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Finite-temperature signatures of gap anisotropy in optical conductivity of ferropnictides
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The low-temperature optical conductivity in the superconducting state of the ferropnictides shows increased
absorption at low energies not expected for an isotropic s-wave gap. This may indicate that the gap on one or
more of the several bands involved is quite anisotropic. A possible candidate is the gap on the electron pocket at
the M point in the Brillouin zone. We calculate the optical response of an extended s-wave superconductor with
emphasis on its temperature evolution. An aim is to study the difference in signatures, both in temperature and
frequency, expected in the crossover region between a gap with nodes and that with a small gap. Results are also
presented for a two-band case with microscopic parameters chosen specific to the ferropnictides. We add their
respective conductivities and, thus, neglect any interband contributions.
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I. INTRODUCTION

Superconductivity discovered in the FeAs family1,2 can
have a critical temperature Tc up to ∼ 55 K (Refs. 3 and 4).
Only the cuprates have higher values. The parent compound
can be doped, both with electrons as in BaFe2−xCoxAs2

(Ref. 5) or with holes as in Ba1−xKxFe2As2 (Ref. 6).
Band-structure calculations7,8 have shown that these systems
represent an entire new class of multiband superconductors,
but with a nonphonon mechanism9 in contrast to the well-
known two-band case of MgB2 (Ref. 10), which is believed
to be electron-phonon driven.11–13 The relatively high value of
Tc ∼ 40 K in those materials is traced not so much to its two-
band nature, but to a relatively modest coupling to high-energy
phonon modes. While the ferropnictides have more bands, a
minimal model includes two bands, an electron band centered
on the M point in the Brillouin zone and a hole band at point �,
both with superconducting gap functions (�) having s-wave
symmetry, but with a possible sign change in � between
the two, the so-called s±-symmetry state.8,14 The gap on the
electron pocket could have extended s-wave character rather
than be isotropic.15 Anisotropic s-wave gaps are in no way
unusual. Even in conventional metals such as Al (Refs. 16 and
17), Pb (Ref. 18), and Nb (Ref. 19), the gap has been found to
vary greatly on the Fermi surface, although there is no evidence
for nodes in these systems. This means that when impurity
scattering is increased, anisotropy in the superconducting
gap washes out, but Tc remains finite as does the average
gap value in contrast to d-wave symmetry where impurities
can drive the critical temperature to zero very much in the
same way as paramagnetic impurities do in isotropic s-wave
superconductors.20,21 Other complications beyond isotropic
s-wave Bardeen-Cooper-Schrieffer (BCS) theory have been
considered in conventional superconductors, such as energy
dependence in the electronic density of states,22–25 retardation
effects due to the inelastic scattering,26–28 and related strong-
coupling corrections.29 These have not yet been found to
be essential in discussions of the optical conductivity in the
superconducting state in the ferropnictides beyond including
an appropriate non-BCS value for the ratio of twice the
superconducting gap to critical temperature. This procedure

has been found to simulate well strong-coupling effects in
the work of Padamsee et al.30 An important issue, however,
has centered on whether the extended s-wave gap could have
nodes31–34 or, possibly, that there is a small gap everywhere on
the electron Fermi surface, perhaps due to impurities.35 Direct
experimental information on band structure is available from
angular resolved photoemission spectroscopy36–42 (ARPES)
and these studies so far favor an isotropic s-wave gap, but
with different size on the various bands observed. However,
different experimental probes give different results.

In both hole-doped Ba1−xKxFe2As2 (Ref. 43) and
electron-doped Ba(Fe1−xCox)2As2 (Ref. 44) compounds, low-
temperature thermal conductivity measurements indicate that
the residual linear term corresponding to the universal limit
is negligible, indicating that the gap does not have nodes.
For Ba1−xKxFe2As2, however, the application of a small
magnetic field is found to induce a linear in temperature
term.43 This indicates that the minimum gap must be very
small on at least one of the several bands involved. Data on
the temperature dependence of the London penetration depth
in Ba1−xKxFe2As2 by Hashimoto et al.45 indicate an expo-
nentially activated temperature dependence at small T , which
is not consistent with nodes in one of the gaps. On the other
hand, a detailed analysis by Schachinger and Carbotte46 of the
microwave data on the same sample giving the real part of the
optical conductivity at ν = 28 GHz shows that it can be most
naturally understood if there are nodes in the gap, although
small minimum gaps can not be entirely ruled out. Nodes are
also more consistent with separate penetration depth data by
Martin et al.47 on a closely related sample of Ba1−xKxFe2As2.
A very recent microwave measurement of the temperature
dependence of the superfluid density in both Ba0.72K0.28Fe2As2

with Tc ∼ 30 K and Ba(Fe0.92Co0.08)2As2 with Tc ∼ 20 K has
found a power law for renormalized London penetration depth
λ2

L(0)/λ2
L(T ) ∼ T n with n ∼ 2.5 consistent with nodes.48 On

the other hand, Raman scattering data on Ba(Fe1−xCox)2As2

by Muschler et al.49 give spectroscopic evidence for nodes in
the B2g response of Ba(Fe0.939Co0.061)2As2 with Tc = 24 K.
For a slightly higher doping Ba(Fe0.915Co0.085)2As2 with Tc

reduced to 22 K, a small gap is seen to develop in the Raman

134522-11098-0121/2011/84(13)/134522(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.134522


E. SCHACHINGER AND J. P. CARBOTTE PHYSICAL REVIEW B 84, 134522 (2011)

response, which becomes zero below a finite ω ∼ 10 cm−1 for
T = 8 K. The authors note that the residual scattering in their
sample is of the same order of magnitude as is the gap. In this
case, disorder can open up a finite gap due to washing out of
anisotropy.35

The optical conductivity of ferropnictides has been the
subject of considerable activity, including measurements by
Yang et al.50 and Wu et al.51 both in Co-doped samples.
These works are oriented more directly toward extracting
information on the pairing interaction and involve the use
of Eliashberg (strong-coupling) equations rather than BCS.
A common conclusion of both studies is that spin fluctuations
may play an important role in the glue causing condensation
into a superfluid. The need for an Eliashberg approach has also
been pointed out by other works.52,53 Other studies have been
more directly aimed toward the superconducting state and gap
symmetry and usually involve a BCS approach. The work of
Wu et al.54 is based on data by Barišić et al.55 and Wu et al.56

These authors conclude that the gap on the electron pocket at
the M point in the Brillouin zone is large, of order 7.5 meV
for their sample of Ba(Fe0.92Co0.08)2As2 and the gap on the
hole pocket at point � is of order 2.5 meV. For a second
sample Ba(Fe0.95Ni0.05)2As2, the gaps are 7 and 2.3 meV,
respectively. Assuming the gap at the M point to be very
anisotropic provides a natural explanation of the data, but the
authors can not determine for sure whether there is a small
optical gap or nodes. Such a small optical gap �0

op is a region
of zero absorption in the real part of the optical conductivity
observed at very low temperatures. It will be twice the value of
the gap �0

qp in the quasiparticle excitation spectrum (or in the
quasiparticle density of states) on the Fermi surface induced
by superconductivity.

Lobo et al.57 provide a very different method of analysis
of data in Ba(Fe0.92Ni0.08)2As2. They find that it can not be fit
within the s-wave Mattis-Bardeen description,58 and an addi-
tional temperature-independent Drude form is needed. This
provides evidence for additional low-frequency absorption
beyond that in an isotropic s-wave superconductor, confirming
the conclusion of Wu et al.54 A similar conclusion is also made
in the work of van Heumen et al.59 with the difference that the
extra low-energy absorption is assigned to some interband
transitions. Other data that are consistent with increased low-
energy absorption are THz measurements by Fischer et al.60

On the other hand, data by Tu et al.61 can be understood with
two isotropic gaps, one with � = 3.1 meV, the other with
7.4 meV for their BaFe1.85Co0.15As2 sample with Tc = 25 K.
Nakajima et al.62 studied two samples of Ba(Fe1−xCox)2As2

with x = 0.06 and 0.08 and found almost unit reflectivity
below 80 and 50 cm−1, respectively. In BaFe1,87Co0.13As2

with Tc = 24.5 K, Kim et al.63 find a fit with three isotropic
gaps of values 2�/(kBTc) = 3.1, 4.7, and 9.2.

It is clear from this brief review of optical data that
one can not yet conclude with certainty whether or not the
superconducting gap on some of the several bands involved
is anisotropic with a very small minimum effective gap or,
perhaps, it has a node. To aid in the interpretation of existing
data as well as provide guidance as to which feature of
the optical conductivity and related optical quantities might
fruitfully be focused on, we present results of calculations
for an extended s-wave gap that focus on the frequency

dependence of the real part of the optical conductivity64 at
small energies ν and also on its temperature dependence.
Finite-temperature effects could mask the existence of a
small optical gap, which can only be detected at very low
temperatures. An important feature of the work rests in a
comparative study of the optical response of a sample with
a small optical gap with another identical one, except that
it just falls on the other side of the crossover point between
a small gap and a node. While most of the work presented
involves a single band, we also consider explicitly a two-band
case. To do so, we simply add the conductivities for two bands
properly weighted by their optical strength. This procedure
assumes that, as a first approximation, interband effects are
not large. Optical data for energies below twice the gap are
most important in determining gap anisotropy. In this energy
region, data by Charnukha et al.53 on Ba0.68K0.32Fe2As2 and
van Heumen et al.59 for BaFe2−xCoxAs2 with x = 0.14 show
that interband contributions are indeed small.

In Sec. II, we present the required formalism including
the Kubo formula for the current-current correlation function
of an extended s-wave superconductor and equations for
the modification of the superconducting gap function when
impurities are present. Impurities will not change the value of
�0

qp or Tc in the isotropic case, but when there is anisotropy,
impurities will wash it out progressively and �0

qp takes on
its average value in the limit when the impurity scattering rate
becomes much larger than the superconducting gap amplitude.
Section III contains our numerical results. Much of the work
involves a detailed look at the case of a single band with
a highly anisotropic s-wave gap, including nodes possibly
lifted by impurity scattering. These results are an essential
preliminary step to a more specific discussion of the two-band
case needed to describe ferropnictides. We summarize and
make conclusions in Sec. IV.

II. FORMALISM

Fundamental to this work is the Kubo formula for the ac
optical conductivity σ (T ,ν) as a function of temperature T

and photon energy ν. The conductivity tensor σjk(ν) can be
written as46,64–68

σjk(ν) = i

ν
�jk(iνn → ν + i0+), (1)

where the analytic continuation from the imaginary boson
Matsubara frequencies iνn (νn = 2nπT , n = 0, ± 1, ±
2, . . .) is taken to the real frequency axis iνn → ν + i0+. A
standard approximation to �jk(iνn) in which vertex correc-
tions for the electromagnetic interaction are neglected gives

�jk(iνn) = 2T

N

∑
m,p

Tr{evj (p)G(p,iνn + iωm)

×G(p,iωm)evk(p)}, (2)

where vi(p) is the ith component of the Fermi velocity,
G(p,iωm) is the electron Green’s function in the 2 × 2 Nambu
notation, and Tr{. . .} is the trace. In terms of the Matsubara
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pairing energy �̃p(iωm) and the renormalized Matsubara
frequencies ω̃p(iωm), the Green’s function has the form

G(p,iωm) = ω̃p(iωm)τ0 + εpτ3 + �̃p(iωm)τ1

ω̃2
p(iωm) − ε2

p − �̃2
p(iωm)

, (3)

where τ0, τ1, and τ3 are Pauli matrices and εp is the electron
dispersion. To get �jk(iνn) on the real frequency axis, we need
to use the spectral representation of the Green’s function. We
obtain

�jk(ω + iδ) =
〈
2e2N (0)vj (p)vk(p)Tr

{∫
dε

∫
d


× f (
)
−1

π
ImG(p,
 + iδ)[G(p,
 + ω + iδ)

−G(p,
 − ω − iδ)]

}〉
p
, (4)

with

G(p,ω + iδ) = ω̃p(ω + iδ)τ0 + εpτ3 + �̃p(ω + iδ)τ1

ω̃2
p(ω + iδ) − ε2

p − �̃2
p(ω + iδ)

. (5)

Here, f (ω) is the fermionic thermal factor, N (0) is the
electronic density of states at the Fermi level, and 〈. . .〉p
indicates the average over the angle of p. It has been assumed
that the density of states factor N (ε) does not vary much over
the energy range of importance for the energy integral in Eq. (4)
and, thus, was taken out of the integral at its Fermi surface
value N (0). We also approximate the various bands by free
electron bands and, consequently, the product N (0)vj (p) in
Eq. (4) combines to 
2

p/(4π ) in Eq. (6) with 
p the plasma
frequency.

For a superconductor with anisotropic superconducting gap
function �(ν,φ) on a cylindrical Fermi surface with polar angle
φ, σ (T ,ν) takes after considerable algebra the form46,64–68

σ (T ,ν) = 
2
p

4π

i

ν

〈∫ ∞

0
dω tanh

(
βω

2

)
[J (ω,ν) − J (−ω,ν)]

〉
φ

,

(6)

where the bracket 〈. . .〉φ indicates an average over φ and β

is the inverse temperature (kBT )−1 with kB the Boltzmann
constant. The function J (ω,ν) is given by

2J (ω,ν) = 1 − N (ω,φ)N (ω + ν,φ) − P (ω,φ)P (ω + ν,φ)

E(ω,φ) + E(ω + ν,φ)
(7)

+ 1 + N�(ω,φ)N (ω + ν,φ) + P �(ω,φ)P (ω + ν,φ)

E�(ω,φ) − E(ω + ν,φ)
, (8)

with � indicating the complex conjugate. Here,

E(ω,φ) =
√

ω̃2(ω + i0+) − �̃2(ω + i0+,φ), (9a)

N (ω,φ) = ω̃(ω + i0+)/E(ω,φ), (9b)

P (ω,φ) = �̃(ω + i0+,θ )/E(ω,φ). (9c)

As here, most discussions of the optical conductivity in the
superconducting state neglect vertex corrections, which are
not expected to change our results qualitatively and can be

incorporated mainly through changes of the scattering rate
introduced below from its quasiparticle value to an appropriate
transport version. For an extended s-wave gap, impurity
scattering can change the value of the renormalized gap
function �̃(ν,φ) as well as the renormalized quasiparticle
frequency ω̃(ω) = ω − �qp(ω) with �qp(ω) the quasiparticle
self-energy. For the elastic quasiparticle scattering rate τ−1

qp =
πt+ in the Born approximation26,27 (with the corresponding
optical scattering rate τ−1

op = 2τ−1
qp ), we have

ω̃(ω + i0+) = ω + iπt+〈N (ω,φ)〉φ, (10a)

�̃(ω + i0+,φ) = α�0 + iπt+〈P (ω,φ)〉φ
+

√
1 − α2�0

√
2 cos(2φ), (10b)

with �0 the superconducting gap amplitude. For simplicity,
we present results here only for Born impurity scattering. This
is sufficient for a first qualitative discussion of the physics
involved. More complicated forms as described by Schürrer
et al.65 could easily be introduced if data should indicate the
need to do so. These equations need to be iterated, and the gap
function �̃(ω,φ) will, in general, have both a real and imag-
inary part as is very familiar in Eliashberg theory,28,29 which
includes inelastic scattering and so-called strong-coupling
corrections. In the pure case with t+ = 0, �̃(ω + i0+,φ)
reduces to a real function independent of frequency ω and has
the form α�0 + √

1 − α2�0

√
2 cos(2φ), which is the sum of

an isotropic s-wave and an extended s-wave piece referred to
a coordinate system centered on the M point in the Brillouin
zone. As described by Chubukov et al.15 the gap function on
this pocket could be anisotropic, while the gap function on
the hole pocket centered about the � point is assumed to be
isotropic s wave (i.e., α = 1), but carrying the opposite sign
amplitude to that on the electronic band, which establishes the
so-called s±-symmetry state. Anisotropic gap functions are
well known even in conventional superconductors.16–19 Note
that the gap amplitude �0 is equal to the root-mean-square gap
amplitude of the pure crystal (t+ = 0). The parameter α = 1
gives the pure isotropic case and α = 0 the pure anisotropic
case with nodes in the extended s-wave gap function on the
electron pocket and averaging to zero on this Fermi surface. A
node exists in the pure crystal superconducting gap function
for α � αc = √

2/3. Throughout the paper, the anisotropy
parameter x = α/(α + √

1 − α2) is used instead of α. It has
the critical value of x = xc = 0.59, and it has the advantage
that x multiplied by 100 gives the percentage of the s-wave
component to the gap function. (The parameter α is related
to x via α = x/

√
1 − 2x + 2x2.) In the anisotropic case for

α >
√

2/3, one must not confuse the superconducting gap
amplitude �0 in Eqs. (10) with the finite minimum gap �0

qp

on the Fermi surface for quasiparticle excitation. This is the gap
that opens in the quasiparticle density of states (DOS) and it
also provides an optical gap �0

op = 2�0
qp. Even for α <

√
2/3,

when there are nodes in the case of a pure crystal, these nodes
can be lifted when impurity scattering is introduced and is
sufficiently large to wash out the anisotropy enough that a
gap �0

qp is generated in the quasiparticle excitation spectrum.
As elastic impurity scattering increases, momentum no longer
remains a good quantum number and each electron samples
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many values of the superconducting gap function as the system
moves toward isotropy at every point of the Fermi surface.

The parameters of the model are therefore 
p, α or x, �0,
and t+. In what follows, we will present results for the real
part of the optical conductivity σ1(T ,ν) versus photon energy
for several values of temperature T . We will also consider the
reflectance r(T ,ν) as this is the quantity that is often directly
measured in optics. It is related to the optical conductivity
through the dielectric function

ε(T ,ν) = ε∞ + i
4π

ν
σ (T ,ν), (11)

with

r(T ,ν) =
∣∣∣∣1 − √

ε(T ,ν)

1 + √
ε(T ,ν)

∣∣∣∣
2

. (12)

This introduces a new parameter, the dielectric constant ε∞,
which is often taken to be unity. In our calculations, we will
also set 
p = 1 eV.

III. NUMERICAL RESULTS

In Fig. 1(a), we present results for the reflectance ratio
rs(t,ν)/rn(ν) at several reduced temperatures t = T/Tc as
labeled. Here, the subscripts s and n stand for superconducting
and normal state, respectively. The anisotropy parameter
defining the extended s-wave gap x = 0.67 (α = 0.9) with the
critical temperature set at Tc = 20 K, zero-temperature gap
amplitude �0 = 10 meV, and quasiparticle impurity elastic
quasiparticle scattering rate πt+, with t+ = 1.5 meV. These
values are reasonable for the ferropnictides.54,55 The width
of the normal-state Drude-type contribution in Refs. 54–57
and 59 is of order 100 cm−1, which is twice the quasiparticle
scattering rate. The ratio of gap to Tc value 2�0/(kBTc) used
here is much larger than in BCS since we wish to model the
optical conductivity associated with a large gap amplitude on
the electron pocket at point M in the Brillouin zone. For the
temperature dependence of �0(T ), we will simply use the
classical mean-field BCS temperature dependence

�(T )

�(0)
= tanh

[
Tc

T

�(T )

�(0)

]
. (13)

The (black) short dotted curve is included for comparison
and corresponds to a reduced temperature t = 0.05 for the
case of an isotropic BCS gap (i.e., x = α = 1) with all other
parameters left unchanged. Note the large differences when
compared with the (red) short dashed-dotted curve, which is
at the same temperature but includes some gap anisotropy
[x = 0.67 (α = 0.9)]. While the two curves agree well at small
energies (ν), they deviate substantially above ν � 10 meV. In
this region, the anisotropic case begins a rather gradual drop
toward one, while the isotropic curve continues to rise slightly
before having a precipitous, almost vertical drop to a value
below one around 2�0 = 20 meV for the impurity content
used. At this energy, the (red) short dashed-dotted curve is still
above one and is dropping far more gradually. It then has a
shallow minimum around ν � 30 meV as compared with the
minimum in the isotropic curve, which is deeper and occurs
at lower energies below ν � 25 meV. It is clear from Fig. 1(a)
that anisotropy has a significant effect on the shape of the

FIG. 1. (Color online) (a) The reflectance ratio rs(t,ω)/rn(t,ω)
between superconducting (s) and normal (n) state as a function of
photon energy ν for several values of the reduced temperature t =
T/Tc as labeled. The gap anisotropy parameter x = 0.67 (α = 0.9),
Tc = 20 K, �0 = 10 meV and the quasiparticle scattering parameter
t+ = 1.5 meV. The (black) short dotted curve is for comparison and is
for isotropic s wave with the same gap at t = 0.05. (b) Gives the real
part of the optical conductivity σ1(t,ν) in meV as a function of ν also
in meV. The (black) dotted curve is the corresponding normal-state
result and is for comparison. The (black) short dotted curve is for an
isotropic s-wave gap and is for comparison.

reflectance ratio. These differences between extended s wave
and isotropic s wave become more pronounced when the real
part of the optical conductivity σ1(t,ν) in meV is considered,
as it is shown in Fig. 1(b). The (black) dotted curve in this
panel is for comparison and describes the normal-state optical
conductivity with a Drude width 2πt+ � 9.4 meV. The (black)
short dotted curve is isotropic s-wave BCS at the reduced
temperature t = 0.05. These two curves agree with the well-
known results of Mattis and Bardeen58 for absorption through
the creation of a hole particle pair out of the condensate. The
missing area under the superconducting curve as compared
with the normal state goes, of course, into the condensate so
that the optical spectral weight is conserved (Ferrell, Glover,
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and Tinkham69,70 sum rule). The (red) short dashed-dotted
curve is to be compared with the isotropic s-wave BCS
curve [(black) short dotted] and includes gap anisotropy. We
see that anisotropy fills in the region below 2�0. Optical
absorption now starts already below �10 meV and this new
absorption edge opens much more gradually as compared to
the isotropic case, although the impurity scattering rate has not
been changed. Also, considerably less optical spectral weight
is lost to the condensate. Note that the lower threshold for
absorption in the (red) short dashed-dotted curve correlates
well with the start of the drop in the reflectance ratio seen
in the corresponding curve in Fig. 1(a). It is important here
to differentiate between the optical gap (�0

op � 10 meV here)
below which at zero temperature there is no absorption and
twice the superconducting gap amplitude �0, which retains its
value of 20 meV. As the temperature is increased toward Tc,
the curves for σ1(t,ν) still show contributions associated with
pair-breaking processes out of the condensate, but there is also
an additional low-energy Drude-type feature, which comes
from direct absorption by thermally excited quasiparticles.
A clear kink in the curves allows the two contributions to
be identified separately. As T increases, the pair-breaking
contribution extends to lower and lower energies and the
quasiparticle contribution increases in magnitude.

Returning to the zero-temperature case, we focus on the
extra absorption associated with the anisotropic as compared
to the isotropic case. We define the remaining optical spectral
weight up to νc = 2�0 as

As =
∫ νc

0
dω σ1s(T � 0,ω) (14)

and take its ratio with the normal-state value for the same
quantity denoted by An. This ratio is shown in Fig. 2 as a
function of the anisotropy parameter x. For x = α = 1, the
isotropic case As/An = 0. The optical spectral weight due to
anisotropy increases as x decreases because the conductivity
becomes finite in the region below 10 meV down to the
value of the minimum gap. On the other hand, our numerical

FIG. 2. The ratio of the area under the conductivity in the
superconducting state As to its normal-state equivalent An up to
νc = 2�0 = 20 meV [according to Eq. (14)] as a function of the gap
anisotropy parameter x. The isotropic s wave corresponds to x = 1,
while x = 0 is a case for which the superconducting gap averages to
zero on the Fermi surface.

calculations show that adding a subdominant s-wave part to a
pure d-wave gap always increases the ratio As/An and, thus,
this ratio must have a maximum somewhere between x = 0
and 1. Here, the maximum of about 0.25 is reached around
x = 0.37 (α = 0.55) before decreasing slightly toward ∼0.2 at
x = α = 0. This is the case when the average superconducting
gap is zero. These results are in good agreement with the
data of Lobo et al.57 for BaFe2−xCoxAs2. These authors noted
that the amount of optical spectral weight remaining in their
sample at low temperatures above what would be expected
in a single-gap analysis based on Mattis and Bardeen58 was
of order 25%. This is assigned to anisotropy in the gap on
the electron pocket at the M point in the Brillouin zone.
We note, however, that this assignment does not provide a
strong constraint on the anisotropy parameter x other than that
it be of order 0.49 or less (α � 0.7). At its upper limit, it
would fall near the crossover region between a small gap and
nodes.

When the optical gap �0
op becomes very small, the

energy dependence of the optical conductivity can provide
information on whether �0

op is zero or finite, even if its
value falls below the lowest probing photon energy. The
temperature dependence of σ1(T ,ν) can also provide addi-
tional information on this same issue. This is illustrated in
Fig. 3, which has two frames. Figure 3(a) is for x = 0.49
(α = 0.7) and, for the impurity scattering rate considered,
(t+ = 1.5 meV) has a small optical gap as revealed in the
(red) short dotted curve for the lowest reduced temperature
t = 0.05. Figure 3(b) is for x = 0.37 (α = 0.5) and there is
a node in this case. The optical conductivity at the same
reduced temperature t = 0.05 [(red) short dotted curve] has
now a completely different behavior. While in Fig. 3(a) there
is a region of zero optical conductivity (no absorption) at
small ν, now the conductivity in this frequency range remains
everywhere of order one quarter its normal-state value shown
in both frames as the (black) dotted curve. As the temperature
is increased, the optical gap in Fig. 3(a) fills in and there is
some absorption at all frequencies, including the appearance
of a thermal Drude peak about ν = 0. But, there remains a
minimum. An estimate of the optical gap that exists at T = 0
can be deduced from the position in energy of the minimum in
σ1s(T ,ν) versus ν even for the reduced temperature t = 0.4
[(cyan) dashed-dotted curves]. At temperatures as high as
t = 0.95 [solid (black) curves], just below Tc, a signature of the
gap formation is still seen as a minimum in σ1s(T ,ν) versus ν,
although this minimum has moved to higher frequencies on the
ν axis as compared to the zero-temperature optical gap. Such a
minimum is not seen in Fig. 3(b), where the superconducting
gap has nodes. The large difference noted between the case
of a small optical gap and no gap allows one to distinguish
clearly between the two, even if the probing photon energy is
not sufficiently small and the temperature sufficiently low for
a region zero conductivity to be revealed. In Fig. 4, we show
our results for the reflectance ratio rs(t,ν)/rn(t,ν) for the same
two values of gap anisotropy x = 0.49 (α = 0.7) [Fig. 4(a)]
and x = 0.37 (α = 0.5) [Fig. 4(b)] as we used in Fig. 3. All
other parameters stay unchanged. In this case, the difference
between a small gap [Fig. 4(a)] and nodes [Fig. 4(b)] is not as
obvious as for the real part of the optical conductivity shown in
Fig. 3. The distinguishing feature is that in Fig. 4(a), all curves
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FIG. 3. (Color online) (a) The real part of the optical conductivity
σ1(t,ν) in meV as a function of the photon energy ν in meV for
several values of the reduced temperature t = T/Tc as labeled. The
gap anisotropy parameter x = 0.49 (α = 0.7), Tc = 20 K, and �0 =
10 meV and the quasiparticle elastic impurity scattering parameter
t+ = 1.5 meV. (b) The same as (a) but for x = 0.37 (α = 0.5). For
x = 0.49, the system shows a small finite gap at t = 0.05, while for
x = 0.37, the superconducting gap has nodes at the same temperature.

fall below one and approach one from below as ν becomes
large, while in Fig. 4(b), the reflectance ratio remains above
one at all temperatures and photon energies.

Returning to the real part of the optical conductivity, we
show additional results in Fig. 5 for the frequency dependence
of the ratio σ1s(ν)/σ1n(ν) as a function of ν in meV and for
three different temperatures, namely, T = 20 K in Fig. 5(a),
T = 10 K in Fig. 5(b), and T = 1.5 K in Fig. 5(c). In each
frame, seven values of gap anisotropy are considered as labeled
in the figures. It is described by the parameter x, which
when multiplied by 100 gives the percentage of isotropic
s wave included in our extended s-wave model. The case
x = 1 corresponds to the familiar isotropic BCS s wave, while
x = 0 corresponds to the case when the superconducting gap
averages to zero, i.e., it has no isotropic s-wave component. As
can be seen in Fig. 5(c), the (green) dashed-dotted curve [x =
0.44 (α = 0.62)], the (cyan) dashed-double dotted [x = 0.49
(α = 0.7)], the (magenta) short dashed [x = 0.67 (α = 0.9)],
and (black) short dotted (x = 1) curves correspond to cases
where there is an optical gap at low temperatures (T ) close to

FIG. 4. (Color online) (a) The ratio of superconducting- to
normal-state reflectance rs(t,ν)/rn(ν) vs photon energy ν in meV
for several reduced temperatures t = T/Tc as labeled. The gap
anisotropy parameter x = 0.49 (α = 0.7), Tc = 20 K, �0 = 10
meV, and the quasiparticle scattering rate parameter t+ = 1.5 meV.
(b) The same as (a) but for x = 0.37 (α = 0.5). For x = 0.49, the
system shows a small finite gap at t = 0.05, while for x = 0.37, the
superconducting gap has nodes at the same temperature.

zero T , while the remaining three curves correspond to cases
when the superconducting gap has nodes, i.e., (blue) dashed
curve [x = 0.37 (α = 0.5)], (red) dotted curve [x = 0.24
(α = 0.3)], and (black) solid curve (x = 0)]. These last three
curves are strikingly different from the previous ones, and
these differences allow one to differentiate between cases
with or without optical gap. For the parameters used (Tc =
25 K, �0 = 7.5 meV, and t+ = 2.5 meV), which are partially
motivated by the data of Ref. 54, the renormalized optical
conductivity in the region about ν = 0 is of order ∼0.5 for the
last three curves, while in the other curves, σ1s(ν) has a region
where it vanishes. The difference between the case with a small
optical gap and the case with a node in the superconducting
gap function remains visible for T = 10 K [Fig. 5(b)] and
even for T = 20 K [Fig. 5(a)], although temperature smearing
makes the distinction not as sharp. Focusing on Fig. 5(b),
we note a sharp minimum in the (cyan) dashed-double dotted
and (green) dashed-dotted curves indicative of the optical gap,
which is not there in the curves for x < 0.44 (α < 0.62). We
conclude from these results that, even if the optical gap is
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FIG. 5. (Color online) (a) The ratio of the real part of the optical
conductivity in the superconducting state σ1s(x,ν) to its normal-state
value σ1n(ν) as a function of the photon energy ν in meV for T = 20 K.
The parameters used are Tc = 25 K, �0 = 7.5 meV, and the impurity
quasiparticle scattering parameter t+ = 2.5 meV. (b) The same as (a),
but for T = 10 K. (c) The same as (a), but for T = 1.5 K.

smaller than the smallest available photon energy, it is still
possible to distinguish between a case with a small optical
gap and, thus, a small gap in the quasiparticle DOS and
one on the other side of the crossover region with nodes.
This remains true even if, in addition, the lowest temperature
sampled is a considerable fraction of the critical temperature
Tc. We illustrate this with the help of the quasiparticle DOS
N (ω)/N (0), which is shown in Fig. 6 for the same values of
x used in Fig. 5 as a function of quasiparticle energy ω. It is
given by

N (ω)

N (0)
=

〈
Re

{
ω̃(ω,φ)√

ω̃2(ω) − �̃2(ω,φ)

}〉
φ

, (15)

where the average is over the polar angle φ around the
Fermi surface at the M point in the Brillouin zone and �̃,
ω̃ are, respectively, the renormalized superconducting gap
function and quasiparticle frequencies at (ω,φ). For the (green)
dashed-dotted curve [x = 0.44 (α = 0.62)], there are no
states below ω∼0.5 meV, which establishes �0

qp ∼ 0.5 meV
and, thus, the corresponding optical gap is ∼1 meV, which
is of the same order as the temperature in Fig. 5(b). In

FIG. 6. (Color online) The quasiparticle density of states
N (ω)/N (0) as a function of quasiparticle energy ω in meV. Here,
�0 = 7.5 meV and the quasiparticle scattering parameter t+ =
2.5 meV for various values of the anisotropy parameter x as labeled.

contrast, for x = 0.37 (α = 0.5) [(blue) dashed line], no
such gap is observed in the DOS and the superconducting
gap function has nodes in this case. Thus, 0.37 � x � 0.44
(0.5 � α � 0.62) establishes the crossover region between
nodes and a small gap �0

qp. Consequently, when optical
gap and temperature are of the same order, there is no
region of zero absorption in the optical conductivity, but
a deep minimum remains that can, in principle, provide a
reliable estimate of the optical gap, which would be revealed
more clearly as a zero in σ1s(T ,ν) only at much lower
temperatures. Even if the optical gap and its corresponding
minimum at higher temperatures can not be directly observed,
the features described above give a very good indication
on which side of the crossover region a particular sample
might be.

So far, we considered only a single band. Of course, as we
described in the Introduction, a minimum model to capture
the physics of the ferropnictides involves two bands, one on
the hole pocket around the � point (which is believed to be
isotropic) and an electron pocket around the M point (which
may have a highly anisotropic extended s-wave gap). It is this
latter case on which we have concentrated so far. Provided a
possible interband contribution is small, we can simply add
the conductivities of two independent bands denoted by 1
and 2, respectively, to obtain the total conductivity of the
combined system. Charnukha et al.53 analyzed optical data in
Ba0.68K0.32Fe2As2 and found little difference below ∼30 meV
between results with and without including the possibility of
an interband contribution. While this contribution is found to
increase with photon energy, it is only the region below about
twice the maximum gap value that is most relevant. Thus,
for our analysis, simply adding the respective conductivities
is sufficient. A similar conclusion was also made by van
Heumen et al.59 in Ba Fe2−xCaxAs2 for x = 0.14. While these
authors find interband contributions to start around 10 meV,
they remain small in the energy region important for our
analysis.
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FIG. 7. (Color online) The reduced real part of the optical
conductivity σ1s(x,ν)/σ1n(ν) vs photon energy ν in meV for a model
with an isotropic s-wave gap function of amplitude �

(1)
0 = 2.5 meV

around the � point and an extended s-wave symmetry gap function
of amplitude �

(2)
0 = 7.5 meV around the M point of the Brillouin

zone. The two gap functions contribute 25% and 75%, respectively,
to the total conductivity. The results are for T = 10 K, t+ = 2.5 meV,
Tc = 25 K, and various values of the anisotropy parameter x of
extended s-wave symmetry gap function as indicated.

In Fig. 7, we show results for the normalized optical
conductivity σ1s(x,ν)/σ1n(ν) as a function of photon energy
ν for T = 10 K in a case when both contributions from
the hole band at point � and the electron band at point M

are included in proportion 25% to 75%, respectively, for
illustrative purposes only. It is clear that the characteristic
difference in behavior between nodes and the case with a gap
�0

qp noted before remains quite detectable in this combined
case with an extended s-wave superconducting gap function
on the pocket at point M with amplitude �

(2)
0 = 7.5 meV

and an isotropic s-wave superconducting gap function on the
hole pocket at point � with amplitude �

(1)
0 = 2.5 meV. The

quasiparticle scattering rate parameter t+ was set to 2.5 meV
on both pockets for simplicity. The crossover region between
a small gap �0

qp and nodes falls between x = 0.44 (α = 0.62)
[(green) dashed-dotted curve] and x = 0.37 (α = 0.5) [(blue)
dashed curve] as before in Figs. 5 and 6.

It is clear that the characteristic signature of a single
anistropic extended s-wave gap, which we have emphasized
in the main part of this paper, remains clearly visible in the
presence of a second isotropic gap. For Fig. 7, this second
gap on the hole pocket around the � point was taken to be
the smaller one of the two, and it shows up as an onset at
5 meV in the (black) short dotted curve. There is a clear
second onset at 15 meV corresponding to the second, larger
gap, which in the case x = 1 is also assumed to be isotropic
s wave. As this second gap becomes more anisotropic, i.e.,
x < 1, its minimum value can fall in the region of zero
conductivity below 5 meV. This provides finite absorption in
this region. It also increases the conductivity in the region of
reduced conductivity between 5 and 15 meV because of the
hole pocket gap. Should the isotropic gap on the hole band
be larger, the first onset of nonzero conductivity at T = 0
would become larger, and this would clear the way for an

even sharper picture of the gap anisotropy on the electron
pocket.

IV. CONCLUSION

There is evidence that the superconducting gap on the
electron pocket around the M point in the Brillouin zone of
some ferropnictides is very anisotropic. In the pure limit, there
could be nodes in the superconducting gap. Alternatively, a
minimum gap �0

qp may exist in the quasiparticle excitation
spectrum (or DOS) in all directions on the Fermi surface. In any
case, as elastic impurity scattering is increased, the anisotropy
will progressively wash out and a new low-energy scale will
emerge even when the pure system had nodes. We calculated
the optical response of such a superconductor as a function of
both photon energy and temperature with particular emphasis
on the characteristic signature of the crossover region between
nodes and a small minimum gap.

In all cases considered, when there is a node, the ratio of
the reflectance in the superconducting state to its normal-state
value, never falls below one in contrast to the gapped case for
which there is always a region of photon energies where it
is less than one and (at large energies) approaches one from
below. With nodes, the magnitude of the real part of the optical
conductivity at small energies remains at a very significant
fraction of its normal-state value of order ∼25% even at zero
temperature. This can serve as a baseline for comparison with
the case when there is a small but nonzero optical gap and the
sample falls on the other side of the crossover region between
nodes and no nodes. In this case, the real part of the optical
conductivity σ1s(T ,ν) displays a region of zero absorption if
the photon energy ν is below �0

op and the temperature is low
enough. But, even at considerably higher values of ν and for
temperatures of significant magnitude compared to Tc, the
optical conductivity displays a characteristic minimum or a
precipitate drop to rather small values, which is not found
when there are nodes. We can determine from the position in
energy of this minimum that there is an optical gap and provide
a good estimate of its actual size. If, on the other hand, the
photon energy ν is not low enough to resolve this characteristic
minimum, one will not be able to get a good estimate of
the size of the optical gap. Nevertheless, the observation of
the characteristic precipitate drop of the optical conductivity
at low photon energies or the lack thereof will still give a
clear indication of which side of the crossover region between
nodes and a small gap �0

qp the particular sample is to be
placed.

An explicit case of both hole and electron bands demon-
strated that the main effects derived for one band remain
for two bands, one anisotropic and the other isotropic.
For this two-band analysis, we simply add conductivities
for hole and electron bands, respectively. There could be
an additional contribution from interband transitions, but
experiments on Ba0.68K0.32Fe2As2 by Charnukha et al.53 and
on BaFe2−xCoxAs2 for x = 0.14 by van Heumen et al.59

have found this to be small in the low-energy regime most
relevant to our analysis of gap symmetry. While, for the hole
band around the � point, we used isotropic s-wave gap with
gap magnitude small compared to the anisotropic gap on
the electron pocket around the M point, increasing its size
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would create at low energies and T = 0 a larger frequency
interval of zero conductivity coming from the hole pocket,
allowing the anisotropic gap alone to be revealed even more
clearly.
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25M. Mitrović and J. P. Carbotte, Can. J. Phys. 61, 784 (1983).
26F. Marsiglio, R. Akis, and J. P. Carbotte, Phys. Rev. B 36, 5245

(1987).
27F. Marsiglio, R. Akis, and J. P. Carbotte, Phys. Rev. B 45, 9865

(1992).
28E. Schachinger and J. P. Carbotte, Phys. Rev. B 62, 9054 (2000).
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