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The impurity-induced quasiparticle interference (QPI) in the parent compounds of iron-pnictide superconduc-
tors is investigated based on a phenomenological two-orbital four-band model and T -matrix method. We find
the QPI is sensitive to the value of the magnetic order which may vary from one compound to another. For small
values of the magnetic order, the pattern of oscillation in the local density of states (LDOS) induced by the QPI
exhibits two-dimensional characteristics, consistent with the standing wave state observed in the 1111 compound.
For larger values of the magnetic order, the main feature of the spatial modulation of the LDOS is the existence of
one-dimensional stripe structure which is in agreement with the nematic structure in the parent compound of the
122 system. In both cases the system shows C2 symmetry and only in the larger magnetic order case, there exist
in-gap bound states. The corresponding QPI in q space is also presented. The patterns of modulation in the LDOS
at nonzero energies are attributed to the interplay between the underlying band structure and Fermi surfaces.
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I. INTRODUCTION

One of the intriguing issues in condensed-matter physics
is the recent discovery of the new families of iron-based
high-T c superconductors.1–6 Like cuprates, superconductivity
arises from electron or hole doping of their antiferromagnetic
(AFM) parent compounds. Different from cuprates whose
parent compounds are Mott insulators, the parent compounds
of the iron-pnictides are bad metals whose resistivity is several
orders of magnitude larger than that of normal metals. When
lowing the temperature, accompanied by the formation of
spin-density-wave (SDW) states,7–10 the parent compounds of
122 (AFe2As2) undergo a tetragonal to orthorhombic structural
transition, while for 1111 (RFeAsOxFy) the temperature for
the structural transition is higher than that for the AFM transi-
tion. Neutron-diffraction measurements11 show that the mag-
netic moment (0.87μB ) per Fe at 5 K in BaFe2As2 is substan-
tially larger than the moment (0.36μB ) per Fe in LaFeAsO.4

Experiments on the 1111 compound12–14 show an
extra-large hole pocket around the � point, different from other
pnictides due to surface polarity or surface-driven electronic
structure. It is believed that the SDW picture established in the
122 compound could apply to the 1111 compound as well. The
Fermi surfaces (FSs) of the iron pnictides have disconnected
sheets, strong nesting between the hole FSs around the � point,
and the electron ones around the M point induce the SDW
instability. The formation of SDW will partially gap the FSs
and will have great effect on the QPI as well as other physical
properties. Before unveiling the origin of superconductivity,
understanding the ordered parent compound is an important
task.

Scanning tunneling microscopy (STM) on pnictides
has provided much useful information on the electronic
properties.15–17 For underdoped 122 compound
Ca(Fe1−xCo)2As2, a remarkable nematic electronic structure18

has been observed by means of spectroscopic-imaging (SI)
STM, where a one-dimensional (1D) structure aligns along

the crystal a axis with antiparallel spins, and the QPI imaging
disperses predominantly along the b axis of the material. For
the parent compound of 1111 system LaOFeAs, there are two
types of surface after cleavage. STM studies have revealed
that a two-dimensional (2D) strong standing-wave pattern19

induced by the QPI appears in one type of surface, and
the corresponding dispersions along qx and qy are similar.
Diversified electronic structure states have been observed
in various systems;20,21 whether they play a key role in the
mechanism of superconductivity22,23 has triggered much
attention and motivated our investigation.

Previously, based on some effective models, the QPI has
been calculated by using different methods.24–29 In order
to well explain the above-mentioned experiments, we solve
exactly the QPI patterns as well as their Fourier component
based on a phenomenological model30 which considers the
asymmetry of the As atoms above and below the Fe-Fe plane.
Due to the surface effect during cleavage, the heights of the As
atoms above and below the Fe-Fe plane may not be equal to
each other, thus this model is suitable to study the properties
of the surface layers in the iron pnictides and should be
more appropriate to describe the STM experiments which are
surface sensitive. Our study will be within the framework of the
T -matrix method adopted by previous works.30–33 The most
interesting result is that we can obtain 1D and 2D modulations
of the LDOS by employing the same model. The value of the
magnetic order has great effect on the spatial modulation of
the LDOS. A small value of magnetic order leads to a 2D
pattern, while a larger magnetic order results in a 1D structure.
In both cases, the patterns exhibit C2 symmetry. To the best of
our knowledge, there still lack works concerning both of the
interference patterns.

The paper is organized as follows. In Sec. II, we introduce
the model and work out the formalism. In Sec. III, we show
the property of the normal state in the presence of impurity. In
Sec. IV, we study the modulation of the LDOS induced by QPI
with small values of magnetic order. In Sec. V, we investigate
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the QPI in the case of larger values of magnetic order. Finally,
we give a summary.

II. MODEL AND FORMALISM

We start with the two-orbital four-band tight-binding
phenomenological model30 which takes the dxz and dyz orbitals
of Fe ions into account and each unit cell accommodates
two inequivalent Fe ions. The reason we adopt this model
is that such a minimal model reproduces qualitatively the
evolution of the FSs observed by angle-resolved photoe-
mission spectroscopy (ARPES) experiments34–38 in both the
electron- and hole-doped iron pnictides. Based on this model,
the obtained phase diagram,39 dynamic spin susceptibility,40

Andreev bound state inside the vortex core,41 as well as the
domain wall structure42 are all consistent with the ARPES,43

neutron scattering,44 and STM (Ref. 45) experiments. The
tight-binding part of the Hamiltonian can be expressed as

H0 = −
∑
iν̃jνσ

(tiν̃jνc
†
iν̃σ cjνσ + H.c.) − t0

∑
iνσ

c
†
iνσ ciνσ , (1)

where i,j are the site indices, ν̃,ν = 0,1 are the orbital indices,
and t0 is the chemical potential. t1 represents the nearest-
neighbor (NN) hopping between the same orbitals on Fe ions,
and t2 and t3 denote next-nearest-neighbor (NNN) hoppings
between the same orbitals mediated by the up and down As
ions, respectively. t4 is the NNN hopping between different
orbitals. In this paper, we adopted the hopping parameters
as in Ref. 30, i.e., t1 = 0.5 eV, t2 = 0.4t1, t3 = −2.0t1, and
t4 = 0.04t1. In the following, the energy are measured in units
of t1, the scattering potential are measured in eV. The distance
between the NNN Fe ions is a and set as unit, which is shown
in Fig. 1(a).

With the formation of SDW, the first Brillouin zone (BZ)
needs to be folded into the magnetic Brillouin zone (MBZ).
The Fourier transformation of the electron destruction operator
can be written as

cPiνσ = 1√
N

∑
k

[cPνkσ eik·Ri + cPνk+Qkσ ei(k+Qk )·Ri ]

= 1√
N

∑
k

[
c0
Pνkσ eik·Ri + c1

Pνkσ ei(k+Qk )·Ri
]
, (2)

FIG. 1. (Color online) (a) Schematic lattice structure of the Fe
layer in the SDW state. A and B are the two inequivalent Fe ions. (b)
The first Brillouin zone (red line) and the magnetic Brillouin zone
(inner square). The I and III quadrants are embraced by the blue lines,
while the II and IV quadrants are embraced by the green ones. All the
dashed lines are not included in those quadrants. The corresponding
Qk of moving k within I to that within III′ is (−π,−π ). In the area
inside the blue (green) lines the corresponding Vk = 1 (−1).

where N is the number of unit cells, P can be sublattice
A or B corresponding to the two inequivalent Fe ions, k is
restricted in the MBZ, and Qk is chosen to be ±(π,π ) or
±(π,−π ), depending on which quadrant k belongs to, such
that k + Qk is in the first BZ. We have shown an example in
Fig. 1(b). Here c0

Pνkσ represents cPνσk , and c1
Pνkσ represents

cPνk+Qkσ . Define C†α
σ (k) = (c†αA0kσ ,c

†α
A1kσ ,c

†α
B0kσ ,c

†α
B1kσ ), then

H0 = ∑
kσα C†α

σ Mα
k Cα

σ , in which α = 0,1 and

M0
k =

⎛
⎜⎜⎜⎝

a1 a3 a4 0

a3 a1 0 a4

a4 0 a2 a3

0 a4 a3 a2

⎞
⎟⎟⎟⎠ , (3)

where a1 = −2t2 cos ky − 2t3 cos kx , a2 = −2t3 cos ky

− 2t2 cos kx , a3 = −2t4(cos kx + cos ky), a4 = −2t1(cos
kx+ky

2 + cos ky−kx

2 ). For M1
k the corresponding k changes

into k + Qk . After diagonalizing the above Hamiltonian,
we obtain H0 = ∑

μναk εα
μν(k)ψ†α

μν(k)ψα
μν(k), with the

energy-band indices α,μ,ν being 0 or 1. The analytical
expressions for the eight energy bands can be written as
ε0
μν(k) = 1

2 (a1 + a2) + (−1)νa3 + (−1)μ� − t0, ε1
μν(k) =

ε0
μν(k + Qk) with � = √

�2
1 + a2

4 , �1 = 1
2 (a1 − a2), and they

do not depend on the spin. At half filling t0 = −0.622 and the
canonical transformation matrix reads⎛
⎜⎜⎜⎝

cα
A0kσ

cα
A1kσ

cα
B0kσ

cα
B1kσ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

bα
00 −bα

01 bα
10 −bα

11

bα
00 bα

01 bα
10 bα

11

bα
11 bα

10 bα
01 bα

00

bα
11 −bα

10 bα
01 −bα

00

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ψα
00σ (k)

ψα
01σ (k)

ψα
10σ (k)

ψα
11σ (k)

⎞
⎟⎟⎟⎠ . (4)

The matrix elements are functions of k, b0
00 = x1(� +

�1), b0
01 = x2a4, b0

10 = x2(�1 − �), b0
11 = x1a4, and x1,2 =

[2(�1 ± �)2 + 2a2
4]−1/2 are the renormalization factors. Sub-

stituting Eq. (4) into Eq. (2), we have

cα
Aνkσ =

∑
μ′,ν ′

(−1)ν
′(1−ν)bα

μ′ν ′ (k)ψα
μ′ν ′σ (k), (5)

cα
Bνkσ =

∑
μ′,ν ′

(−1)ν
′νbα

μ′+1ν ′+1(k)ψα
μ′ν ′σ (k). (6)

In our coordinates, the origin is located at the A sublattice;
the configuration of magnetic order is shown in Fig. 1(a).
Note that magnetic order m̃

∑
μ(niμ↑ − niμ↓) varies39 with

site, m̃ = meiQk ·RA for sublattice A and meiQk ·(RB+x̂/2−ŷ/2) for
sublattice B. The experimentally observed SDW (Ref. 39) term
is introduced as

HSDW = m
∑
ναkσ

σ
[
c
†α
Aνkσ cα+1

Aνkσ + Vkc
†α
Bνkσ cα+1

Bνkσ

]
= 2m

∑
ανμμ′kσ

σ B
αμν

μ′ (k)ψ†α
μνσ (k)ψα+1

μ′νσ (k), (7)

B
αμν

μ′ = bα
μνb

α+1
μ′ν + Vkb

α
μ+1ν+1b

α+1
μ′+1ν+1, (8)

Vk = 1 for the first and third quadrants, otherwise Vk = −1, as
shown in Fig. 1(b). σ being ±1 corresponds to spin up and spin
down, respectively. A single impurity Vs

∑
νσ c

†
A0νσ cA0νσ +

Vm

∑
νσ σc

†
A0νσ cA0νσ is located at the origin in sublattice A;
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the Hamiltonian of the impurity part can be written as

Himp = 2

N

∑
μανσk

μ′α′k′

(Vs + σVm)bα
μν(k)bα′

μ′ν(k′)ψ†α
μνσ (k)ψα′

μ′νσ (k′),

(9)

where Vs and Vm represent the nonmagnetic part and magnetic
part of the impurity potential, respectively. The total Hamil-
tonian is H = H0 + HSDW + Himp. In the following we will
solve the QPI state.

Define the two-point Green’s function as

G
αμνσ

α′μ′ν ′σ ′(k,k′; iωn) = −F〈Tτψ
α
μνσ (k,τ )ψ†α′

μ′ν ′σ ′(k′,0)〉, (10)

where Fφ(τ ) denotes the Fourier transform of φ(τ ) in
Matsubara frequencies, Tτ is the time-ordering operator, and
ψ(τ ) = eτHψe−τH . By using the equation of motion for
Green’s function and ∂ψ(τ )

∂τ
= eτH [H,ψ]e−τH we obtain

G
αμνσ

α′μ′ν ′σ ′(k,k′; iωn) = mG0
αμνσ

∑
μ′′

B
αμν

μ′′ (k)Gα+1μ′′νσ

α′μ′ν ′σ ′ (k,k′; iωn)

+ g
αμνσ

α′μ′ν ′σ ′(k,k′; iωn),

(11)

g
αμνσ

α′μ′ν ′σ ′(k,k′; iωn) = G0
αμν(k,iωn)δαα′δμμ′δνν ′δσσ ′δkk′

+ 2

N
(Vs+σVm)G0

αμν(k,iωn)bα
μν(k)

×Dνσ
α′μ′ν ′σ ′(k′,iωn), (12)

Dνσ
α′μ′ν ′σ ′(k′,iω) =

∑
α′′μ′′k′′

bα′′
μ′′ν(k′′)Gα′′μ′′νσ

α′μ′ν ′σ ′(k′′,k′; iωn), (13)

where G0
αμν(k,iωn) = [iωn − εα

μν(k)]−1 is the bare Green’s
function. Since the translational invariance is broken by the
impurity, the Green’s function depends on two momenta, k and
k′. Solving the Green’s function is the basis for calculating the
LDOS; to this end, we introduce a 4 × 4 matrix S,

S

⎛
⎜⎜⎜⎜⎝

G00νσ
μ′ν ′α′σ ′

G01νσ
μ′ν ′α′σ ′

G10νσ
μ′ν ′α′σ ′

G11νσ
μ′ν ′α′σ ′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g00νσ
μ′ν ′α′σ ′

g01νσ
μ′ν ′α′σ ′

g10νσ
μ′ν ′α′σ ′

g11νσ
μ′ν ′α′σ ′

⎞
⎟⎟⎟⎠ ,

S =
(

I −mσS0

−mσS1 I

)
, (14)

where I is the 2 × 2 unit matrix and

Sα =
(

Bα0ν
0 G0

α0ν Bα0ν
1 G0

α0ν

Bα1ν
0 G0

α1ν Bα1ν
1 G0

α1ν

)
. (15)

From Eqs. (14) and (15), we finally obtain the Green’s function

G
αμνσ

α′μ′ν ′σ ′(k,k′; iωn)

= �
αμ

α′μ′(νσk)G0
α′μ′ν(k,iωn)δνν ′δσσ ′δkk′

+ 2

N
(Vs + σVm)Dνσ

α′μ′ν ′σ ′(k′,iωn)f αμνσ

1 (k), (16)

f
αμνσ

1 (k) =
∑
α′′μ′′

�
αμ

α′′μ′′(νσk)bα′′
μ′′ν(k)G0

α′′μ′′ν(k,iωn), (17)

where � = S−1 is a matrix, the upper index αμ denotes the
row of the elements and the lower ones denote the column of
the elements. At this stage Dνσ

α′μ′ν ′σ ′(k′,iωn) is still unknown.
Combining Eqs. (13) and (16), we obtain

Dνσ
α′μ′(k′,iωn) = f

α′μ′ν ′σ ′
4 (k′)

[
1 − 2(Vs + σVm)f νσ

2

]−1
, (18)

in which

f νσ
2 = 1

N

∑
αμk

bα
μν(k)f αμνσ

1 (k), (19)

f
α′μ′νσ

3 (k′) =
∑
αμ

�
αμ

α′μ′(νσk′)bα
μν(k′), (20)

f
α′μ′ν ′σ ′
4 (k′) = f

α′μ′νσ

3 (k′)G0
α′μ′ν(k′,iωn)δνν ′δσσ ′ . (21)

The poles of the Green’s function consist of the poles of
the bare G0 and the poles of Dνσ

α′μ′(k′,iωn); the latter ones
signify the appearance of new bound states due to the
impurity. From Eqs. (18) and (21) we can see that the index
ν ′σ ′ of D can be omitted. We also note that the pole of
Dνσ

α′μ′(k′,iωn) is related to the magnitude of the magnetic
order since it contains �. If we consider only the diago-
nal term of �, then G

αμνσ

α′μ′ν ′σ ′(k,k′; iωn) = G0
αμν(k,iωn)δkk′ +

G0
αμν(k,iωn)TmatrG

0
α′μ′ν(k′,iωn), which is in the form of

Dyson’s equation. In real space, the LDOS of each site is
ρ(ri,ω) = − 1

π
�νσ Im[−F〈Tτ cPiνσ (τ )c†

Piνσ (0)〉]. Note that

cAiνσ (τ )c†Aiνσ (0) =
∑
ανkσ
α′k′

cα
Aνσk(τ )c†α

′
Aνσk′(0)χA

α χA
α′e

irA·(k−k′),

(22)

cBiνσ (τ )c†Biνσ (0) =
∑
ανkσ
α′k′

cα
Bνσk(τ )c†α

′
Bνσk′(0)χA

α χA
α′

×χαkχα′k′eirB ·(k−k′). (23)

We derive the LDOS on sublattices A and B in real space,
respectively. Throughout the paper we have χA

α = eiαrA·q̃ ,
χαk = eiαQk ·rAB , rA = (n1,n2), q̃ = (π,π ), rAB = (0.5,0.5),
and n1,n2 are integers, i.e., coordinates of sites of sublattice
A. The LDOS is obtained via analytic continuation iωn →
ω + iη, with η being a tiny positive number and related to the
lifetime of the quasiparticle. After some calculations, LDOS
in real space can be expressed as follows:

ρ(rA,ω)

= − 2

Nπ
Im

∑
μανσk

μ′α′k′

[
�

αμ

α′μ′G
0
α′μ′ν(k,iωn)bα

μν(k)bα′
μ′ν(k)χA

α χA
α′

+ 2

N
(Vs + σVm)f αμνσ

1 (k)bα
μν(k)χA

α

×Dνσ
α′μ′(k′,iωn)bα′

μ′ν(k′)χA
α′e

irA·(k−k′)]∣∣
iωn→ω+i0+ , (24)

ρ(rB,ω) = − 2

Nπ
Im

∑
μανσk

μ′α′k′

[
�

αμ

α′μ′G
0
α′μ′ν(k,iωn)

× bα
μ+1ν+1(k)bα′

μ′+1ν+1(k)χA
α χA

α′χαkχα′k

+ 2

N
(Vs + σVm)f αμνσ

1 (k)bα
μ+1ν+1(k)χA

α χαk
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×Dνσ
α′μ′(k′,iωn)bα′

μ′+1ν+1(k′)

×χA
α′χα′k′eirB ·(k−k′)]∣∣

iωn→ω+i0+ . (25)

We can see that the interband scattering only exists in
the same ν channel. Elastic scattering of quasiparticle mixes
states having the same energy but different momenta. The
interference between the incoming and outgoing waves with
momenta k and k′ can give rise to modulation of the LDOS at
the wave vector q = k − k′. This kind of interference pattern
can be observed in SI-STM nowadays. The Fourier component
of the LDOS (FC-LDOS) can be written as

ρq(ω) = 1

2N

∑
rArB

[ρ(rA,ω)eiqrA + ρ(rB,ω)eiqrB ]

= − 1

2Nπ

∑
ανkσ
α′k′

(
Im{g̃1(k)}(δq

0 δα
α′ + δ

q
q̃ δα

α′+1

)

+ Im{g̃2(kk′)}[δα
α′
(
δ

k+q

k′ + δ
k−q

k′
)

+ δα+1
α′

(
δ

k+q+q̃

k′ + δ
k−q+q̃

k′
)]

− i Re{g̃2(kk′)}[δα
α′
(
δ

k+q

k′ − δ
k−q

k′
)

+ δα+1
α′

(
δ

k+q+q̃

k′ − δ
k−q+q̃

k′
)])

, (26)

where g̃1(k) = gαα′
a1 (k) + gαα′

b1 (k), g̃2(kk′) = gνσα
a2 (k)gνσα′

a3

(k′) + gνσα
b2 (k)gνσα′

b3 (k′), and

gαα′
a1 (k) =

∑
νμσμ′

�αμ,α′μ′G0
α′μ′ν(k,iωn)bα

μν(k)bα′
μ′ν(k), (27)

gαα′
b1 (k) =

∑
νμσμ′

�
αμ

α′μ′G
0
α′μ′ν(k,iωn)bα

μν(k)bα′
μ′+1ν+1(k), (28)

gνσα
a2 (k) = 2

N
(Vs + σVm)

∑
μ

f
αμνσ

1 (k)bα
μν(k), (29)

gνσα
b2 (k) = 2

N
(Vs + σVm)

∑
μ

f
αμνσ

1 (k)bα
μ+1ν+1(k)χαk, (30)

gνσα′
a3 (k′) =

∑
μ′

Dνσ
α′μ′(k′,iωn)bα′

μ′ν(k′), (31)

gνσα′
b3 (k′) =

∑
μ′

Dνσ
α′μ′(k′,iωn)bα′

μ′+1ν+1(k′)χα′k′ . (32)

Since the QPI in our model has C2 symmetry, which will
be seen clearly in the remainder of the paper, the last
line of Eq. (26) will be zero, thus we only show the
absolute value of the real part in the corresponding figures
of FC-LDOS. The map is confined in the first BZ and
we perform our calculation with N = 800 × 800 unit cells.
We neglect the component of g̃1(k) since we want to see
the QPI induced by impurity clearly, different from the
superconducting phase in which magnetic and nonmagnetic
impurity have distinct effects on the LDOS.30 In the SDW
state our calculations show that the effect of a pure magnetic
impurity (σVm) is very similar to that of a pure nonmagnetic
one (Vs), while for the mixed scattering potential Vs + σVm,
the effect of the magnetic part is similar to varying the value
of magnetic order, so in the following, we consider only the
QPI induced by nonmagnetic impurity with different values of
magnetic order.

FIG. 2. (Color online) Panel (a) plots the Fermi surface of the
tight-binding model in the first BZ. Panel (b) plots the LDOS of the
tight-binding model. Panel (c) shows the LDOS of m = 0.2,0.6 with-
out the impurity. Panel (d) shows the zero-temperature spectral func-
tion for m = 0.2 in the MBZ (denoted by the gray color). There are
four small pockets (Pν1,P ν0,P ν ′

0,P ν ′
1) aligning along the diagonal

direction and two high-intensity squares (Lν0,Lν1). Panel (e) is simi-
lar to panel (d), but for m = 0.6, here only four pockets are left.

III. QUASIPARTICLE INTERFERENCE WITHOUT SDW

The impurity effect in the SDW state depends on the
detail of electronic structure. Since we mainly focus on the
low-energy structures of the LDOS, the FS topology should
be important for the results. The black lines in Fig. 2(a) show
the FSs of the tight-binding model, where the two hole pockets
centered around � point (0,0) are associated with ε1ν , and the
two electron ones around M point π (±1,±1) are associated
with ε0ν , in which ν = 0 (1) represents the inner (outer) Fermi
surfaces of the hole or electron pockets. Without impurity,
LDOS is uniform and site independent; Fig. 2(b) shows the
LDOS in the normal state, different from it, where two peaks
show up in the SDW state. Both the energy gap and the height
of the peaks are increased with an increase of the value of
magnetic order, which can be seen clearly in Fig. 2(c). In
our calculation the quasipartical damping is η = 0.01. Here
we calculate the spectral function A(k,ω) at ω = 0 in the
SDW state without impurity, which is the imaginary part of the
Green’s function multiplied by − 1

π
and is proportional to the

photoemission intensity measured by the ARPES experiment.
As can be seen in Fig. 2(d), the locations of the bright
pockets align along the diagonal direction, which are denoted
by Pν1, P ν0, P ν ′

0, and Pν ′
1, respectively, and have relations

with Dirac cones.46 In addition, although the FSs are mostly
gapped, the gap value is extremely small around the � point,
thus there are two high-intensity squares denoted by Lν0 and
Lν1. While for m = 0.6 the two high-intensity squares around
the � point disappear, there are only the bright spots along the
diagonal direction and the pockets are enlarged compared to
the m = 0.2 case, which can be seen in Fig. 2(e).

Actually, our starting model has C4 symmetry when rotating
around an As ion, which will be broken by a single impurity
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FIG. 3. (Color online) Left panel is the map of intensity of LDOS
in real space at the Fermi energy with SP Vs = 100 for m = 0. The
right panel is the corresponding FC-LDOS in q space. The unit of the
x axis (y axis) is kx/π (ky/π ) and the unit of the bar is 10−4.

on an Fe atom even if there is no SDW order. Taking
unitary scattering potential (SP) as an example, we show the
modulation of LDOS in real space without SDW(m = 0) in
the left panel of Fig. 3. There are 33 × 33 sites in sublattice
A and 32 × 32 sites in sublattice B, and the corresponding
modulation of LDOS in real space is asymmetry along the x

and y axes. The corresponding FC-LDOS are shown in the
right panel of Fig. 3. The intrapocket scattering leads to the
two squares in the FC-LDOS, while the high-intensity lines in
the corners of the plot of FC-LDOS break the C4 symmetry to
C2. If the values of t2 and t3 are exchanged, the lines in those
corners will align along the x axis instead of the y axis.

IV. QUASIPARTICLE INTERFERENCE FOR SMALL
VALUE OF MAGNETIC ORDER

In the SDW state m = 0.2, when the SP is weak, the LDOS
on the impurity site has finite value. Due to the scattering of
impurity, the LDOS is site dependent. Spatial modulations of
LDOS at energies −0.047 and 0.18 are shown in Fig. 4 for
Vs = ±1. Those energies correspond to the two SDW peaks of
LDOS for Vs = 1 at the impurity site, which we do not show
here. The intensity of LDOS is enhanced at the impurity site
for Vs = 1. On the contrary, it is suppressed for Vs = −1. We

FIG. 4. (Color online) For m = 0.2, image plot of LDOS in real
space at selected energy for SP Vs = ±1. The x axis and y axis denote
the coordinate of real space.

FIG. 5. (Color online) The FC-LDOS ρq (ω) for the m = 0.2 are
shown in panels at selected energy for Vs = ±1 in the first BZ. The
unit of the bar is 10−4.

can see that modulations exist along the x axis as well as along
the y axis. In the case of Vs = −1,ω = 0.18, the QPI exhibits
a 2D ripplelike modulation and the wavelength is about 4a.

Then we plot the image map of the FC-LDOS in the SDW
state at selected energies in Fig. 5. We can see that in q

space, there appear high-intensity lines; the corresponding
wave vectors are responsible for the QPI. The interference
is nearly equally strong along the x axis and y axis. At energy
ω = −0.047, for SP Vs = ±1, the high-intensity lines near
the center are due to the scattering of pockets (Pνi ,Pν ′

i) to
the corresponding squares (Lνi). As seen from Fig. 5, for
Vs = −1,ω = 0.18, the value of the scattering q along the
circle is about |q| = 0.5π , consistent with the wavelength 4a

in real space. It also indicates that when bias energy deviates
from zero, the underlying band structure is very important.

As SP increases to Vs = ±3, the LDOS at the impurity
site decreases rapidly and will vanish for larger SP. In Fig. 6
we take the impurity site, its NN, and its NNN as examples

FIG. 6. (Color online) Panel (a) shows LDOS at the typical sites
for Vs = ±3 with m = 0.2. The black dashed line represents LDOS
of bulk, the red solid line represents the LDOS on the NNN site (0,1),
the blue dotted line represents that of the NN site (0.5,0.5), and the
violet dash-dotted line represents that of the (0,0) site.

134507-5



HUAIXIANG HUANG, YI GAO, DEGANG ZHANG, AND C. S. TING PHYSICAL REVIEW B 84, 134507 (2011)

FIG. 7. (Color online) Similar to Fig. 4, but for SP Vs = ±3.

to show their LDOS. At the NN sites the overall LDOS is
suppressed, while at the NNN site (0,1) the LDOS is enhanced
at energies lower than the SDW gap. Figure 7 shows that
the modulation of the LDOS still exhibits C2 symmetry. At
ω = 0.047, a 2D ripplelike pattern appears. From the q space
map of ρq(ω) in Fig. 8, we note that for strong SP Vs =
±3, at the Fermi energy, the intrapocket scattering leads to
the two high-intensity small arcs near the center, while the
scattering between Lν0(Lν1) and Pν0,P ν ′

0(Pν1,P ν ′
1) leads to

the off-diagonal high-intensity spots. For Vs = −3, ω = 0.0,
away from the center and along the diagonal direction, the
high-intensity arcs arise from interpocket scattering (from Pνi

to Pν ′
i), which can be seen clearly from Fig. 8. At ω = 0.047,

the high-intensity wave vectors along the circle are responsible
for the ripplelike modulation in real space. The interplay of FS
with the underlying band structure has a crucial effect in the
scattering process, since the high-intensity spots are obviously
related to the band structure. For stronger SP, the feature of
LDOS and the modulation of LDOS is similar; we also note

FIG. 8. (Color online) Similar to Fig. 5, but for SP Vs = ±3.

FIG. 9. (Color online) Panel (a) shows LDOS at the impurity site
(0,0) for different scattering potential Vs = ±0.5 with m = 0.6. The
black dashed line represents LDOS of the bulk and the red solid (blue
dotted) line corresponds to positive (negative) SP. Panel (b) is similar
to (a) with Vs = ±1.

that for large values of SP, the difference between the repulsive
and attractive potentials becomes less obvious.

V. QUASIPARTICLE INTERFERENCE FOR LARGER
VALUES OF MAGNETIC ORDER

Previous discussions show that the value of magnetic order
has great influence on the spectral function, thus we expect it
will affect the QPI as well. For larger magnetic order m = 0.6
and weak SP, at the impurity site, the asymmetry of the LDOS
is remarkable. For positive SP Vs = 0.5, the negative energy
peak of the LDOS is much higher than the positive one, while
for Vs = 1 the resonance peak is enhanced and pushed to ω =
−0.063, near the Fermi energy. Figure 9 shows it clearly. On
the contrary, for negative SP, the intensity of the overall LDOS
is relatively small and the positive energy peak is higher. The
most striking feature of the larger-m system is the existence of
1D modulation of the LDOS. Compared to the positive Vs = 1
case, the 1D structure is more remarkable for Vs = −1, as can
be seen in Fig. 10. For Vs = −1, at selected energies ω = 0.0
and −0.063, the 1D stripe pattern is pronounced. The existence

FIG. 10. (Color online) Similar to Fig. 4, but with m = 0.6.
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FIG. 11. (Color online) Similar to Fig. 5, but with m = 0.6.

of 1D stripe is consistent with the nematic electronic structure
observed in the parent compound of the 122 systems18 which
have large magnetic moments.

For m = 0.6, only four pockets are left in the plot of the
spectral function, which play an important role in the formation
of stripe patterns. Responding to the modulation of the LDOS
in real space, dispersive excitation in q space should appear
along its perpendicular direction. This is illustrated in Fig. 11,
where we can see that the dominant high-intensity spots are
distributed along a diagonal direction with differently detailed
patterns at different energies. For Vs = −1, at ω = 0.0, the four
high-intensity arcs near the corners on the diagonal line are
due to interpocket scattering between pν1(pν0) and pν ′

1(pν ′
0)

with q 	 (±0.7π,±0.7π ), and for ω = −0.063, the scattering
vector q 	 (±π,±π ). They correspond to the distance of ∼2a

strip pattern in real space, while the intrapocket scattering leads
to the high-intensity spots around the center. Except for the
high-intensity spots around the center, the high-intensity spots

FIG. 12. (Color online) Panel (a) shows LDOS at the different
sites for Vs = 3 with m = 0.6. The black dashed line represents LDOS
in bulk, the red solid line represents the site (2,0), and the violet
dash-dotted line represents impurity site. Panel (b) is similar to (a)
with Vs = −3.

FIG. 13. (Color online) Similar to Fig. 10, but for SP Vs = ±3.

for Vs = −1 correspond to the dark ones for Vs = 1, meaning
that for repulsive scattering, interpocket scattering is weak.

For strong SP Vs = ±3, the LDOS at some sites in the
vicinity of the impurity is strongly affected. Pronounced in-gap
resonance peaks appear as shown in Fig. 12. For Vs = 3, one
in-gap peak is located at the negative energy ω = −0.031,
while there exist two very close resonance peaks for Vs = −3
at the positive energies ω = 0.047 and 0.094, respectively.
Those in-gap peaks reflect the formation of bound states
induced by QPI. We show the image map of the LDOS in
real space at selected energies ω = 0.047 and −0.031 for
Vs = ±3 in Fig. 13. We can see that the 1D stripe modulations
of the LDOS are remarkable in all cases. The sites with in-gap
resonance peaks are located along the lines y = −x ± 2.
Figure 14 shows ρq(ω) for m = 0.6,Vs = ±3. As can be
seen, at all selected energies the QPI wave vectors are along
the diagonal direction, although they form different patterns.
For Vs = 3,ω = −0.031, the width of the stripelike pattern
is apparently extended since the underlying band structure

FIG. 14. (Color online) Similar to Fig. 11, but for SP Vs = ±3.
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FIG. 15. (Color online) Panel (a) shows LDOS at the site (2,0)
for Vs = 100 with m = 0.6. Panel (b) is similar to (a) with the site
located at (0.5,0.5). The black dashed line represents LDOS without
the impurity.

plays an important role at energies away from zero. For
Vs = −3,ω = −0.031, the dominant scattering q is still about
(±0.7π,±0.7π ), thus the distance between two stripes in real
space is about 2a.

For the unitary case, LDOS is identical for positive and
negative SP. At Vs = 100, the LDOS at the impurity site is zero.
In comparison to Vs = 3, at the site (2,0), the in-gap resonance
peak is sharper and located at ω = 0.016, very close to Fermi
energy, as can be seen in Fig. 15(a). We also show the LDOS
at the NN site (0.5,0.5) in Fig. 15(b), although the right peak
of the SDW gap is suppressed, is similar to the bulk LDOS.
Figure 16 shows that at low energy ω = 0.016, the spatial
modulation of the LDOS still has a stripe pattern. However,
at higher energy ω = 0.187, which corresponds to the right
SDW peak of Fig. 15(a), in addition to the 1D high-intensity
stripes there are two circles around the impurity. The lower
panels of Fig. 16 show the corresponding QPI in q space.

FIG. 16. (Color online) For m = 0.6, image plot of LDOS in real
space at different energy for SP Vs = 100. The lower panels are the
corresponding FC-LDOS ρq (ω).

At energy ω = 0.016, interference vectors form a stripelike
pattern with considerably large width. The dispersion pattern
evolves with energy; at high energy ω = 0.187 the pattern
changes dramatically and has 2D characteristics. Therefore,
the dispersion relation is complex in the multiband system,
and cannot be fitted by a simple function as in the cuprates.47

VI. SUMMARY

We have investigated by the T -matrix method the mod-
ulation of LDOS and FC-LDOS in the SDW state of the
iron-pnictides induced by QPI for different impurity strength
and well explained the two experimental works.18,19 QPI is
sensitive to the value of the magnetic order which may vary
from one compound to another.

For small magnetic order, in addition to the high-intensity
small pockets aligning along the diagonal direction, the zero-
energy spectral function exhibits high-intensity squares around
the � point, therefore it is easy to form 2D QPI patterns. Our
calculations show that the 2D patterns of LDOS exist in real
and q space for various SPs. The exact pattern varies with
the energy, and in some cases QPI induces ripplelike Friedel
oscillations. This is consistent with what has been observed in
the 1111 compound.19

For larger magnetic order, the main feature of the spatial
modulation of the LDOS is the 1D structure at the energies
lower than the SDW gap. The QPI pattern in momentum space
also supports the formation of unidirectional nanostructures.18

Negative SP favors the interpocket scattering more than the
repulsive one. The LDOS on some sites in the vicinity of
the impurity shows sharp in-gap resonance peaks since the
corresponding ungapped Fermi surfaces are enlarged and
scattering and have more probability to induce excitation at
low energies. Our calculations show that a remarkable 1D
stripe structure aligns along the FM direction in real space.
The reason is that for a large-m system, zero-energy spectral
function has four isolated pockets along the AFM direction.
In addition, the topological analysis (Ref. 48) of a two-band
model and a five-band model showed that the stable ungapped
Fermi pockets are along the AFM direction, thus we expect the
QPI obtained in those models should have a 1D stripe structure
along the FM direction in real space, similar to our results.

Our model has C4 symmetry around As iron; both the
impurity and SDW could reduce the symmetry to C2. The
ungapped Fermi pockets as well as the underlying band
structure contribute to the QPI at bias energies away from
zero. We obtain the 1D and 2D QPI patterns observed
by experiments based on one phenomenological model; the
microscopic origin of 1D and 2D QPI patterns is the shape of
spectral function at low energies.
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