200 K = 0.76%, which is very
close to that found in the QMC-DMFT calculation.6

The total energy versus c/a and w for NM Fe (lower panel,
Fig. 2) has two local minima. The first one (c/a = √

2) corre-
sponds to the NM fcc phase and the second one (c/a = 0.9) to
a NM tetragonal phase (TET0.9). Around the NM bcc structure
(c/a = 1) there is a saddle point in the energy map and thus
this lattice is mechanically unstable. The NM fcc lattice is

∼19 mRy lower in energy than the NM bcc phase. All these
findings are in both qualitative and quantitative agreement
with former DFT calculations.6,26 On the other hand, for PM
Fe the total energy map exhibits a rather unique behavior
(upper panel, Fig. 2). The two cubic structures correspond to
two local minima in the configurational space with a clear
barrier between them. To the best of our knowledge, the local
minimum at approximately c/a = 1 in the PM total energy
has not been seen earlier in the supercell calculation4 nor in

FIG. 1. (Color online) Left-hand axis: Local magnetic moments
(in μB) for paramagnetic bcc (left triangles) and fcc (circles) Fe;
right-hand axis: total energy (in mRy) for paramagnetic bcc (right
triangles) and fcc (squares) Fe, plotted as a function of the Wigner-
Seitz radius (w in bohrs). All energies are shown relative to the bcc
energy minimum.
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FIG. 2. (Color online) Total energy contour (in mRy) for param-
agnetic (upper panel) and nonmagnetic (lower panel) Fe as a function
of the tetragonal ratio (c/a) and the Wigner-Seitz radius (w in bohrs).
The energies are plotted relative to the bcc (c/a = 1) minimum.

the high-temperature QMC-DMFT simulation.6 In contrast,
these former studies predicted a low c/a (<1) PM tetragonal
phase for high-temperature Fe, similar to the one seen for NM
Fe (lower panel, Fig. 2). Our DLM-CPA calculation does not
verify the existence of such a dynamically stable tetragonal
lattice for PM Fe.

A second important feature of the PM energy map is the
strong volume dependence of the structural energy difference.
At equilibrium, the fcc lattice is ∼3.11 mRy below bcc.
For the PM bcc-fcc energy difference, the supercell4 and
the high-temperature (T ∼ 3.6TC) QMC-DMFT6 calculations
gave ∼10 and ∼13 mRy, respectively, which are more
than three times larger than our DLM-CPA result. Fixing
the Wigner-Seitz radius to 2.50 bohrs increases the present
structural energy difference to ∼12.8 mRy. However, for
w � 2.70 bohrs (see also Fig. 1) the two cubic lattices become
nearly degenerate.

The fixed-volume distortions around the energy minimum
can give useful information about the tetragonal elastic
constant: C ′ represents the curvature of the total energy
surface along constant w. Comparing the contour lines at
approximately c/a = 1 and c/a = √

2 (upper panel, Fig. 2),
we see that the PM bcc phase has a shallower energy versus
c/a minimum than the PM fcc phase. This is also confirmed
by our calculated elastic constants (Table I).

In general, the present theoretical elastic constants obtained
at the equilibrium volumes (DFT, Table I) are significantly
larger than the measured values.23,24 However, if we consider
the results obtained for volumes corresponding to the experi-
mental conditions [DFT (1200 K) and DFT (1400 K), Table I],
the average deviation between the two sets of data drops

(a)

(b)

FIG. 3. (Color online) Density of states (arbitrary units) for
nonmagnetic (a) and paramagnetic (b) Fe plotted as a function of
energy relative to the Fermi level. The five curves correspond to five
different tetragonal lattice parameters c/a = 0.8,1.0,1.2,

√
2, and 1.6.

In the insets, the total [NM Fe, (a)] and the minority [PM Fe, (b)]
density of states at the Fermi level are shown as a function of c/a.

to ∼30%. Theory is found to reproduce the unusually large
anisotropy of PM Fe. In particular, the exceptionally large
Zener anisotropy ratio of PM bcc Fe is due to the very low
tetragonal elastic constant relative to that of FM bcc Fe.
Namely, going from the 0 K FM to the high-temperature
(1200 K) PM state reduces the theoretical C ′

bcc by 76%,
compared to 73% obtained in experiment.23 Finally, it is
important to note that the calculated B, C ′, and C44 satisfy the
dynamical stability conditions for both PM cubic structures.

The elastically softer PM bcc phase, compared to the
fcc one, is expected to have a larger phonon entropy and
thus be stabilized by increasing temperature. To quantify this
prediction, we consider the elastic Debye temperatures (�,
Table I) obtained by averaging the longitudinal and transversal
sound velocities calculated from the elastic constants.27,28 The
theoretical Debye temperature of PM bcc Fe is smaller than
that of PM fcc Fe by 24.9% at equilibrium volumes and by
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3.8% at volumes corresponding to 1667 K (i.e., Wigner-Seitz
radii of 2.702 bohrs for bcc and 2.692 bohrs for fcc). Using the
high-temperature expansion for the phonon free-energy differ-
ence between the two structures [3kBT (�fcc − �bcc)/�fcc, kB

is the Boltzmann constant],29 in connection with the calculated
structural energy difference and Debye temperatures, we find
that ∼1580 K is needed to stabilize the completely random PM
bcc phase against the PM fcc phase. It is gratifying that this
simple theoretical prediction is rather close to the observed γ -δ
transition temperature (1667 K). For a quantitative calculation,
however, one should go beyond the present approximation and
take into account the longitudinal spin fluctuations30 and the
magnetoelastic coupling.31

Monitoring the electronic density of states (DOS) for NM
and PM Fe (Fig. 3) as a function of c/a (calculated for w =
2.56 bohrs for the NM state and w = 2.62 bohrs for the PM
state) we can understand the stability of different phases. For
NM Fe [Fig. 3(a)], there is a large peak in the DOS around the
Fermi level (EF ) for c/a � 1.1, which gradually disappears
at larger c/a ratios. This peak is in fact responsible for the
dynamical instability of NM bcc Fe.32 The situation is quite
different for PM Fe [Fig. 3(b)]. For each c/a, the total PM DOS
has a shallow local minimum around EF and this minimum
shows weak structure dependence. The minority PM and the
NM DOS at EF are shown in insets of Fig. 3 as a function
of c/a. We note that according to the spin-resolved DOS (not
shown), the minority states give ∼60% of the total PM DOS
(EF ) and thus here we focus on that spin channel only. We find
that the largest structure-induced change in PM DOS (EF )
is ∼0.4 states/Ry compared to ∼26 states/Ry obtained for
NM DOS(EF ). The large drop in NM DOS (EF ) when going
from low c/a to high c/a explains the stability of the NM fcc
phase. On the other hand, the minority PM DOS (EF ) exhibits
two local minima at approximately c/a = 1 and c/a = √

2,
making these structures stable along the Bain path. Figure 3

also demonstrates that the structural effects are much more
delicate for PM Fe than for NM Fe, and only a very careful
and accurate study can properly account for them.

Based on the present DFT and former QMC-DMFT
results,6 we propose a scenario for the structural transition
sequence in Fe. At low temperature, magnetic correlations
stabilize the α phase of Fe by ∼3.7–6.8 mRy relative to
the paramagnetic phases. With increasing temperature, the
correlation effects are gradually diminished but still survive
above the magnetic transition, keeping the bcc structure
stable up to ∼1183 K. Without this magnetic energy, the
γ phase would be more stable at low temperatures. Around
and above the α-γ transition temperature, the correlation is
not large enough anymore to overcome the structural energy
difference and thus the γ phase becomes stable. However, in
the paramagnetic state, the bcc lattice is softer than the fcc
lattice and as a consequence temperature restabilizes the bcc
(δ) phase at ∼1667 K.

In summary, the excellent correspondence between the
measured physical properties and those predicted in the present
Rapid Communication demonstrates that DFT in combination
with alloy theory suitably describes the magnetically disor-
dered phases of Fe. Our DFT-DLM level results show that both
cubic phases of paramagnetic Fe are dynamically stable. The
transition in the paramagnetic state of the fcc phase explains the
anomalous thermal expansion coefficient seen for this lattice,
whereas the soft tetragonal mode of the bcc phase is shown
to be responsible for the stabilization of the δ phase before
melting.
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