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Frequency dependence of spin relaxation in periodic systems
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We show that in the presence of a periodic scattering potential the spin relaxation in ultrathin ferromagnets is
not a monotonous function of the frequency, as has been usually assumed taking intrinsic Gilbert and extrinsic
two-magnon processes into account. The spin relaxation rate is found to substantially increase at characteristic
frequencies related to the periodicity of the magnon scattering potential. We propose a theoretical model which
is experimentally confirmed in Ni80Fe20 thin films by artificially introducing different scattering periodicities.
As a result, the current general approach for determining spin relaxation parameters in thin films has to be
reconsidered.
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Both intrinsic and extrinsic spin relaxation processes are
crucial for understanding the magnetization dynamics.1–7

While the intrinsic ones, summarized as Gilbert damping,
had been known and studied for decades,8–10 extrinsic relax-
ation processes have been analyzed by experimentalists and
theoreticians1,11–14 in detail only more recently.

When classifying the extrinsic processes,15 the two-magnon
scattering deserves to be paid particular attention. In thin
films—probably the most often engineered system in applied
magnetism today—the two-magnon scattering among the
extrinsic processes is the dominating relaxation mechanism
due to inevitable defects in the material. The two-magnon
scattering is usually anisotropic in contrast to the Gilbert
damping, which is isotropic for the majority of 3d metallic
systems.2,16 Besides the two-magnon scattering’s anisotropy
and high intensity, its sensitive dependence on the symmetry
of defects in the sample made it a matter of investigations into
tailoring the spin relaxation.1,4,5,17 Also from a fundamental
point of view, one must note that pure Gilbert damping is rather
a theoretical construct and mostly encountered in combination
with extrinsic relaxation processes in a real material. Only in
simple systems such as unstructured permalloy thin films is
pure Gilbert damping a valid approximation. This fact makes
the separation of the intrinsic and extrinsic relaxation processes
in the majority of thin-film systems necessary.

In the experiment the presence of extrinsic relaxation is
identified by the frequency dependence of the linewidth (�B)
of the resonant spin precession:2,12,18 The Gilbert damping
exhibits a linear frequency dependence [Eq. (1)], whereas the
two-magnon scattering follows a curved arcsin-like [Eq. (2)]
behavior (Fig. 1), which was modeled by Arias and Mills.1

Here, α denotes the intrinsic damping parameter, γ the spec-
troscopic splitting factor, ω/2π the precession frequency, and
B⊥ the effective perpendicular field. Although nonmonotonous
linewidth behavior had been considered for disordered poly-
crystalline systems previously,15 the monotonous behavior
according to Eq. (2) has been used universally for years.
Recently, possible deviations from the arcsin behavior of the
linewidth came up for discussion,19–21 which, to the best of
our knowledge, up to now had not been further investigated

due to the lack of an expanded theoretical model:

�BG ∝ α

γ
ω, (1)

�B2m ∝ arcsin

√√√√√
ω2 + (γB⊥/2)2 − γB⊥/2√
ω2 + (γB⊥/2)2 + γB⊥/2

. (2)

In this Rapid Communication we show that the frequency
dependence of the linewidth may strongly differ from the
standard arcsin expression and exhibits even periodic behavior.
The two-magnon process depends on the properties of the
scattering field determined by the defects. We calculate it for
a system with a periodic uniaxial defect matrix, as can be
found in nanopatterned or self-organized systems. We compare
our theory with experimental results obtained on permalloy
(Py = Ni80Fe20) thin films, in which periodic defect stripes
have been patterned using ion implantation.

Ion implantation, in combination with lithographically
defined masks, opens the possibility to create patterned hybrid
magnetic materials.22,23 This in turn also allows to influence
and tailor the magnetization dynamics, i.e., the magnetic damp-
ing properties, at the nanoscale.5,24,25 A periodic stripelike
pattern of the ion-beam-modified Py will serve as the defect
matrix introduced above. In a first step, 1 × 1 mm2 square
shaped 30-nm-thick Py films with a 3-nm Cr capping layer
were grown by molecular beam epitaxy at a base pressure of
1 × 10−10 mbar. Due to the oxidized SiO2/Si(001) substrate
the films grow to be polycrystalline. Electron beam lithography
was used to fabricate 1-mm long-stripes of width s0 and
spacing s1 (i.e., with periodicity l = s0 + s1) into a 100-nm-
thick polymethyl methacrylate (PMMA) resist covering the
whole sample area (see Fig. 2). After resist development the
samples were implanted with Cr+ ions with an energy of 5 keV
and a fluence of 5 × 1015 ions/cm2. The Cr+ ions either get
absorbed in the PMMA resist or penetrate the Cr capping
layer in between the PMMA stripes, thus reaching the Py
layer as depicted in Fig. 2. TRIDYN26 simulations of the depth
profiles of the atomic concentrations after Cr+ implantation
(not shown) reveal that a significant Cr concentration is
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FIG. 1. (Color online) The linewidth as a function of
the frequency. (a) The Gilbert contribution �BG is linear.
(b) The two-magnon contribution �B2m exhibits the arcsin behavior.
(c) The resulting linewidth �B� is a sum of both contributions.

found in the topmost 7 nm of the sample. The concentration
decreases with sample depth, starting with 50 at. % Cr at the
surface. Note that the ion beam also sputters the capping layer,
removing up to 1.5 nm, which is less than the thickness of the
capping layer. The Cr+ dopants cause local variations of the
saturation magnetization,25,27 whereas in Py no anisotropy is
induced thereby. Therefore, we obtain samples in which the
magnetization varies laterally, causing dipolar fields between
the stripelike defects.

Magnetic anisotropy and relaxation of such samples with
different periodicities were studied by ferromagnetic res-
onance (FMR). Using a cylindrical microwave cavity at
9.8 GHz, in-plane angular-dependent FMR measurements
have been performed. At room temperature, samples with
periodic defect structures, as well as unmodified samples
of Ni80Fe20 thin films, reveal a very small in-plane uniaxial
anisotropy field K2/M < 0.02 mT and an effective perpen-
dicular field B⊥ = μ0Meff = 0.81(1) T. The resonance fields
of the samples with stripelike modifications show, in addition,
lateral confinement effects for external field orientations close
to the stripes’ normal, which were reported in detail in
Ref. 28. The in-plane angular dependence of the linewidth
of these samples exhibits uniaxial behavior with maxima for
field directions perpendicular to the stripes and minima for
directions parallel to the stripes. This uniaxial behavior is
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FIG. 2. (Color online) Sketch of the sample before and after ion
implantation with Cr+. Ions are stopped either in the resist or in the
Cr/Ni80Fe20 interface region, resulting in periodic stripe defects.

explained by the two-magnon scattering induced by dipolar
interactions between the stripelike defects in the sample,
as described in Refs. 17 and 29. Samples with different
stripe periodicities measured at 9.8 GHz showed variations
of the two-magnon scattering strength perpendicular to the
stripes. This observation motivated the study of the frequency
dependence of the linewidth. A shorted coaxial microwave
cable with a special end design was used to detect broad-
band FMR.30 In-plane measurements in the quasicontinuous
frequency range of 2–26 GHz were performed for directions
parallel and perpendicular to the stripes.

In Fig. 3(a) the experimental frequency dependence of the
linewidth for the magnetic field applied parallel to the stripes
is shown. The general behavior of the linewidth frequency
dependence is not affected by the direction of the external
magnetic field in one single sample. The convex curvature is
related to the high modulation field used to increase the signal-
to-noise ratio. Additional measurements (not shown here)
show no isotropic two-magnon relaxation channel due to, e.g.,
grain-grain effects31 in these polycrystalline samples. With
the results shown in Fig. 3 we conduct comparative studies:

FIG. 3. Frequency dependence of the FMR linewidth of two
samples structured with stripelike defects. While the general behavior
is the same within one single sample for B parallel to the stripes (a)
and B perpendicular to the stripes (b), for the latter configuration
additional peaks due to the two-magnon scattering occur. Increasing
the defect’s periodicity l from 250 to 400 nm in the second sample
changes the position of the peaks and therefore the frequency
dependence of the overall spin relaxation. Error bars are �15%. In
(c) the frequency range is limited due to technical reasons. Solid lines
are guides for the eye.
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When the external magnetic field is applied perpendicular to
the stripes, the behavior of the linewidth frequency dependence
becomes nonmonotonous and is related to the two-magnon
scattering process, which is known to be activated in such a
configuration.17,29 One finds a large peak at ∼12.7 GHz and
two smaller ones at ∼5.4 and ∼21.2 GHz. These appear only
for the direction perpendicular to the stripes. Yet the arcsin-like
frequency dependence according to the Arias and Mills model1

does not exhibit a nonmonotonous or even periodic behavior
observed in experiment. In order to solve this problem, the
mechanism of the two-magnon scattering is reconsidered in
the following.

The dispersion relation of magnons parallel to the magne-
tization in a thin film is given by1

ω = γ

[(
B+μ0Ms

(
1−1−e−kd

kd

)
sin2 φk+Dk2+BMAE1

)

×
(

B+B⊥− μ0Ms

(
1−1−e−kd

kd

)
+Dk2+BMAE2

)]1/2

.

(3)

ω is a function not only of the wave vector k, but also of
the external magnetic field B and sample parameters such
as saturation magnetization Ms , effective perpendicular field
B⊥, spin-wave stiffness D, film thickness d, the spectroscopic
splitting factor γ = μBg/h̄, and parameters BMAE1 and BMAE2,
which are functions of very small anisotropy fields. Here, φk

describes the critical angle between the magnetization and the
wave vector for which the scattering can occur. As explained
in detail in Ref. 1, φk is very small, so that sin φk ≈ 0. In a
two-magnon process a uniform magnon with k = 0 is scattered
into a nonuniform state with the same energy and different
wave vector kS �= 0, as shown in Fig. 4. Due to the local nature
of this scattering process the momentum conservation can be
violated.15 In order to find the wave vector of such a final-state
magnon one needs to solve the following equation:

ω(k = 0) = ω(kS). (4)

FIG. 4. (Color online) Dispersion relation of magnons in a thin
film according to Eq. (3), which includes dipolar interaction, causing
a minimum. In a two-magnon scattering process activated by the
scattering field Bscatt, a uniform magnon n0 = |h̄ω,k = 0〉, excited by
a microwave field P , is annihilated (a−) and a final state magnon
nS = |h̄ω,kS �= 0 〉 is created (a+).

By doing so, one finds that the frequency is eliminated as
independent variable. However, the value of kS still depends
on the external field as it is linked to the frequency by
the resonance condition of the uniform precession given by
Eq. (3) for k = 0. Thus, the wave vector of the final-state
magnons kS = kS(ω) is a monotonously increasing function
of the frequency and can be calculated using the values
of the effective perpendicular field, anisotropy fields, and
g factor (g = 2.11) from the experiment and magnetization
MS = 1.11 × 106 A/m and exchange stiffness D = 1.847 ×
10−17 J/A of permalloy.32 The scattering process itself is
enabled by the scattering field, which couples the uniform
with the final-state magnons. The coupling strength and
consequently the FMR linewidth scale with the square of the
Fourier transform of the scattering field for k = kS,33,34 being
thus a function of frequency,

�B2m(ω) ∝ |F{Bscatt}[k = kS(ω)]|2 . (5)

Although the exact functional form of the material’s scattering
field is not known, it is also periodic. Due to the periodicity l

of the defects, the Fourier transform of the scattering field can
be assumed to have maxima for k values being a multiple of
the periodicity 2π/l of the stripelike defects in the reciprocal
space (see Fig. 2). This requirement can be accounted for
phenomenologically by multiple Gauss profiles at these values
according to

|F{Bscatt}(k)|2 ∝
∑
n∈N

exp

(
−

(
n2π

l
− k

)2

2σ 2

)
. (6)

The frequency dependence of the linewidth according to
Eqs. (5) and (6) has been calculated numerically for different
periodicities of the scattering field and is shown in Fig. 5. For

FIG. 5. (Color online) Color-coded normalized linewidth (scat-
tering strength) according to Eqs. (5) and (6). The sections at l = 250
and 400 nm correspond to the frequency dependences of the linewidth
shown in Figs. 3(b) and 3(c). The red (light gray) color means a larger
linewidth than blue (dark gray). Elliptical structures appear due to
limited numerical accuracy.
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the experimental periodicities l = 250 and 400 nm (Fig. 3)
the frequency dependence is represented by the horizontal line
profile. A quantitative agreement depends very sensitively on
the knowledge of the static magnetic parameters (e.g., local
magnetization). The calculation confirms the experimental
observation qualitatively very well. From Fig. 5 one directly
recognizes which periodicity of defect structures must be
patterned to enhance the spin relaxation rate in a ferromag-
netic film. Based on the intrinsic relaxation of the material,
additional enhancements by up to factor of 2 can be induced
at chosen frequencies. The width of the peaks in Fig. 3(c) is
determined not only by the angle between the line profile and
the “structures” in Fig. 5, but also by the parameter σ in Eq. (6),
representing the k-value selectivity of the scattering field. The
exact form of the material’s scattering field would need to be
known to calculate σ as well as the absolute scattering rate. Our
theory is based on the general scattering field approach15,33,34

and could benefit from the Arias and Mills theory,1 if it could
be extended to a larger class of periodic defect structures.35

Since the latter, which is beyond the scope of the present Rapid
Communication, allows a transition to magnonic crystals,
magnonic band gaps and the anomalous damping of the
final-state magnons should also be taken into consideration.

In conclusion, we present a phenomenologic theory of
the two-magnon scattering in periodically structured thin-film
systems, which is confirmed by the experiment very well.
Our results demonstrate that the frequency dependence of
the overall spin relaxation in a large class of ferromag-
netic systems is nonmonotonous and depends on the defect
structure. Consequently, the usual practice of separation of
intrinsic and extrinsic spin relaxation processes by means of
their frequency dependence must be reconsidered. The exact
structure of defects in a material, being periodic in the majority
of ferromagnetic systems, needs to be ascertained first. Our
findings are important for future developments, since they
could explain the anomalous spin relaxation in magnonic
crystals and help to tailor spin relaxation in spintronic devices
by artificially inducing a defect structure to activate a desired
spin relaxation channel in a specific frequency range.

We thank V. Kühn and I. Winkler for their help with
the sample preparation and ion implantation. This work was
supported by the DFG, SFB 491, Grants No. FA 314/6-1 and
No. FA 314/3-2. I.B. thanks D. Mills and K. Baberschke for
fruitful discussions.

*igor.barsukov@uni-due.de
1R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999).
2K. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle,
U. von Hörsten, H. Wende, W. Keune, J. Rocker, and S. S. Kalarickal
et al., Phys. Rev. B 76, 104416 (2007).

3J. Lindner, K. Lenz, E. Kosubek, K. Baberschke, D. Spoddig,
R. Meckenstock, J. Pelzl, Z. Frait, and D. L. Mills, J. Magn. Magn.
Mater. 272-276, E1653 (2004).

4G. Woltersdorf and B. Heinrich, Phys. Rev. B 69, 184417 (2004).
5R. D. McMichael, D. J. Twisselmann, J. E. Bonevich, A. P. Chen,
and W. F. Egelhoff Jr., J. Appl. Phys. 91, 8647 (2002).

6M. C. Hickey and J. S. Moodera, Phys. Rev. Lett. 102, 137601
(2009).
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16J. Seib, D. Steiauf, and M. Fähnle, Phys. Rev. B 79, 092418 (2009).
17I. Barsukov, R. Meckenstock, J. Lindner, M. Möller, C. Hassel,
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