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Local suppression of the superfluid density of PuCoGa5 by strong onsite disorder
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We present superfluid density calculations for the unconventional superconductor PuCoGa5 by solving the
real-space Bogoliubov–de Gennes equations on a square lattice within the Swiss-cheese model in the presence
of strong onsite disorder. We find that, despite strong electronic inhomogeneity, one can establish a one-to-one
correspondence between the local maps of the density of states, superconducting order parameter, and superfluid
density. In this model, strong onsite impurity scattering punches localized holes into the fabric of d-wave
superconductivity similar to a Swiss cheese. Already, a two-dimensional impurity concentration of nimp = 4%
gives rise to a pronounced short-range suppression of the order parameter and a suppression of the superconducting
transition temperature Tc by roughly 20% compared to its pure limit value Tc0, whereas the superfluid density ρs is
reduced drastically by about 70%. This result is consistent with available experimental data for aged (400-day-old)
and fresh (25-day-old) PuCoGa5 superconducting samples. In addition, we show that the T 2 dependence of the
low-T superfluid density, a signature of dirty d-wave superconductivity, originates from a combined effect in the
density of states of “gap filling” and “gap closing.” Finally, we demonstrate that the Uemuera plot of Tc versus
ρs deviates sharply from the conventional Abrikosov-Gor’kov theory for radiation-induced defects in PuCoGa5,
but follows the same trend of short-coherence-length high-Tc cuprate superconductors.
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I. INTRODUCTION

The study of the superfluid density or superfluid stiffness
in response to disorder or defects can provide valuable
information about the nature of the superconducting order
parameter. The superfluid density ρs is proportional to the
inverse square of the penetration depth λ, a characteristic
length of a bulk superconductor determining the penetration
of a magnetic field inside it. The low-temperature dependence
of λ(T ) is being studied extensively to unravel the pairing
symmetry of the ground state of bulk superconductors. In
conventional Bardeen-Cooper-Schrieffer (BCS) superconduc-
tors, with a fully gapped excitation spectrum, the penetration
depth exhibits exponential behavior at low temperatures.
In contrast, in unconventional superconductors, with nodal
lines or nodal points of the gap function on the Fermi
surface, λ(T ) shows power-law behavior depending on the
type of nodes.1–4 Therefore, the observation of power laws
in �λ(T ) ≡ λ(T ) − λ(0) has been taken synonymous with
unconventional pairing symmetries in the heavy-fermion and
high-temperature copper-oxide superconductors.

It is known that disorder changes the power-law behavior
from linear to quadratic in T for d-wave superconductivity, as
disorder fills in impurity states in the nodal gap regions.5–11

Since then, it was shown that disorder in unconventional
superconductors leads to an even stronger suppression of the
superfluid density ρs relative to its superconducting transition
temperature Tc than expected from unitarity scattering in the
Abrikosov-Gor’kov (AG) theory. In particular, Franz and co-
workers12 investigated short-coherence-length superconduc-
tivity in cuprates, that is, the coherence length ξ is comparable
to the lattice parameter a, and demonstrated that it behaves
markedly differently from the AG theory of impurity-averaged
order parameters. In fact, detailed calculations of the spatial
dependence of the local density of states and order parameter in
the vicinity of an impurity with strong (unitarity) nonmagnetic
scattering potential showed that the order parameter is abruptly

suppressed within just a few lattice parameters resembling the
holes within a Swiss cheese.13–18 This is in stark contrast to the
assumption in the AG theory of pair breaking with a spatially
uniform suppressed impurity-averaged order parameter. The
Swiss-cheese model was originally introduced to explain
the universal scaling behavior of superconducting transition
temperature versus zero-temperature superfluid density in
the Uemura plot19 [Tc versus ρs(0)] of underdoped high-Tc

cuprate superconductors20,21 and found a recent revival for
describing the behavior of Kondo holes in heavy-fermion
superconductors.22

In this work, we use the Bogoliubov–de Gennes (BdG)
lattice model to study the effects of disorder on bulk and
local properties in superconducting PuCoGa5. Plutonium-
based superconductors can be thought of as superconducting
clocks since the natural radioactivity of Pu (239Pu half-life =
24 000 years) creates lattice defects like clockwork, which
scatter electrons and break Cooper pairs. Pair breaking creates
impurity bands in the nodal regions affecting the signature of
a pure d-wave superconductor. Such pair-breaking effects are
evident in the suppression of Tc with time,23–25 the spin-lattice
relaxation rate 1/T1,26 where the T 3 temperature dependence
switches to a linear-in-T behavior, and the penetration depth
λ(T ), where the linear-in-T temperature dependence gives way
to a T 2 behavior at low temperatures.27,28 Unlike other bulk
probes, the magnitude of λ(0) is very sensitive to defects owing
to its nature of measuring the stiffness of the superconducting
phase coherence in the sample, whereas the magnitude of Tc is
less sensitive to defects since it is related to the spatial average
of the order parameter. A detailed account of this difference
will be presented.

The main result of our study is that self-irradiation-induced
defects in PuCoGa5 violate the AG theory of dilute disorder
in superconductors, which is based on the premise of an
impurity-averaged order parameter, while it is fully consis-
tent with the Swiss-cheese model of short-coherence-length
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superconductors. Our detailed calculations show that measure-
ments of the transition temperature and superfluid density in
fresh (25-day-old) and aged (400-day-old) PuCoGa5 are fully
consistent with the Swiss-cheese model of disorder, which
captures both the 20% suppression of the superconducting
transition temperature Tc and a large 70% suppression of the
superfluid density ρs(0) between aged and fresh samples, as
well as the temperature dependence of ρs(T ). Finally, our study
of the Swiss-cheese model exemplifies the common behavior
of the superfluid density in unconventional short-coherence-
length superconductors with disorder. Because of spatially
extended quasiparticle excitations along the nodal directions of
the order parameter, in the presence of a strong onsite impurity
potential, one finds the suppression of ρs(T ) to extend over
several coherence lengths, whereas the suppression of the order
parameter is very localized and limited to a few lattice sites.
In that respect, a close relationship between the copper-oxide
and plutonium-based superconductors exists.

The paper is organized as follows: In Sec. II, we introduce
the BdG lattice formalism of the Swiss-cheese model and
the corresponding superfluid density expression. The local
variation of the density of states, superconducting order
parameter, and superfluid density for a single impurity, as
well as for multiple impurities, are presented in Sec. III A.
The evolution of the spatially averaged superfluid density
and corresponding density of states as a function of impurity
concentration is discussed in Sec. III B. In Sec. III C, we
present the Uemura plot of Tc versus ρs(0) for the Pu-
based compound and compare with the results for cuprate
superconductors. Finally, we conclude in Sec. V.

II. THEORETICAL MODEL

We begin with the BdG mean-field theory of the attractive
Hubbard model, which was used extensively to describe
superconductivity in correlated electron systems. Our main
interest is focused on the linear response calculation of the
superfluid density ρs for the BdG lattice model following
the approach described by Scalapino et al.29 for the Hub-
bard lattice model. This generic approach was consequently
applied to two-dimensional d-wave12,30,31 and s-wave30–34

superconductors.

A. BdG lattice model

It has been shown that superconductivity in PuCoGa5 is
unconventional because thermodynamic, transport, nuclear
magnetic resonance, and neutron scattering data are consistent
with a model based on d-wave pairing symmetry (that is, based
on nodal lines in the gap function).25,26,35–37 First-principles
calculations38–45 have shown that PuCoGa5 hosts a Fermi
surface with four sheets, two of which are cylindrical sheets
centered at the M point in the Brillouin zone. The quasi-two-
dimensional nature is related to the layered structure of Pu
atoms forming a square lattice. For simplicity, we consider
only a one-band model, which gives one cylindrical Fermi
surface centered at the M point in the Brillouin zone (not
shown). This Fermi-surface sheet effectively gives the nesting
along (π,π ) as in cuprates and, thus, d-wave superconductivity

is justified within a one-band model.46 The same theory
naturally extends to multiband superconductors.47–49

In order to describe the disorder effect on superconductivity,
we consider a tight-binding model Hamiltonian defined on a
square lattice:

H0 = −
∑
ijσ

tij c
†
iσ cjσ +

∑
iσ

(εi − μ)c†iσ ciσ

+
∑
ij

�ij c
†
i↑c

†
j↓ + H.c. (1)

Here, c
†
iσ (ciσ ) creates (annihilates) an electron at the ith

site of spin σ . The variables tij and μ are the hopping integrals
and chemical potential, respectively. We model the disorder
by considering a distribution of short-ranged nonmagnetic
impurities, that is, εi = UimpδiI , with Uimp representing
the potential scattering strength. The quantity �ij denotes the
superconducting order parameter or gap function. Since the
origin of superconductivity is not our concern, we introduce
an effective nearest-neighbor pairing interaction V , such
that the superconducting order parameter is determined self-
consistently:

�ij = V

2
〈ci↑cj↓ − ci↓cj↑〉, (2)

where (ij ) is a nearest-neighbor (NN) site pair, and zero
otherwise. By using the Bogoliubov transformation

ci↑ =
∑

n

[
un

i γn − vn∗
i γ †

n

]
, (3a)

ci↓ =
∑

n

[
un

i γn + vn∗
i γ †

n

]
, (3b)

the Hamiltonian in Eq. (1) can be diagonalized by solving the
corresponding BdG equations17,50

∑
j

(
Hij �ij

�∗
ij −H∗

ij

)(
un

j

vn
j

)
= En

(
un

i

vn
i

)
. (4)

Here, (un
i ,v

n
i )T are the eigenfunctions at site i corresponding

to the quasiparticle excitation energy En, and the normal-state
single-particle lattice Hamiltonian is

Hij = −tij + (εi − μ)δij . (5)

Throughout this paper, we limit the hopping integrals only to
the NN sites on the square lattice, that is, ti,i+δ = t for δ =
(±1,0) and (0,±1), and zero otherwise. The self-consistency
equation for the superconducting order parameter on the square
lattice is thus given by

�i,j=i+δ = V

2

∑
n

[
un

i v
n∗
j + un

j v
n∗
i

]
tanh

(
En

2kBT

)
, (6)

where δ = (±1,0) and (0, ± 1), and zero otherwise, and
the temperature is denoted by T . For dx2-y2 -wave pairing
symmetry, the order parameter along the y direction has
opposite sign compared to the x direction, which is indeed
obtained in the solutions. Once the BdG equations are solved,
many interesting properties can be explored. For example, for a
given concentration of disorder, the superconducting transition
temperature can be determined by the condition that the
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averaged superconducting order parameter vanishes. Another
important observable that can be tested experimentally is the
local density of states (LDOS) at zero temperature, which is
given by

ρi(E) = 2
∑

n

[∣∣un
i

∣∣2
δ(E − En) + ∣∣vn

i

∣∣2
δ(E + En)

]
, (7)

where the prefactor “2” is due to the twofold spin degeneracy.
The differential tunneling conductance in scanning tunneling
spectroscopy is directly proportional to the LDOS and can
provide insights into the electronic properties and symmetry
of a superconductor. Since one of the major pieces of interest
in this work is the superfluid density, which characterizes
the superconducting phase rigidity, it is useful to give an
expanded discussion of its derivation and lattice formulation.
Our BdG lattice formulation of the superfluid density follows
closely the seminal work by Scalapino and co-workers29 for
the Hubbard model on a lattice. We calculate the superfluid
stiffness for a current response to a vector potential of wave
vector q and frequency ω along the x direction as given
by the Kubo formula. For this purpose, we expand the
Hamiltonian to include the interactions of electrons coupled to
an electromagnetic field. The tile-dependent total Hamiltonian
is

Ht = H0 + H ′(t). (8)

Here, H ′(t) describes such a minimal coupling

H ′(t) = −ea
∑

i

Ax(ri ,t)

(
JP

x (ri) + ea

2
Ax(ri ,t)Kx(ri)

)
,

(9)

where a is the lattice constant, Ax is the vector potential along
the x axis, and

JP
x (ri) = −i

∑
σ,δ

[
ti,i+δc

†
iσ ci+δ,σ − H.c.

]
, (10)

Kx(ri) = −
∑
σ,δ

[
ti,i+δc

†
iσ ci+δ,σ + H.c.

]
(11)

are the particle current (superscript P ) and kinetic energy
operators. The variable δ = x̂,x̂ ± ŷ denotes the links that
have contribution to the bond current and kinetic energy along
the x axis. The charge current density operator (superscript Q)
along the x axis is then found to be

JQ
x (ri) ≡ − δH ′(t)

δAx(ri ,t)
= eJ P

x (ri) + e2Kx(ri)Ax(ri ,t).

(12)

We calculate the paramagnetic component of the electric
current density to first order in Ax ,

〈
JP

x (ri)
〉 = −i

∫ t

−∞

〈[
JP

x (t),H ′(t ′)
]
−
〉
0dt ′, (13)

and the diamagnetic part in 〈Kx〉0 only to zeroth order;
〈· · ·〉0 represents a thermodynamic average with respect to H0.
Straightforward algebra yields the current response function

− JQ
x (ri)

e2Ax(ri)
= −ie−iq·ri

∫ t

−∞
dt ′

〈[
JP

x (q,t),J P
x (−q,t ′)

]
−
〉
0

−〈Kx(ri)〉0. (14)

By performing a lattice average over the variable ri to eliminate
the atomic-scale fluctuations, we define an effective “Drude
weight” as a measure of the superfluid density

ρs ≡ Ds

πe2
= −〈Kx〉 + �xx(q → 0,ω = 0). (15)

The first term is the kinetic energy along the x direction
divided by the number of lattice sites:

〈Kx〉 = 1

N

∑
i

Ki
x (16)

with the local kinetic energy

Ki
x = −t

∑
n,σ

(
f (En)

[
un∗

i+x,σ un
iσ + c.c.

]
+ [1 − f (En)]

[
vn

i+x,σ vn∗
iσ + c.c

])
. (17)

It represents the diamagnetic response to an external magnetic
field B = ∇ × A with gauge Ax �= 0 and Ay = Az = 0.
The second term is the paramagnetic response given by
the disorder-averaged transverse current-current correlation
function with a double sum over lattice sites

�xx(q → 0,ω = 0) = 1

N

∑
i,j

�ij
xx(ω = 0), (18)

which is defined as

�ij
xx(ω = 0)

=
∑
n1,n2

Ai
n1,n2

[
Aj∗

n1,n2
+ Dj

n1,n2

]f
(
En1

) − f
(
En2

)
En1 − En2

(19)

with auxiliary functions

Ai
n1,n2

= 2
[
u

n1∗
i+x̂u

n2
i − u

n1∗
i u

n2
i+x̂

]
, (20)

Di
n1,n2

= 2
[
v

n1
i+x̂v

n2∗
i − v

n1
i v

n2∗
i+x̂

]
. (21)

The local or site-specific superfluid density is then given by
setting i = j :

ρs(ri) = −Ki
x + �ii

xx(ω = 0). (22)

This expression is the local superfluid density that we will plot
in the remainder of this work.

B. Numerical solution of the BdG equations

We follow an iterative numerical procedure to solve self-
consistently the BdG equations via exact diagonalization:
For a given impurity distribution, we start with a uniform
dx2-y2 -wave order parameter, that is, �i,i+x̂ = −�i,i+ŷ , at a low
temperature. After the BdG equations (4) are diagonalized, the
obtained eigenvalues and eigenfunctions are used to update
the superconducting order parameter as given by Eq. (6).
Then, we start a new cycle of iteration. The iteration will
continue until a convergence criterion for the order parameter
is reached. We have taken the difference of the order parameter
at all sites between two consecutive iterations to be less
than 10−8 as the convergence criterion. When convergence
is reached at a given temperature, both the local density of
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states (LDOS) and superfluid density are calculated by using
the supercell technique to reduce finite-size effects. The final
LDOS and superfluid density are the result of an ensemble
average over about 20 impurity configurations. After this
step, the calculation is moved to the next higher temperature
point.

Next, we also comment on the choice of lattice model
parameters. In our numerical calculations, we have chosen
to measure the energy in units of the nearest-neighbor
hopping parameter t with chemical potential μ = −0.36t and
superconducting pairing interaction strength V = 1.13t . The
onsite impurity potential scattering strength Uimp = 100t was
used to model the strong (unitarity) limit of impurity scattering.
Additionally, we broadened the density-of-states calculations
by a small imaginary term of width 
 = 0.01t to overcome
the discreteness of the energy spectrum. The size of a single
cell for the self-consistent lattice model calculation is at least
of 20 × 20 sites, when the supercell method with 6 × 6 cells
is employed or 35 × 35 sites otherwise. However, we still
encountered finite-size effects for systems of such size at low
temperatures and for low disorder concentrations.

III. RESULTS AND DISCUSSION

A. Real-space imaging of local properties
around a single impurity

We begin with spatial images of various local properties at
T = 0, including the LDOS at zero excitation energy N0(r), the
superconducting (SC) gap amplitude |�(r)|, and the superfluid
density ρs(r), all shown in the top row of Fig. 1 for a single
impurity at the center of the cell. The SC gap amplitude at a par-
ticular site (x,y) is obtained from |�(r)| = [�(x + δx,y) +
�(x − δx,y) − �(x,y + δy) − �(x,y − δy)]/4, where δ is
the distance between NN sites. [Below, we denote �(0) as the
average SC gap at T = 0.] Whereas, ρs(r) is the current-current
correlation function, which involves a double summation over
real space. The local superfluid density is given in Eq. (22).
We plot ρs(r) in Fig. 1(c1) to visualize the effect of a single
impurity on the rigidity of the superconducting phase.

The well-known Friedel oscillation is clearly seen in
the LDOS N0(r) along the nodal direction of the SC gap.
This is a signature of unconventional superconductors, which
was studied extensively in the high-Tc cuprates12–16,18 and

FIG. 1. (Color online) (a1)–(c1) Visualization of the local behavior of superconducting properties for a single impurity at the center of
the cell. The three-dimensional plots of N0(r) in (a1), �(r) in (b1), and ρs(r) in (c1) show the real-space modulation of these properties in
response to a single impurity at the center. The corresponding color-coded contour maps highlight the patterns of the modulations. All spectra
are calculated on a 35 × 35 lattice and then interpolated for visualization. The inset to (a1) gives the schematic view of various directions
and locations of sites with respect to an impurity (red dot) at which the following plots are drawn. (a2)–(c2), Each plot in the middle row
corresponds to a one-dimensional cut through the spectrum shown in the corresponding top panel (the color of each representative curve is
the same as for the arrow drawn in the inset). The shading at the lattice boundaries delineates the region where finite-size effects are expected
to affect the results. The black dashed line in (a2) depicts the 1/r2 behavior (with respect to the impurity site) of the LDOS along the nodal
direction. (a3)–(c3) Similarly, the curves in the bottom row are drawn at four representative sites with respect to the location of the impurity and
are compared with their average value. Site A is the nearest neighbor to the impurity along the antinodal direction. The next-nearest-neighbor
site B is along the nodal direction. Sites C and D are farther away from the impurity location along the antinodal and nodal directions,
respectively.
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FIG. 2. (Color online) Visualization of the local behavior of superconducting properties for a randomly distributed impurity concentration
of 2% (same notation as in Fig. 1). Brown cross symbols on the two-dimensional color maps in the top row depict the locations of impurities
on the lattice. The selection of test sites used in the bottom row of panels is the same for all spectra and marked in panel (a1). Unlike for the
single-impurity case in Fig. 1, the SC gap and superfluid density now show much stronger spatial fluctuations. All averaged calculations are
done for 10 samplings over random configurations of impurities. The visualized results are for one particular disorder configuration.

iron-based superconductors.51,52 The dx2-y2 -wave order param-
eter is fully suppressed at the impurity site for a strong scatterer,
aside from very weak oscillations near the order-parameter
maximum [see Fig. 1(b1)]. The spatial dependence of the
superfluid density ρs(r) is also strongly localized around the
impurity with characteristic features more similar to the LDOS
than the order parameter. To illustrate this type of Swiss-
cheese phenomenon of strongly suppressed superconducting
properties near an impurity, we have taken various cuts along
(100), (010), and (110) directions, as shown by solid red,
dashed blue, and solid green lines, respectively, in the middle
row in Fig. 1.

Next, we revisit characteristic properties of a single impu-
rity in a d-wave superconductor. The LDOS is a measure of the
single-quasiparticle spectral weight. In agreement with earlier
works,13–16,18 it decays inversely quadratic with distance r

from the impurity 1/r2 along the nodal direction of the
gap (green line), whereas along the antinodal direction, the
decay is exponential. The spatial order parameter amplitude
|�(r)|, plotted in Fig. 1(b2), creates a resonance state at
the impurity site, reflecting the pair-breaking characteristics
of d-wave pairing. The fourfold modulation of the order
parameter is preserved in the case of a scalar impurity, while
the suppression is smoother along the nodal direction where
strongly damped Friedel oscillations are found. In contrast, the
superfluid density ρs(r) shows the usual fourfold modulation,

but in addition picks up the phase of the dx2-y2 -wave pairing
symmetry as shown in Fig. 1(c2). Along the (100)-antinodal
direction, where the gap is positive, ρs shows a remarkable
enhancement from its average value at the NN lattice site from
the impurity (solid red line), whereas the NN lattice site along
the (010)-antinodal direction exhibits stronger suppression
(blue dashed line). This result is expected in linear response
for a supercurrent flowing along the (100) direction because
it breaks the tetragonal symmetry of the lattice. Along the
diagonal direction, the power-law behavior of ρs arises from
gapless quasiparticles in the LDOS N0(r).13–18

To gain further insight into the impurity effect on ρs(r),
we plot the temperature evolution of these quantities at four
representative sites with respect to the impurity position and
compare them with the average value. In the case of a clean
superconductor with lines of nodes in the gap function, the
low-temperature (kBT 
 �) approximation yields a linear be-
havior of the superfluid density for gapless nodal quasiparticles
on the Fermi surface:5–11,53,54

ρs(T )/ρs(0) � 1 − C1T . (23)

Here, the slope C1 is determined by the BCS ratio �(0)/Tc. In
the presence of an impurity with large broadening �kBT , the
lowest-order temperature dependence of the superfluid density
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becomes T 2 (Refs. 7–11) (note that for an isotropic s-wave gap,
the low-energy superfluid density decays exponentially):

ρs(T )/ρs(0) � 1 − C2T
2. (24)

Here, C2 is a more complex function of Fermi velocity and
effective impurity broadening.10 In Fig. 1(c3), we see that at
the NN site A along the (100) direction, where ρs(A) shows a
peak, the corresponding ρs(A,T ) shows a quasilinear behavior
at low temperatures, within the error produced by finite-size
effect. At the NNN site B along the node, the superfluid
density is suppressed showing a T 2 dependence in accord
with the average value. We believe that, in principle, magnetic
field-angle-dependent measurements of the magnetization can
provide a unique and indispensable tool to probe the presence
of gap nodes and shed light on the pairing symmetry in the
ground state of a bulk superconductor. This idea is related to
the observation of the nonlinear Meissner effect predicted by
Yip and Sauls11,55 for fields along the nodal and antinodal
directions. However, its analysis will be complicated by
surface bound states.56

Next, we turn to the case of randomly distributed impurities
in Fig. 2 for a concentration nimp = 2%, where the local
information of the previously discussed quantities changes
more dramatically across the entire lattice. Nevertheless, the
local response of all quantities with respect to the impurity
location as well as the one-to-one correspondence between
LDOS, order parameter, and superfluid density is present
for all impurity concentrations studied. Differences between
multiple impurities and single impurity are appreciable in
all calculated spectra. Due to the quasiparticle interference

and the overlap of wave functions of quasiparticles scattering
off impurities, Friedel oscillations are enhanced and present
for all directions shown in Figs. 2(a2)–2(c2). Similarly, the
differences in the T dependence of properties at each site are
more clearly visible here as can be seen in Figs. 2(a3)–2(c3).
For example, at position B, which sits at the center along
the nodal direction between two impurities, one can probe
the gapless quasiparticles and thus show quasilinear behavior
in ρs(T ) at low T . Whereas at site A, which sits nearly at
the center between two impurities, but along an off-nodal
direction, one sees enhancement in �(0) and ρs at low T .

B. Temperature dependence of average superfluid density

Figure 3 presents the calculated DOS (averaged over
the entire 35 × 35 lattice sites) as a function of energy
for the d-wave pairing case and impurity concentrations
nimp = 0%–4%. The disorder-induced change in the DOS is
also reflected in the temperature dependence of the spatially
averaged superfluid density. Since finite-size effects are more
pronounced at low energy and for low impurity concentrations,
for example, the zero-energy DOS of the pure sample (red
line) in Fig. 3(a) is expected to vanish, while it is of the
order of the numerical broadening term ∼√


/�(0) Nn(0),
where Nn(0) is the normal-state DOS at the Fermi level. For
the same reasons, the low-temperature values of ρs(T ) are
expected to be less accurate. Nevertheless, our calculations
reproduce the hallmark V -shaped feature of the DOS due to
d-wave pairing for all concentrations. It is interesting to point
out that, with increasing concentration, not only is the gap

FIG. 3. (Color online) The energy dependence of the DOS is related to the temperature dependence of ρs(T ) (averaged over 35 × 35 lattice)
for different impurity concentrations. (a) Computed DOS N (ω) is plotted for increasing impurity concentration along the vertical axis (curves
are not shifted vertically). The gray shaded area highlights the nature of the gap closing, while the colored filling in each spectrum illustrates
the trend of gap filling with increasing disorder. Consequences of finite-size effects can be seen in the value of the zero-energy DOS for the pure
sample (red line), which is expected to be zero in the absence of a numerical broadening term 
. (b) Calculated results of ρs(T ) (normalized
to their corresponding zero-temperature value). The inset expands the low-T region of ρs(T ) vs T 2 to emphasize the quadratic temperature
dependence. (c) Computed ρs(T ) for 1% and 4% impurity concentrations are compared with the measured data for a fresh (25-day-old) and
old (400-day-old) PuCoGa5 sample, respectively (Ref. 27). The cyan diamond and red circle symbols are for field-cooled measurements in
H0 = 60 mT, while the cyan star symbols are for H0 = 300 mT. Since no data are available at zero temperature and near Tc, we extrapolated
each experimental curve into these regions for proper normalization. After extrapolating the data, we estimated the values of ρs(0) and Tc,
which are slightly higher than those predicted using a linear extrapolation method (Refs. 25–27; see Table I).
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TABLE I. Parameters derived from comparing λ(T ) in 25-day-old (fresh) and 400-day-old (aged) PuCoGa5 to the BdG lattice model within
the Swiss-cheese model of dx2-y2 -wave superconductivity, penetration depth λ(0) (at T = 0), impurity concentration nimp, and the transition
temperature of the nominally pure sample Tc0 � 18.9 K.

nimp Tc (in K) Tc (in K) λ(0) (nm) λ(0) (nm)
Samples (Present theory) (Present calculation) (Refs. 25 and 26) (Present calculation) (Refs. 25 and 26)

Fresh (25 days) 1% 18.88 18.25(10) 310 265(5)
Aged (400 days) 4% 16.45 15.0(1) 524 498(10)

amplitude decreasing, but also the gap nodes become more
filled in by impurity states [see shaded and colored areas in
Fig. 3(a)]. The gap filling or buildup of resonant impurity states
near the Fermi level (which can be quantified by an impurity
scattering rate) are the main aspect of impurity effects that
give rise to the quadratic-in-T dependence of the superfluid
density at low temperatures. For large impurity concentrations,
the Swiss-cheese model recovers the dirty d-wave result of
Eq. (21) for the temperature dependence of ρs(T ). Plotting
ρs(T ) as a function of T 2 in the inset of Fig. 3(b) demonstrates
the gradual change from linear to quadratic behavior with
increasing impurity concentration.

To connect our Swiss-cheese-model calculations with
muon-spin rotation measurements of the penetration depth, we
compare in detail in Fig. 3(c) the temperature dependence of
ρs(T ) of the fresh and aged samples with our BdG calculations
in the limit of strong onsite impurity scattering. The impurity
concentrations nimp = 1% and 4% were chosen to reproduce
the observed suppression of Tc and ρs(0) of the fresh and aged
samples, respectively. The relevant model parameters were
given in Sec. II B, which are related to the coherence length ξ ∼
h̄vF /(π�), where the Fermi velocity is given approximately
by vF ∼ at/h̄ with � = 4�(0) and �(0) = 0.08t at nimp =
4%, so that ξ ∼ 3.9a and lattice parameter a = 0.423 nm.35

From our calculated Tc suppression and comparison with
experiment, we conclude that hypothetically pure PuCoGa5

has a bare superconducting transition of Tc0 = 18.9 K in
agreement with previous estimates. The reported decrease in
Tc of about 3 K is in agreement with the radiation-induced
reduction of Tc (≈ 0.24 K/month) reported for PuCoGa5

samples of slightly different isotopic concentrations.24–26 We
list in Table I all characteristic parameters. Measurements
on the fresh sample (after 25 days) were performed with an
applied field H0 = 60 mT. The aged sample (after 400 days)
was measured in applied fields of 60 and 300 mT. All
measurements were performed in a field-cooled mode above
the lower critical field Hc1.27

The good agreement between the short-coherence-length
BdG calculations within the Swiss-cheese model and the
measured Tc and superfluid density ρs(T ), combined with the
previously demonstrated failure of the dirty d-wave theory,27

shows that the uniform, dilute-impurity pair-breaking theory
by Abrikosov and Gor’kov is not applicable to PuCoGa5.

Finally, we connect our model results for point defects with
available experimental data. A quantitative comparison with
self-irradiation defects in PuCoGa5 is not possible because of
the complex damage cascade along the tracks of the recoiling
U atom and α particle when a Pu atom decays, none of which
is captured in our effective single-atom per unit cell model

calculation. Moreover, our model is limited to point defects
with maximum scattering strength by placing the impurity
potential on the Pu site. It also neglects weak scattering off
from defects outside the Pu plane as well as extended defects in
the plane. Considering all those shortcomings, it is remarkable
that a transmission electron microscopy (TEM) micrograph
of a one-year-old PuCoGa5 single crystal by Jutier et al.57

shows that there are of order 10–15 defects of typical size
2 × 2 nm2 in the Pu plane of dimension 50 × 50 nm2. This
means that one year of aging roughly introduces 2%–3% area
fraction of (extended) defects in the Pu plane. This result is
consistent with the α-decay rate of 3.4 × 10−5 per Pu atom
per year assuming that each decay process creates roughly
1000 planar defects. Booth et al.58 estimated a smaller number
of 2600 × 1/7 ≈ 370 Frenkel pairs, but found significantly
larger value from the damaged volume fraction extracted from
their EXAFS data.58 Although we are not able to provide a
realistic self-irradiation damage model for PuCoGa5, we find
that the observed area fraction of defects in the Karlsruhe
sample57 is in qualitative agreement with our fitted value
of 4% of point defects in the Pu plane for the 400-day-old
sample.

C. Suppression of ρs(0) and Tc

The magnitudes of the superconducting properties N (0), Tc,
and ρs(0) provide valuable information about the topology of
the gap function on the Fermi surface as a function of impurity
concentration [see Fig. 4(a)]. Furthermore, the correlation
between them exemplifies the deviations from conventional
dirty d-wave theory arising in a system with short-coherence-
length superconductivity. While the dependence of N (0) and
�(0) (also Tc) on disorder is quasilinear, the suppression
of the superfluid density is dramatically enhanced. These
features demonstrate the strong deviation of the Swiss-cheese
model from conventional AG theory as discussed in detail
below. It has been noted before that the suppression of the
zero-temperature superfluid density for d-wave pairing with
disorder on a square lattice is much stronger than for the su-
perconducting gap or transition temperature.12,30 In Fig. 4(b),
we show that �(0) and Tc exhibit a weakly linear decrease with
an increasing DOS at the Fermi level N (0). On the other hand,
ρs(0) decreases faster than linear with increasing N (0). The su-
perfluid phase coherence is destroyed more rapidly than the su-
perconducting amplitude accounting for the marked difference
between fresh and aged samples. The dependence of the super-
fluid density on the order parameter is given in Fig. 4(c), while
the same information as a function of Tc is presented in the
Uemura plot in Fig. 5. The BCS ratio �(0)/Tc increases grad-
ually with increasing gap amplitude, that is, with decreasing
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FIG. 4. (Color online) Disorder-induced correlations between
N (0), �(0), Tc, and ρs(0). (a) Variation of different properties (see
legend) as a function of impurity concentration nimp. (b), (c) The same
quantities are drawn as a function of total number of quasiparticles
on the Fermi surface in (b) and as a function of order-parameter
suppression.

impurity concentration as expected. As mentioned before, ρs

is suppressed much faster than Tc or �(0). For nimp = 4%, we
calculate for Tc or �(0) a suppression of ∼20 %, whereas ρs(0)
is suppressed by almost 70%. This finding is consistent with
the experimental data for cuprates where the superconducting
transition temperature is much more robust to disorder than
what is predicted by the AG theory for d-wave pairing when
measured against the corresponding change in ρs(0).

To elaborate some more on this point, we plot the
experimental data of ρs(0) versus Tc in Fig. 5 for PuCoGa5

by Ohishi et al.27 and compare with available experimental
data on YBa2Cu3O7-δ (YBCO) superconductors. Furthermore,
we compare with the self-consistent T -matrix calculation of
the dirty d-wave theory following Refs. 63 and 64 for weak
(Born) and strong (unitarity) nonmagnetic impurity scattering
as well as the Swiss-cheese model of the BdG lattice theory.
It is obvious that conventional AG theory fails to describe the
cuprates and PuCoGa5.

The situation of PuCoGa5 is not unprecedented. For exam-
ple, in YBCO, ρs(0) is suppressed much more dramatically
than Tc. In Ni-doped and He-irradiated YBCO, a suppression
of Tc by about 20% is accompanied by a suppression of ρs(0)
by about 70%.20,59,60,65 Several years ago, the same underlying
disorder physics has been discussed within the BdG lattice
model.12,66,67 Where applicable, we find agreement with these
calculations. Franz et al.12 compared their BdG results to
YBCO samples for various conditions of disorder59–62 and
concluded that the effect is enhanced by a short coherence
length ξ/a ≈ 2–5.12 As in YBCO, the coherence length in
PuCoGa5 is relatively small (∼2 nm in both materials) with
comparable lattice parameters (∼0.5 nm in both materials).
Note that a similar enhanced suppression of the superfluid
density with chemical doping has been reported for the related
cerium-based compound CeCoIn5-xSnx , where ξ ≈ 3 nm.68

Taking into account the considerable spread among all data
sets, a fit gives Tc/Tc0 ∝ [ρs(nimp)/ρs(0)]0.4, which deviates
significantly from the linear scaling of the Uemura plot

FIG. 5. (Color online) Uemura plot of superfluid density in a
disordered system. The two red open squares are the experimental data
for PuCoGa5 (Pu-115) from Ref. 27. The rest of the open symbols
are taken from YBCO data under different conditions of disorder
environments (Ref. 12). Data for YBCO films are obtained from
Ref. 59, for YBCO crystals from Ref. 60, for ceramic samples from
Ref. 61, and for He-irradiated YBCO films from Ref. 62. The filled
red dots are the present BdG theory. The blue solid and black dashed
lines are the corresponding results from our “dirty” d-wave AG theory
calculation for impurity scattering in the Born and unitarity limits.

[Tc ∝ ρs(0)] of underdoped high-Tc cuprates, which has its
origin in strongly correlated electron interactions. Finally, it is
evident that the AG theory overestimates the suppression of
Tc, while the Swiss-cheese model is in very good agreement
with all data sets.

IV. CONCLUSIONS

We have found good agreement between the results of
the Swiss-cheese model using the BdG lattice model and the
superconducting properties of PuCoGa5. Most importantly,
the results demonstrate that, despite strong electronic inhomo-
geneity, a one-to-one correspondence between the electronic
and superconducting linear response functions on each lattice
site is maintained at all impurity concentrations.

The low-temperature dependences of the superfluid density
or penetration depth in both fresh (25-day-old) and aged
(400-day-old) PuCoGa5 are consistent with a line of nodes
in a strongly disordered dx2-y2 -wave order parameter. The
Swiss-cheese model can describe the quadratic temperature
dependence of the superfluid density ρs(T ) with the gap �(0)
or Tc reduced by about 20% for impurity concentration nimp =
4% in the Pu plane. It can account for at least a 70% reduction
in ρs(0) contrary to the dirty d-wave theory. We attribute this to
the fact that PuCoGa5 possesses a relatively short coherence
length, and, therefore, the conventional Abrikosov-Gor’kov
pair-breaking theory, in which the order parameter is spatially
averaged, is inappropriate. This result is similar to what
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is known for radiation-damaged or doped high-Tc cuprate
superconductors.

For low impurity concentrations, the short-coherence-
length model agrees with the expected suppression of ρs(0)
obtained from the dirty d-wave theory, while it deviates
drastically otherwise. Irrespective of the approach to impurity
averaging, both theories predict a change from linear to
quadratic in temperature in the superfluid density for large im-
purity concentrations. We show that the quadratic dependence
of the superfluid density arises from the combined effects of
the SC gap filling and gap closing in response to the presence
of strong disorder.

Furthermore, both the fresh and aged PuCoGa5 samples
are consistent with the Swiss-cheese model for a weak-
coupling gap �/Tc ∼ 1.6–2.0 [� = 4�(0), averaged over
four NN sites for d-wave pairing] that is suppressed by strong
impurity scattering. Finally, our lattice calculations show that,
although the order parameter is significantly suppressed in the
immediate vicinity of impurities and the superfluid density

is strongly suppressed over extended regions along the nodal
directions, the superconductivity remains remarkably resilient.
These calculations provide further evidence that PuCoGa5 is
the link between low-temperature heavy-fermion and high-
temperature cuprate superconductors.

ACKNOWLEDGMENTS

We thank A. V. Balatsky and R. H. Heffner for discussions
and encouraging this study and thank K. Gofryk, E. D. Bauer,
and J.-C. Griveau for explaining self-irradiation effects in this
material. Work at the Los Alamos National Laboratory was
performed under the US Department of Energy Contract No.
DE-AC52-06NA25396 through the LDRD program and the
Office of Basic Energy Sciences. We used computational re-
sources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the US
DOE under Contract No. DE-AC02-05CH11231.

1D. Einzel, P. J. Hirschfeld, F. Gross, B. S. Chandrasekhar, K. Andres,
H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 56,
2513 (1986).

2F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld,
H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Z. Phys. B: Condens.
Matter 64, 175 (1986).

3Yu. S. Barash and A. A. Svidzinsky, Phys. Rev. B 53, 15254
(1996).

4J. F. Annet, N. D. Goldenfeld, and S. R. Renn, Physical Properties
of High Temperature Superconductors II, edited by D. M. Ginsberg
(World Scientific, New Jersey, 1990).

5C. H. Choi and P. Muzikar, Phys. Rev. B 37, 5947 (1988).
6R. A. Klemm, K. Scharnberg, D. Walker, and C. T. Rieck, Z. Phys.
B: Condens. Matter 72, 139 (1988).

7J. Annett, N. Goldenfeld, and S. R. Renn, Phys. Rev. B 43, 2778
(1991).

8M. Prohammer and J. P. Carbotte, Phys. Rev. B 43, 5370 (1991).
9P. Arberg, M. Mansor, and J. P. Carbotte, Solid State Commun. 86,
671 (1993).

10P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993).
11D. Xu, S. K. Yip, and J. A. Sauls, Phys. Rev. B 51, 16233 (1995).
12M. Franz, C. Kallin, A. J. Berlinsky, and M. I. Salkola, Phys. Rev.

B 56, 7882 (1997).
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