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Length scales, collective modes, and type-1.5 regimes in three-band superconductors
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The recent discovery of iron pnictide superconductors has resulted in a rapidly growing interest in multiband
models with more than two bands. In this work we specifically focus on the properties of three-band Ginzburg-
Landau models which do not have direct counterparts in more studied two-band models. First we derive normal
modes and characteristic length scales in the conventional U (1) three-band Ginzburg-Landau model as well as
in its time-reversal symmetry-broken counterpart with U (1) × Z2 symmetry. We show that, in the latter case,
the normal modes are mixed phase-density collective excitations. A possibility of the appearance of a massless
mode associated with fluctuations of the phase difference is also discussed. Next we show that gradients of
densities and phase differences can be inextricably intertwined in vortex excitations in three-band models. This
can lead to very long-range attractive intervortex interactions and the appearance of type-1.5 regimes even when
the intercomponent Josephson coupling is large. In some cases it also results in the formation of a domainlike
structure in the form of a ring of suppressed density around a vortex across which one of the phases shifts by π .
We also show that field-induced vortices can lead to a change of broken symmetry from U (1) to U (1) × Z2 in
the system. In the type-1.5 regime, it results in a semi-Meissner state where the system has a macroscopic phase
separation in domains with broken U (1) and U (1) × Z2 symmetries.
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I. INTRODUCTION

Superconductivity with two gaps associated with different
bands was first theoretically predicted in 1959.1,2 However,
it was not until 42 years later, with the discovery of MgB2

(Ref. 3), that it started to attract wide interest (for a recent
review see Ref. 4). Because the condensates in two-band
superconductors are not independently conserved, the system
considered in Refs. 1 and 2 shares the same broken U (1)
symmetry of the ground state as their single-component coun-
terparts. The interband tunneling results in a system that attains
its free-energy minimum when the phase difference between
the condensates is either zero or π . Nonetheless in 1969 it
was discussed that individual phases of the two condensate
wave functions are important degrees of freedom, since they
give rise to a new kind of collective excitations. These
collective excitations are associated with the fluctuations of
the relative phase of the two superconducting components
around its ground-state value: the Leggett mode5 (for a recent
discussion see Ref. 6). A report of the observation of the
Leggett mode in MgB2 appeared very recently.7

Another example of new physics which can arise in two-
band systems (as compared to their single-band counterparts)
is associated with a disparity of the characteristic length scales
of density variations. That is, a single quantum vortex in
a two-band system should in general produce two different
cores. As a consequence of this, there appears a regime
which was recently termed type-1.5 superconductivity.8 In that
regime the two characteristic length scales of density variations
ξ1 and ξ2 satisfy the condition ξ1 <

√
2λ < ξ2. For a subset

of parameters in this regime there are thermodynamically
stable vortices with nonmonotonic interaction. Namely, these
vortices exhibit interaction which is long-range attractive, and
short-range repulsive. As a consequence of the long-range
attraction between vortices, the system allows an additional
“semi-Meissner” phase associated with macroscopic phase

separations in domains of the Meissner state and vortex states
(see, e.g., Refs. 8–15). For a detailed introduction see Ref. 16.

In the last 3 years there has been a rapidly growing interest in
multiband superconductivity with more than two components.
The interest was sparked by the recent discovery of iron
pnictide superconductors17 and subsequent discussions that
superconductivity in these systems may be described by a
theory with more than two relevant bands.18,19 It was observed
that the inclusion of a third band in the theory in several
respects leads to qualitatively different physics compared to
two-band systems.20–23 The new physics arises from the fact
that the presence of three or more components can lead to
phase frustration. It results from competition of three or more
interband Josephson coupling terms, which cannot all simulta-
neously attain the most energetically favorable phase-locking
pattern.20–23 This frustration leads to time-reversal symmetry
breakdown (TRSB).20–24 (We discuss it more quantitatively
below.) See also Refs. 25 and 26 for a different discussion of
possible time-reversal symmetry breakdown in iron pnictides.
Here we show that phase frustration leads to a plethora of
new phenomena in the physics of collective excitations and
the magnetic response of the three-band Ginzburg-Landau
model.

In the TRSB phase there are no “phase-only” Leggett
modes. Instead there is a different kind of collective ex-
citations: mixed phase-density modes. These mixed normal
modes have quite complex structure, and they can possess
modes with large characteristic length scales even in the case
of strong Josephson coupling. At the transition point to the
TRSB regime, the length scale of one of the phase-difference
modes diverges, rendering one of the modes massless (as
was also discussed recently in a London model;27 for other
recent discussions of Leggett’s modes in connection with
iron pnictides see Refs. 28 and 29). Note however that
if the phase transition in TRSB state is first order as
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was argued in Ref. 21, then there will no massless mode.
This is in contrast to two-band systems where increasing
interband Josephson coupling always diminishes disparities
of the density variations.10,16 In particular it implies that the
type-1.5 regime is possible in three-band superconductors
even in cases of quite strong interband Josephson coupling.
Moreover we show that in three-band systems the semi-
Meissner state can represent not only a macroscopic phase
separation in vortex and Meissner domains but also a macro-
scopic phase separation of domains with different broken
symmetries.

II. MODEL

The minimal Ginzburg-Landau (GL) free-energy functional
to model a three-band superconductor is

F = 1

2
(∇ × A)2 +

∑
i=1,2,3

1

2
|Dψi |2 + αi |ψi |2 + 1

2
βi |ψi |4

+
∑

i=1,2,3

∑
j>i

ηij |ψi ||ψj | cos(ϕij ). (1)

Here D = ∇ + ieA and ψi = |ψi |eiϕ are complex fields
representing the superconducting components. The phase
difference between two condensates is denoted ϕij = ϕj − ϕi .
The magnetic flux density through the system is given by
B = (∇ × A) and the magnetic energy density is B2/2. Such
a multicomponent GL free energy can in certain cases be
microscopically derived at temperatures close but not too
close to Tc (for a review see Ref. 30). Indeed the existence
of three superconducting bands is not by any means a
sufficient condition for a system to have GL expansion like
that given in Eq. (1). However, many of the questions which
we consider below in fact do not require the system to
be in the high-temperature region where a GL expansion
like Eq. (1) could in certain cases be formally justified. In
what follows, however, we use the minimal GL model since
it provides a convenient framework to discuss this physics
qualitatively. In Eq. (1) the coefficients αi change signs at some
characteristic temperatures which are generally different for all
components. Below this temperature, αi < 0 and the band is
active. Above it, αi > 0 and the band is passive. Passive bands
can nevertheless have nonzero superfluid density because of
the interband Josephson tunneling terms ηij |ψi ||ψj | cos ϕij .
Thus it is possible in this model to have only passive bands
and still nonzero superfluid densities due to Josephson terms.
In the three-component model of Eq. (1) there are additional
terms allowed by symmetry, e.g., biquadratic terms in density.
(For a review of microscopic derivation of such terms from
a weak-coupling two-band theory see Ref. 30.) However, the
impact of these terms on length scales and vortex physics in the
three-band model is essentially the same as in the well-studied
two-band case.16 Since their role is mostly connected with a
straightforward renormalization of the length scales, we do
not repeat this analysis here. Instead we focus primarily on
the Josephson couplings, which can play principally different
roles in two- and three-band cases.

Let us first discuss the simplest London approximation,
i.e., |ψ | = const. Then one can extract gradients of the

gauge-invariant phase differences by rewriting the model as

F = 1

2
∑

i=1,2,3 |ψi |2
[ ∑

i=1,2,3

|ψi |2∇ϕi + e
∑

i=1,2,3

|ψi |2A

]2

+ |ψ1||ψ2|
4
∑

i=1,2,3 |ψi |2 [∇(ϕ1 − ϕ2)]2

+ |ψ2||ψ3|
4
∑

i=1,2,3 |ψi |2 [∇(ϕ2 − ϕ3)]2

+ |ψ1||ψ3|
4
∑

i=1,2,3 |ψi |2 [∇(ϕ1 − ϕ3)]2

+
∑

i=1,2,3

∑
j>i

ηij |ψi ||ψj | cos(ϕi − ϕj ) + 1

2
(∇ × A)2.

(2)

The first term features the phase gradients coupled to the vector
potential: this corresponds to the total current in the system.
The rest of the terms correspond to counterflow of carriers in
different bands. Since there is no charge transfer in counter-
flows there is no coupling to gauge fields. In the limit ηij = 0,
the second, third, and fourth terms describe neutral super-
fluid modes with phase stiffnesses |ψi ||ψj |/[4

∑
i=1,2,3 |ψi |2]

which were studied in detail in Ref. 31. When Josephson terms
are present they break symmetry by giving preferred values to
the phase differences, yet the system can have fluctuations
near these values. After this illustration of phase fluctuations,
we discuss in the following the fluctuations within the full
Ginzburg-Landau model which involves fluctuations of both
phases and densities.

Systems with more than two Josephson-coupled bands
can exhibit phase frustration. For ηij < 0, a given Josephson
interaction energy term is minimal for zero phase difference
(we then refer to the coupling as “phase locking”), whereas
when ηij > 0 it is minimal for a phase difference equal to
π (we then refer to the coupling as “phase antilocking”).
Two-component systems are symmetric with respect to the
sign change ηij → −ηij as the phase difference changes
by a factor π , for the system to recover the same in-
teraction. However, in systems with more than two bands
there is generally no such symmetry. For example, if a
three-band system has η > 0 for all Josephson interactions,
then these terms cannot be simultaneously minimized, as
this would correspond to all possible phase differences being
equal to π .

III. GROUND STATE OF A THREE-BAND
SUPERCONDUCTOR

The ground-state values of the fields |ψi | and ϕij of system
(1) are found by minimizing its potential energy,

∑
i

{
αi |ψi |2 + 1

2
βi |ψi |4

}
+

∑
j>i

ηij |ψi ||ψj | cos(ϕij ). (3)

Minimizing potential energy equation (3) cannot in general be
done analytically. Yet, some properties can be derived from
qualitative arguments. In terms of the sign of the η’s, there are
four principal situations:
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Case Sign of η12,η13,η23 Ground-state phases
1 − − − ϕ1 = ϕ2 = ϕ3

2 − − + Frustrated
3 − + + ϕ1 = ϕ2 = ϕ3 + π

4 + + + Frustrated

Case 2 can result in several ground states. If |η23| �
|η12|, |η13|, then the phase differences are generally ϕij = 0.
If, on the other hand, |η12|, |η13| � |η23| then ϕ23 = π and ϕ12

is either 0 or π . For certain parameter values it can also have
compromise states with ϕij not being integer multiples of π .

Case 4 can give a wide range of ground states, as can be
seen in Fig. 1. As η12 is scaled, ground-state phases change
continuously from (−π, π, 0) to the limit where one band is
depleted and the remaining phases are (−π/2, π/2).

An important property of potential energy equation (3) is
that it is invariant under complex conjugation of the fields.
That is, the potential energy does not change if the sign of
all phase differences is changed, ϕij → −ϕij . Thus, if any
of the phase differences ϕij is not an integer multiple of
π , then the ground state possesses an additional discrete Z2

degeneracy. For example, for a system with αi = −1, βi = 1,
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FIG. 1. (Color online) Ground-state phases of the three com-
ponents as function of η12 (here ϕ3 = 0 fixes the gauge). The GL
parameters are αi = 1, βi = 1, and η13 = η23 = 3. For intermediate
values of η12 the ground state exhibits discrete degeneracy [symmetry
is U (1) × Z2 rather than U (1)] since the energy is invariant under the
sign change ϕ2 → −ϕ2, ϕ3 → −ϕ3. For large η12 we get ϕ2 − ϕ3 =
π , implying that |ψ3| = 0, and so there is a second transition from
U (1) × Z2 to U (1) and only two bands at the point (d). Here, the
phases were computed in a system with only passive bands, though
systems with active bands exhibit the same qualitative properties
except for the transition to U (1) and two bands only (i.e., active
bands have nonzero density in the ground state).

and ηij = 1, two possible ground states are given by ϕ12 =
2π/3, ϕ13 = −2π/3 or ϕ12 = −2π/3, ϕ13 = 2π/3. Thus, in
this case, the symmetry is U (1) × Z2, as opposed to U (1).
As a result, like any other system with Z2 degeneracy, the
theory allows an additional set of topological excitations:
domain walls interpolating between the two inequivalent
ground states. Under certain conditions the system also does
allow composite topological excitations which are bound states
of closed-domain walls and vortices.32

We are interested in determining quantitatively (i) the
ground-state densities and phase differences and (ii) the
characteristic length scales at which a perturbed field recovers
its ground-state values. These quantities are derived from
a perturbative expansion around the ground state. Consider
the following expansion of the fields entering the Ginzburg-
Landau free-energy functional Eq. (1), around the ground state:

ψi = [ui + εi(r)] exp {i[ϕ̄i + φi(r)]} ,
(4)

A =
(

a(r)

r

)
(sin θ, cos θ ).

The ground-state densities and phases are denoted ui and ϕ̄i ,
respectively. Since we are interested in vortex excitations, we
consider an axially symmetric configuration by requiring that
the field fluctuations εi(r), φi(r), and a(r) depend only on
the radial coordinate. The expansion equation (4) is inserted
into the free energy equation (1) which is then sorted by
growing orders in the fluctuations, namely F = F (0) + F (1) +
F (2) + · · ·. The condensation energy is given by F (0).

A. Ground state

The ground state can be represented by the vector of the
zero-order degrees of freedom of Eq. (4),

γ (0) = (u1,u2,u3,ϕ̄1,ϕ̄2,ϕ̄3)T . (5)

The fluctuation amplitudes are collected in the six-entry vector

γ (1) = (ε1,ε2,ε3,φ1,φ2,φ3)T . (6)

The gauge field fluctuation a decouples from the other
fluctuations. The term in the GL free energy which is linear in
the fluctuations reads

F (1) =
∑

i

2uiεi

(
αi + βiu

2
i

) +
∑
j>i

ηij (uiεj + ujεi) cos ϕ̄ij

+
∑
j>i

ηijuiuj (φj − φi) sin ϕ̄ij , (7)

where ϕ̄ij denote phase differences of the ground state.
Equation (7) is a linear (in the fluctuations) system of six
equations. Since we consider fluctuations near the ground
state it has to be zero for any arbitrary fluctuation. Indeed, by
definition, no fluctuation can decrease the energy of the ground
state. Positive definiteness implies that all the prefactors of the
fluctuations are zero. Thus expanding Eq. (7) and collecting
the prefactors of the fluctuation amplitudes gives the system
of six equations which determine the ground-state vector
γ (0) = (u1,u2,u3,ϕ̄1,ϕ̄2,ϕ̄3)T . The system reads explicitly

0 = α1u1 + β1u
3
1 + η12

2
u2 cos ϕ̄12 + η13

2
u3 cos ϕ̄13, (8a)

0 = α2u2 + β2u
3
2 + η12

2
u1 cos ϕ̄12 + η23

2
u3 cos ϕ̄23, (8b)
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0 = α3u3 + β3u
3
3 + η13

2
u1 cos ϕ̄13 + η23

2
u2 cos ϕ̄23, (8c)

0 = −η12u1u2 sin ϕ̄12 − η13u1u3 sin ϕ̄13, (8d)

0 = η12u1u2 sin ϕ̄12 − η23u2u3 sin ϕ̄23, (8e)

0 = η13u1u3 sin ϕ̄13 + η23u2u3 sin ϕ̄23. (8f)

Except under very specific conditions this cannot be solved
analytically. In this paper we aim at the most general structure
of the ground state, so no further assumptions are made and
the problem is solved using numerical methods (we here used
the Newton-Raphson algorithm). For numerical calculations
of the ground-state values of the fields, it is convenient to fix
the gauge by, for example, imposing ϕ̄1 = 0.

B. Length scales

Once the ground state γ (0) is known, relevant information
about the physics of the system can be extracted from the
quadratic order F (2) of the fluctuation expansion (note that
this is equivalent to considering linearized GL equations).
The fluctuations are described by a system of Klein-Gordon
equations for the six condensate fluctuations (three densities
plus three phases), supplemented by a Proca field equation
which describes fluctuations of the gauge field. For studying
the system it may be convenient to switch to a slightly different
basis,

γ (1) = (ε1,ε2,ε3,π1,π2,π3)T , where φi ≡ πi

ui

, (9)

since in this basis, the (squared) mass matrix of the Klein-
Gordon system is symmetric. The results are straightforwardly
switched back to the basis φ. The total functional at this order
reads

F (2) = EKlein−Gordon + EProca, (10)

where

EKlein−Gordon ≡ 1

2
(γ (1) ′)2 + γ (1)M2γ (1),

(11)

EProca ≡ 1

2

(
a′

r

)2

+ e2

2

∑
i

u2
i a.

Here the prime denotes differentiation with respect to the radial
coordinate r . The (squared) mass matrix M2 of the Klein-
Gordon system can easily be read from

γ (1)M2γ (1) =
∑

i

ε2
i

(
αi + 3βiu

2
i

) +
∑
j>i

ηij εiεj cos ϕ̄ij

+
∑
j>i

ηij

{
(uiεj + ujεi)

(
πj

uj

− πi

ui

)
sin ϕ̄ij

− uiuj

2

(
πj

uj

− πi

ui

)2

cos ϕ̄ij

}
, (12)

simply by identifying the prefactors of the perturbations and
filling the corresponding entries in the mass matrix. Before
discussing in detail this mass matrix, let us consider the Proca
equation, for the mass of the gauge field. It is the easiest length
scale to derive, since the Proca equation for the gauge field
fluctuation Eq. (11) decouples from all others. The London

penetration depth of the magnetic field λ is the inverse mass
of the gauge field, namely

λ ≡ 1

mProca
= 1

e

√∑
i u

2
i

. (13)

Length scales associated with condensate degrees of freedom
are obtained in a more complicated way. Indeed they are given
by the eigenvalue spectrum of a system of six coupled (static)
Klein-Gordon equations, whose (squared) mass matrix M2 is
derived from Eq. (12). It may be instructive to obtain this mass
matrix explicitly. First of all, let us remark that fluctuations
can be separated into two groups, the “density amplitude”
�f = (f1,f2,f3)T and the “normalized phase amplitudes” �π =

(π1,π2,π3)T . This mass matrix is a real symmetric matrix,
which is not diagonal and whose eigenvalues are the (squared)
masses of the normal modes. The eigenspectrum ofM2 defines
the (squared) masses of the physical modes. The inverse of
each of the masses gives the characteristic length scales of the
theory. For example, in a single-component theory the inverse
mass of the fluctuations of the modulus of the order parameter
|ψ | is the coherence length (up to a factor of

√
2). In a

two-component theory the fluctuations in the phase difference
(the Leggett mode) are characterized by a mass, the inverse
of which sets the length scale at which a perturbed phase
difference recovers its ground-state values. In two-component
models the density modes are mixed: i.e., the characteristic
length scales of the density fields are associated with the linear
combinations of the fields.10,14,16 Physically this means that
disturbing one density field necessarily perturbs the other. It
also implies that, say in a vortex, the long-range asymptotic be-
havior of both density fields is governed by the same exponent,
corresponding to a mixed mode with the lowest mass.

We see that in the three-component case a new situation can
arise where different collective modes are possible which are
associated with mixed density and phase modes. In the basis
( �f ,�π ), the (squared) mass matrix can be written in terms of
four submatrices

γ (1)M2γ (1) = ( �f ,�π )

(
Mff Mf π

Mπf Mππ

)( �f
�π

)
. (14)

Where Mff and Mππ are the self-coupling of density and phase
fluctuations, while Mf π and Mπf blocks control the mixing of
density modes and phase modes.

Mff =

⎛
⎜⎝

α1 + 3β1u
2
1 η̄12 η̄13

η̄12 α2 + 3β2u
2
2 η̄23

η̄13 η̄23 α3 + 3β3u
2
3

⎞
⎟⎠ ,

Mππ = −1

2

⎛
⎜⎝

2 u2η̄12+u3η̄13

u1
−η̄12 −η̄13

η̄12 2 u1η̄12+u3η̄23

u2
−η̄23

−η̄13 −η̄23 2 u1η̄13+u2η̄23

u3

⎞
⎟⎠ ,

Mf π = MT
πf =

⎛
⎜⎝

− η̂12u2+η̂13u3

u1
η̂12 η̂13

−η̂12
η̂12u1−η̂23u3

u2
η̂23

−η̂13 −η̂23
η̂13u1+η̂23u2

u3

⎞
⎟⎠ ,

(15)
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where for more compact expression we introduce new nota-
tions η̄ij = ηij

2 cos ϕ̄ij and η̂ij = ηij

2 sin ϕ̄ij . Finally in order
to derive the length scales associated with the condensate
fluctuations, one has to diagonalize the matrix M2. Its
eigenspectrum is the set of six squared masses M2

i , whose
corresponding lengths �i = 1/Mi are the physical length
scales of a three-band superconductor. In Appendix A we also
show how these length scales are expressed in different units.
There is a spontaneously broken U (1) symmetry associated
with the simultaneous equal changes of all phases. The mass
of this mode is zero and the eigenvector associated with this
U (1) zero mode can easily be decoupled. Thus one can reduce
the size of the system. However, we prefer not to decouple this
mode from the mass spectrum, since it provides a measure of
the error of the numerical resolution of masses of other modes.
The corresponding degree of freedom is described by the first
term in Eq. (2); it is a U (1) Goldstone boson which, due to
its coupling to the gauge field A, yields a massive vector field
with the mass mProca via the Anderson-Higgs mechanism.

Unfortunately the eigenbasis of M2 cannot be known
analytically, in the general case. We calculate it numerically
below.

C. Numerical results

Figure 2 shows the ground state, eigenspectrum, and
eigenvectors of the (squared) mass matrix in a frustrated
three-band superconductor as a function of the Josephson
couplings. The coupling η12 is fixed, while the horizontal axis
gives the coupling coefficients η13 and η23. Each eigenvector is
a linear combination of the degrees of freedom that make up a
physical mode, for which variation length scale is given by the
square root of the inverse of the corresponding eigenvalue
in the eigenspectrum. The system crosses over from U (1)
to the U (1) × Z2 TRSB state at η13 = η23 ≈ −3.69. In the
U (1) regime, the density modes are mixed. However, as can
be seen from the eigenvectors, there is no mixing between
density modes and the phase modes. Thus, perturbations of the
densities and of the phases recover independently of each other.
The fluctuations of the phase modes are the three-component
generalization of the standard Leggett modes. In the U (1) × Z2

regime the situation is the opposite, and all eigenvectors
are mixed in density and phase. This indicates that any
perturbation of the densities creates a perturbation to the
phases, and vice versa.

There is a point where a Leggett mode becomes massless,
as was also pointed out recently in the phase-only model in
Ref. 27. This occurs at the transition from U (1) to U (1) × Z2

(note however that the transition between these states can be
first order as discussed in Ref. 21). In Fig. 2(c), eigenvalue 5
does indeed go to zero, indicating that the mass vanishes. The
corresponding eigenvector can be seen in Fig. 2(h). In the U (1)
regime it corresponds to perturbation of phases 1 and 2. The
physical implication is that the recovery of a perturbation at this
point is governed not by an exponential, but by a power law. It
is only a point in the parameter space where this mass is zero.
However, there is a finite area in the parameter space around
that point where, although the mode is massive, the length
scale associated with it is anomalously large as a consequence
of the frustration between Josephson couplings.

IV. VORTEX MATTER IN THREE-BAND TYPE-1.5
SUPERCONDUCTORS

A. Topological defects in three-band Ginzburg-Landau model

Let us start by outlining the basic properties of the vortex
excitations. In case of a [U (1)]3 Ginzburg-Landau model (i.e.,
when ηij = 0) there are three “elementary” vortex excitations
associated with 2π winding in only one of the phases:∮
σ

∇ϕi = 2π , where σ is a closed path around a vortex core.
Such a vortex carries a fraction of flux quantum, as can be seen
from the following argument:31,33 the supercurrent in the case
when there is a phase winding in only one phase is

Ji = ie

2
[ψ∗

i ∇ψi − ψi∇ψ∗
i ] − e2

∑
k

|ψk|2A. (16)

Expressing A via gradients and choosing the contour σ far from
the vortex core gives the following equation for the magnetic
flux:

�i =
∮

σ

Adl = u2
i∑

k=1,2,3 u2
k

1

e

∮
σ

∇φi

= u2
i∑

k=1,2,3 u2
k

�0, (17)

where �0 is a flux quantum. Such a fractional vortex in
the [U (1)]3 case has logarithmically divergent energy. Thus
in the external field a bulk three-component superconductor
should form “composite” integer flux vortices which have
phase winding in all components:

∮
σ

∇ϕ1 = 2π ,
∮
σ

∇ϕ2 =
2π ,

∮
σ

∇ϕ3 = 2π . When Josephson coupling is nonzero, then
the energy of a fractional vortex diverges linearly33 and thus
a single integer flux vortex in a bulk superconductor can be
viewed as a strongly bound state of three cocentered fractional
flux vortices. Note that such a bound state will in general
have three different sizes of vortex cores. The characteristic
length scales of the density recovery in the vortex cores are
determined by the inverse masses of normal modes calculated
above. Note also that the role of Josephson interaction on
vortices is different in the presence of domain walls in three-
band U (1) × Z2 superconductors. Immediately at the domain
wall the Josephson terms have energetically unfavorable values
of the phase differences. Thus, if a composite vortex is placed
on such a domain wall, the Josephson interaction can force a
splitting of this vortex into fractional flux vortices, because the
splitting will allow to attain a more favorable configuration of
the phase differences.32

B. Qualitative argument on the vortex states in frustrated
three-band superconductors

The ground state of a phase-frustrated superconductor
is in many cases nontrivial, with phase differences being
compromises between the various interaction terms. Inserting
vortices in such a system can shift the balance between
different competing couplings, since vortices can in general
have different effects on the different bands. In particular,
since the core sizes of vortices are not generally the same
in all bands, vortex matter will typically deplete some
components more than others and thus can alter the preferred
values of the phase difference. So the minimal potential
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FIG. 2. (Color online) Ground state, eigenspectrum, and eigenvectors of the mass matrix. The x axis gives the two parameters η13 = η23

while the other parameters are α1 = −3, β1 = 3, α2 = −3, β2 = 3, α3 = 2, β3 = 0.5, and η12 = 2.25. The eigenvectors are sorted according
to corresponding eigenvalue, starting with the largest. The smallest eigenvalue is the zero mode associated with the spontaneously broken
U (1) symmetry. At η13 = η23 ≈ −3.69 there is a transition from U (1) to U (1) × Z2. Eigenvalue 5 (c) becomes zero at the transition point,
so there appears a divergent length scale at this point which corresponds to the eigenvector in (h); i.e., the phase difference mode becomes
a scaleless collective excitation. Observe that, in the U (1) region, the eigenvectors exhibit no mixing between densities and phases, whereas
in the U (1) × Z2 region there is in fact not a single eigenvector that is not a mixing of phases and densities. Then, perturbations of
densities are generically associated with perturbations of the phase differences in this regime. Arrows in (g) and (h) illustrate the variation of
the fields associated with the corresponding collective modes. Length of the arrows corresponds to modulus fluctuation and the direction of the
arrow corresponds to phase fluctuation. Order parameter of component 1 in red, component 2 in blue and component 3 in black.

energy inside a vortex lattice or cluster may correspond to
a different set of phase differences than in the vortexless
ground state. In this section we give a qualitative description
of it, using an ansatz-based argument. In the following section
we study this question numerically without involving an
ansatz.

The qualitative argument is as follows. Consider the phase-
dependent potential terms in the free-energy equation, Eq. (1),

which are of the form

ηijuiujfi(r)fj (r) cos (ϕij (r)), (18)

where ui are ground-state amplitudes and each fi(r) represents
an ansatz which models how superfluid densities are modu-
lated due to vortices. Consider now a system where N vortices
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are uniformly distributed in a domain �. The phase-dependent
part of the free energy is

Uϕ =
[ ∑

i>j

ηijuiuj

] ∫
�

drfi(r)fj (r) cos(ϕij (r)). (19)

If ϕij is varying slowly in comparison with the intervortex
distance, then it can be considered constant in a uniform
distribution of vortices (as a first approximation). In that case
Eq. (19) can be approximated by

Uϕ�
∑
ij

η̃ij uiuj cos(ϕij ), where η̃ij=ηij

∫
�

drfi(r)fj (r).

(20)

If, on the other hand, ϕij varies rapidly, then it is not possible to
define η̃ij without a spatial dependence. Then ϕij will depend
on η̃ij (r), which is related to the local modulation functions
fifj and varies with a length scale given by the mass matrix
Eq. (12).

Thus, η̃ is the effective interband interaction coupling
resulting from density modulation. Since, in general, fi �= fj

(unless the two bands i,j are identical), one must take into
account the modulation functions fi when calculating the
phase differences. In particular, if the core size in component i

is larger than in component j , then
∫

drfifk <
∫

drfjfk and
therefore the phase differences ϕij minimizing Eq. (20) depend
on fi and, consequently, on the density of vortices. Roughly
speaking, introducing vortices in the system is equivalent to a
relative effective decrease of some of the Josephson coupling
constants.

Because the problem is nonlinear, the modulation functions
fi generally depend on ϕij since the vortex core shape depends
on the interband interactions. As a result, an exact solution
to this problem can only be found by numerical methods.
Below we address this problem by finding numerically vortex
cluster solutions. Some qualitative statements can nonetheless
be made about these systems:

(i) If band i is associated with larger vortex cores than
band j , then, with increasing density of vortices, the effective
Josephson coupling η̃ik is depleted faster than η̃jk .

(ii) The average intercomponent phase difference in a
vortex cluster depends on the parameters η̃ij . So the intercom-
ponent phase differences inside a vortex cluster can be dif-
ferent from the vortexless ground state. Superconductors with
U (1) × Z2 symmetry and disparity of core sizes will therefore
generally exhibit perturbation of the phase differences due to
vortices.

(iii) The symmetry of the system depends on the in-
terband interactions, so vortex matter can induce a phase
transition between U (1) and U (1) × Z2 states or vice
versa.

This physics depends on the spatial distribution of vortices
in the system.

If vortices are uniformly distributed in the sample, as is
generally the case in clean type-2 superconductors, then the
effective interband interaction strengths η̃ij are depleted in
the same way everywhere in the sample. A change in broken
symmetry U (1) → U (1) × Z2 would then occur in the whole
system at a certain value of applied external field.

It also opens a possibility of a type-1.5 regime qualitatively
different in three-band systems than in their two-band counter-
parts. Indeed, because of the nonmonotonic interactions, the
superconductor possesses macroscopic separation of Meissner
domains and vortex clusters. In the three-band case, these
phases can exhibit different broken symmetries, for example,
Meissner domains with the U (1) symmetry and vortex clusters
having a different symmetry, U (1) × Z2. The U (1) × Z2

broken symmetry arises here because of the renormalization
by vortices of the effective coupling constants η̃ij . If there
is a symmetry change U (1) → U (1) × Z2 associated with
vortex clusters in the system then there will be two kinds of
vortex clusters corresponding to Z2 states. They will coexist
with the Meissner state voids which do not have the broken
Z2 symmetry. Clearly, because of this additional discrete
symmetry, intercluster interaction should generally be affected
by whether the clusters are in the same or in different Z2

states. When the magnetic field increases, vortex clusters will
merge and the entire system will be in the state with broken
U (1) → U (1) × Z2 symmetry.

C. Numerical results

We used numerical computations to examine the questions
which were raised about vortex matter in the previous sections.
The free-energy functional in Eq. (1) is minimized in the
presence of vortex matter. In these simulations the variational
problem was defined using a finite-element formulation
provided by the FREEFEM++34 library framework, using a
nonlinear conjugate gradient method. Readers interested in
more technical details can refer to Appendix B. From these
numerical data, several observations about vortex matter in
three-band systems can be made.

1. Vortex clusters with broken Z2 symmetry

We have simulated vortex clusters in a type-1.5 regime
in the system given in Fig. 2 for η13 = η23 = −3.7, i.e., in
the U (1) region but close to the transition to broken time-
reversal symmetry. Thus, if the vortex core size in component
3 is larger than in bands 1 and 2, then we should expect the
breakdown of time-reversal symmetry for a sufficiently high
density of vortices. Figure 3 shows that this is indeed the
case. In the ground state, all phases are equal (ϕ̄1 = ϕ̄2 =
ϕ̄3), but, once vortex clusters are present, these phases are
no longer preferable and two other equivalent phase-locking
states develop. As the density of the third band is depleted,
phase differences come to be increasingly dominated by the
interband coupling between the two other bands. This coupling
term is not minimal for ϕ1 = ϕ2.

2. Long-range intervortex forces

Vortex matter in this system is associated with substan-
tial variations of the intercomponent phase differences. As
discussed above, in the three-band system there is a phase-
difference mode that becomes and less and less massive as we
approach the transition to a TRSB state. Thus, in the vicinity
of this point the mass of the corresponding mode can be very
small and then characteristic lengths of its variation very large.
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FIG. 3. (Color online) Vortex cluster exhibiting an internal Z2 state in a frustrated three-band superconductor, showing (a) the magnetic
field, and the densities of the different condensates are (b) |ψ1|2, (c) |ψ2|2, and (d) |ψ3|2. To monitor the relative phase differences, we use (e)
|ψ1||ψ2| sin(ϕ12), (f) |ψ1||ψ3| sin(ϕ13), and (g) |ψ2||ψ3| sin(ϕ23). (h) The energy density and the supercurrents in each condensate, (i) J1, (j)
J2, and (k) J3, are shown. The GL parameters used for this simulation are α1 = −3, β1 = 3, α2 = −3, β2 = 3, α3 = 2, β3 = 0.5, η12 = 2.25,
η13 = −3.7, η23 = −3.7. Thus, they correspond to the U (1) region in Fig. 2, but close to the transition point to U (1) × Z2 symmetry. In
the ground state, all the phases are locked (ϕ̄1 = ϕ̄2 = ϕ̄3) as a consequence of the Josephson couplings η12 = η13 = −3.7 dominating the
interaction. Inside the vortex cluster the third condensate is depleted, so the coupling terms ηi3|ψi ||ψ3| cos(ϕi3), {i = 1,2}, become much
weaker while the term |ψ1||ψ2|η12 cos(ϕ12) becomes dominant. In sufficiently dense vortex matter, the ground state is changed due to the
dominating antilocking interaction between components 1 and 2. This results in a U (1) × Z2 state inside the vortex cluster, as can be seen
from the phase-difference plots (e–g). (Note that in the very center of the vortex cluster this quantity is small because of small values of the
prefactors |ψi ||ψj |.) A closer inspection of (b) and (c) reveals that vortex cores in both densities do not necessarily superimpose [which can
also be seen from the supercurrents in (i) and (j)] and so they are fractional vortices. This fractionalization occurs at the boundary of the cluster,
while the vortex in the middle is a composite one-quantum vortex.

This provides an additional mechanism that can lead to vortex
interactions at very large distances. Figure 4 displays the same
system as in Fig. 3, but with two vortex clusters rather than
one. A clearly visible perturbation of the phase differences
extends from the clusters well outside the region with magnetic
field and far beyond the area with significant density sup-
pression, providing a mechanism for long-range intercluster
interaction.

3. Vortex fractionalization in clusters

Figures 3 and 4 also exhibit flux fractionalization. As
previously mentioned, the model in Eq. (1) allows fractional

vortex solutions, where only one of the phases ϕi winds 2π

around some point while the rest do not. The flux carried by
a single fractional vortex is given by Eq. (17). Two forces
hold fractional vortices together as a one-quantum composite
vortex in the three-component model. First is the interaction
with the gauge field, which gives logarithmic interaction
at long range.31,33 The second is the Josephson coupling,
which is asymptotically linear. In nonfrustrated supercon-
ductors the Josephson coupling gives attractive interaction
between fractional vortices, but in frustrated systems this
interaction can be repulsive, resulting in fractionalization of
vortices.32
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FIG. 4. (Color online) Interacting vortex clusters with internal Z2 symmetry in a frustrated superconductor. The figure represents a state
where the energy is well minimized with respect to all variables except the relative positions of the weakly interacting well-separated clusters.
The GL parameters and displayed quantities and panel labels are the same as in Fig. 3. The analysis of the eigenvalues in Fig. 2 shows that there
is a mode with a very small mass, associated with the eigenvector [0,0,0,1,−1,0]. It corresponds to the mode associated with phase-difference
fluctuations and it has the largest recovery length scale. This is indeed visible in (e–g). The phase difference ϕ12 (e) recovers much more slowly
than the magnetic field (a) and the condensate densities (b–d). Clusters clearly interact at a distance greatly exceeding the length scales of
density modulation and the magnetic penetration depth, as this mode stretches out between them.

Consider the system in Figs. 3 and 4. The ground state
corresponds to ϕ̄1 = ϕ̄2 = ϕ̄3. Since there is an energy cost
associated with gradients of the phase difference, these are
expected to change slowly. Thus, far away from the cluster,
the state is simply the ground state. Deep inside the cluster,
phase differences attain a broken U (1) × Z2 state, depending
on the density of the vortex matter. If the vortex density is
very high, then |ψ3| is very small, and we expect inside the
cluster ϕ12 → π (provided that the cluster is large). While ϕ12

varies slowly, the density in |ψ3| recovers more rapidly at the
boundary of the cluster. Thus, there may be an area where
|ϕ12| < π/2 while |ψ3| is small. Consequently the interaction
between fractional vortices in bands 1 and 2 due to Josephson
coupling is repulsive in this area. Also when the magnitude
|ψ3| is very small or zero, the Josephson interband coupling
ψ23 and ψ13 which provides attractive interaction between the

fractional vortices is weaker or essentially disappears. Thus,
the interaction of the fractional vortices is governed by the
coupling to the gauge field, which gives attractive interaction,
and the remaining Josephson coupling, which in this case gives
repulsive interaction. As a result, in that region the integer flux
vortices split into fractional ones.

This effect is found in numerical simulations of vortex
clusters. Looking carefully at Figs. 3 and 4 we can see that
the vortex cores in bands 1 and 2 do not generally coincide.
From Figs. 3(g) and 4(g) we can read that, at the boundary
of the cluster, the phase difference between components 1
and 2 is given by |ψ1||ψ2| sin(ϕ12) ≈ −0.7 → |ϕ12| ≈ 0.5 →
cos(ϕ12) ≈ √

3/2 > 0. Thus, in that region, the Josephson
term associated with components 1 and 2 gives a positive
energy contribution resulting in repulsive interaction between
fractional vortices in components 1 and 2 leading to the
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FIG. 5. (Color online) A vortex cluster surrounded by a π wall. Here again displayed quantities and panel labels are the same as in Fig. 3.
The GL parameters are α1 = −1, β1 = 1, α2 = 1, β2 = 0.5, α3 = 3, β3 = 0.5, η12 = −2, η13 = 2.7, and η23 = −4. In the ground state, the
phases are locked (ϕ̄1 = ϕ̄2 = ϕ̄3), but frustration occurs as η13 = 2.7 gives an antilocking interaction (i.e., the term |ψ1||ψ3|η13 cos(ϕ13) is
minimal for ϕ13 = π ). As vortices are introduced in the system, the superfluid densities are depleted. It is clear from visual inspection that the
vortices in the second band are larger than those of the first. Thus, the effective coupling η̃23 decreases faster than η̃13 and so inside the vortex
cluster the preferred phase becomes ϕ1 = ϕ2 = ϕ3 + π . Since the third band has much smaller density than the other bands, the energetically
cheapest way of coping with this is to create a domain-wall-like object where |ψ3| becomes very small. It does not cost much energy to have
a large phase gradient density, so that ψ3 quickly picks up a π shift in its phase. As a result the density of |ψ3| is suppressed not only in the
vortex cores but also in a ring surrounding the vortex cluster as can be clearly seen in (d).

fractionalization of vortices. Indeed, fractionalization occurs
for all vortices except those in the center of the large eight-
or nine-quanta clusters. We observe in large systems that
fractionalization is important at the boundary of the clusters
and becomes less pronounced for vortices located deep inside.
The magnetic field is significantly smeared out as a result of
this fractionalization.

The fractionalization at the cluster’s boundary has a similar
origin as the physics which stabilizes topological solitons in the
TRSB states in three-band superconductors.32 The difference
is however that the topological solitons discussed in Ref. 32 are
stable bound states of Z2 domain walls and fractional vortices,
while here there is not a Z2 domain wall, but fractionalization
comes as a result of complicated behavior of the fields at
a cluster boundary which is an interface between U (1) and
U (1) × Z2 states.

4. π walls

Another phenomenon associated with frustrated supercon-
ductors are objects which we term “π walls.” In certain
parameter regions, vortices and vortex clusters are surrounded
by a domain-wall-like object with substantially suppressed
density, across which the phase of one of the condensates
jumps by π .

An example of such an object is displayed in Fig. 5. The
density in the third band is small in comparison to the other
bands. The Josephson coupling η12 = −2 results in locked
phases ϕ12 = 0. The system is frustrated, since η23 = −4,
preferring phase locking with respect to ϕ23, and η13 = 2.7,
preferring phase antilocking with respect to ϕ13. When there
are no vortices in the system, the term |ψ2||ψ3|η23 cos ϕ23

dominates over |ψ1||ψ3|η13 cos ϕ13, and the ground state is
ϕ̄1 = ϕ̄2 = ϕ̄3. However, when vortices are present in the
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FIG. 6. (Color online) A single vortex in a system exhibiting π -wall solutions. The interband coupling coefficients are η12 = −2, η13 = 2.7,
and η23 = −4. Displayed quantities here are (a) the magnetic flux and densities of each condensate (b) |ψ1|2, (c) |ψ2|2, and (d) |ψ3|2; (e) total
energy density and supercurrents (f) J1, (g) J2, and (h) J3; and (i) phase difference ϕ13. The parameters of the system are identical to those
given in Fig. 5. The π wall can be seen from the double dip in density of the third band as can be seen in (j), as well as from the phase difference
plotted in (i). Thus, ψ3 is zero in the center, it recovers slightly, and then it drops again on a circular area at a certain distance from the vortex
center. At the second drop, the phase ϕ3 picks up an extra phase π , as can be seen from the plot of ϕ13 in (i).

system, this is not necessarily the case. The vortex cores
in the second band are larger than those of the first and,
consequently, the effective coupling strength η̃23 is diminished
at a higher pace than η̃13. Thus, inside a vortex cluster, the
potential energy is minimal when ϕ13 = ϕ23 = π . To comply
with these requirements, the system forms a domain-wall-like
object where |ψ3| drops, and ϕ picks up an extra phase of π .
For this particular set of parameters, this in fact happens even
for a single vortex, as can be seen in Fig. 6.

V. CONCLUSIONS

Recently there has been a growing interest in three-
band superconductivity sparked by the discovery of the iron
pnictide superconductors. The precise information about the
characteristic parameters for these materials is not known yet.

Also the current experiments suggest that the physics of vortex
ordering patterns in currently available samples is substantially
affected by strong pinning.35–40 We presented here a general
study showing that in a three-band system there are many
phenomena which are not present in two-band models. As
was previously observed,20–24,27 in the presence of more than
two bands, a system can exhibit frustration between different
competing interband Josephson terms. We considered possible
physical consequences using a three-band Ginzburg-Landau
model. To observe this physics in experiment in fact does not
necessarily require a three-band superconductor but it would
be sufficient to have a superconductor with phase-antilocking
Josephson interaction (i.e., η > 0). Then, as was observed
in Refs. 20 and 21, a phase-frustrated state can be induced
in a Josephson-coupled bilayer made of this and single-band
superconductors. The case of the Josephson couplings is just
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real-space interlayer coupling. Thus, it provides an opportunity
to tune its value.

We discussed that this can result in the appearance of modes
with very long characteristic length scales even when the
interband Josephson coupling is strong. Here we also discussed
that in the TRSB U (1) × Z2 state of the three-band Ginzburg-
Landau model there are no “phase-only” Leggett modes, but
instead the system has different mixed phase-density collective
modes which involve both phase and density fluctuations. The
physics of the coupled modes and associated different length
scales substantially affects vortex matter in the system. The
vortices can interact at distances much larger than the length
scale of magnetic field localization or the length scale at which
most of the condensate density is recovered, because of the ex-
istence of slowly varying phase difference and low-mass mixed
density modes. This can give rise to nonmonotonic intervortex
interaction and type-1.5 regimes in systems where it would not
be expected. In particular, if a large-κ parameter is estimated
from the second critical field of the system, then this does not
prohibit the existence of modes with length scales that substan-
tially exceed the penetration depth even at strong Josephson
coupling.

Moreover, the competing interactions can qualitatively
affect the vortex structure as well. We showed the existence of
a vortex solution where density not only is suppressed in the
core but also takes a second dip in some beltlike area around
the vortex core or around the vortex cluster. Such features
can in principle be detected in scanning tunneling microscopy
measurements.

Furthermore, we showed that subjecting a three-band
system to an external field which induces vortices can shift
the balance in competing interactions and result in change of
the ground-state symmetry. In type-2 systems where vortices
are uniformly distributed, changes in the phase difference will
also occur quite uniformly; there could be a phase transition
between U (1) and U (1) × Z2 states resulting from an applied
magnetic field. In the case of type-1.5 superconductivity,
systems will feature not only macroscopic phase separation
between vortex clusters and domains of Meissner state but
also a macroscopic phase separation between the domains
of U (1) and U (1) × Z2 ground states. The transition from
the semi-Meissner to vortex states in that case will then
be associated with change of the symmetry from U (1) to
U (1) × Z2.
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APPENDIX A: UNIT SYSTEM

The Ginzburg-Landau free energy equation, Eq. (1), is
written after suitable rescaling. Below we give details of
these rescalings in order to define the various quantities in the
usual dimensionful theory. In the following, let us denote the

usual dimensionful quantities with a hacek over the variable.
Consider the following:

F̌ = h̄2c2

4π
F, ψ̌i =

√
m̌c2

4π
ψi, Ǎ = −h̄cA,

(A1)

α̌i = h̄2

m̌
αi, β̌i = 4πh̄2

m̌2c2
βi, η̌ij = h̄2

m̌
ηij ,

where c is the speed of light and h̄ is the reduced Planck
constant; then we convert the free-energy equation, Eq. (1), to

F̌ = 1

8π
(∇ × Ǎ)2 +

∑
i=1,2,3

h̄2

2m̌
|Ďψ̌i |2

+
∑

i=1,2,3

α̌i |ψ̌i |2 + 1

2
β̌i |ψ̌i |4

+
∑

i=1,2,3

∑
j>i

η̌ij |ψ̌i ||ψ̌j | cos(ϕij ). (A2)

Here Ď = ∇ − i e
h̄c

Ǎ and m̌ is the mass of the Cooper pairs.
This rescaling is also applied to the perturbative expansion

of the problem, Eq. (4), so that the Klein-Gordon system
becomes

ĚKlein−Gordon ≡ h̄2

2m̌
(γ̌ (1) ′)2 + γ̌ (1)M2γ̌ (1), (A3)

and then, (dimensionful) length scales of the massive modes
of the condensate are

ξ̌i =
√

2h̄2

m̌

1

Mi

. (A4)

In the U (1) × Z2 regime, since all the modes are mixed, the
length scales ξi then are related to inverse masses of the modes.

London penetration depth is defined through the Proca
equation of the gauge field, which reads now in the dimen-
sionful system as

ĚProca ≡ 1

8π

(
ǎ′

r

)2

+ e2 ∑
i ǔ

2
i

2m̌c2
ǎ. (A5)

London penetration depth, which gives the exponential decre-
ment of the magnetic field in the superconductor, then
reads

λ̌2 = m̌c2

4πe2
∑

ǔ2
i

. (A6)

APPENDIX B: NUMERICAL METHODS:
FINITE-ELEMENT ENERGY MINIMIZATION

We provide here a detailed description of the numerical
methods which are used to construct vortex solutions in three-
component Ginzburg-Landau models. They are constructed
by minimizing the free-energy equation, Eq. (1), from an
appropriate initial guess carrying several flux quanta. We
consider the two-dimensional problem F = ∫

�
Fdx2 defined

on the bounded domain � ⊂ R2, supplemented by an “open”
boundary conditions on ∂�. This “open constraint” is a
particular Neumann boundary condition such that the normal
derivative of the fields on the boundary is zero. These
boundary conditions in fact are a very weak constraint.
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For this problem one could also apply Robin boundary
conditions on ∂�, so that the fields satisfy the linear asymptotic
behavior (exponential localization) in Eq. (11). However, we
choose to apply the open boundary conditions which are
less constraining for the problem in question. Open boundary
conditions also imply that vortices can easily escape from the
numerical grid, since it would further minimize the energy.
To prevent this, the numerical grid is chosen to be large
enough so that the attractive interaction with the boundaries
is negligible. The size of the domain is then much larger than
the typical interaction length scales. Thus, in this method one
has to use large numerical grids, which is computationally
demanding. At the same time the advantage is that it is
guaranteed that obtained solutions are not boundary pressure
artifacts.

The variational problem is defined for numerical com-
putation using a finite-element formulation provided by the
FREEFEM++ library.34 Discretization within the finite-element
formulation is done via a (homogeneous) triangulation over
�, based on the Delaunay-Voronoi algorithm. Functions are
decomposed on a continuous piecewise quadratic basis on each
triangle. The accuracy of such a method is controlled through
the number of triangles (we typically used 3–6 × 104), the
order of expansion of the basis on each triangle (P2 elements
being of second-order-polynomial basis on each triangle), and
also the order of the quadrature formula for the integral on the
triangles.

Once the problem is mathematically well defined, a nu-
merical optimization algorithm is used to solve the variational
nonlinear problem (i.e., to find the minima of F). We used
here a nonlinear conjugate gradient method. The algorithm is
iterated until the relative variation of the norm of the gradient

of the functional F with respect to all degrees of freedom is
less than 1 × 10−6.

1. Initial guess

The initial field configuration carrying N flux quanta is
prepared by using an ansatz which imposes phase windings
around spatially separated N vortex cores in each condensate:

ψ1 = |ψ1|ei�, ψ2 = |ψ2|ei�+i�12 , ψ3 = |ψ3|ei�+i�13 ,

|ψj | = uj

Nv∏
i=1

√
1

2

[
1 + tanh

(
4

ξj

[Ri(x,y) − ξj ]

)]
,

A = 1

eR (sin �, − cos �) , (B1)

where j = 1,2,3 and uj is the ground-state value of each
superfluid density. The parameter ξj gives the core size while
� and R are

�(x,y) =
Nv∑
i=1

�i(x,y),

�i(x,y) = tan−1

(
y − yi

x − xi

)
,

(B2)

R(x,y) =
Nv∑
i=1

Ri(x,y),

Ri(x,y) =
√

(x − xi)2 + (y − yi)2.

The initial position of a vortex is given by (xi,yi). The functions
�ab ≡ ϕb − ϕa can be used to initiate a domain wall, when the
ground state exhibits U (1) × Z2 symmetry.
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