
PHYSICAL REVIEW B 84, 134503 (2011)

Size of stripe domains in a superconducting ferromagnet
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In a superconducting ferromagnet, the superconducting state appears in the ferromagnetic phase where usually
a domain structure has already developed. We study the influence of the superconducting screening currents on
a stripe structure with out-of-plane magnetization, in a film of arbitrary thickness. We find that the occurrence
of superconductivity always induces a shrinkage of the domains. Nevertheless, a monodomain structure may
occur with lowering temperature when the London penetration depth decreases. Furthermore, we investigate the
possible different effects of singlet and triplet superconductivity on the domain width, as well as the conditions
for the existence of vortices in the domains. The obtained results are then discussed in light of the experimental
data of superconducting ferromagnets URhGe, UGe2, and UCoGe.
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I. INTRODUCTION AND MODEL

In the discovered uranium-based superconducting ferro-
magnets (SFMs) UGe2,1 URhGe,2 and UCoGe,3 the Curie
temperature � is much higher than the superconducting critical
temperature Tc, which means that superconductivity appears in
the ferromagnetic state where it is usually a domain structure
(DS) which develops. In previous works4–8 the influence
of the superconducting screening currents on the DS has
been studied in the case of thick or bulk systems, when
the thickness 2Lz along the easy magnetization direction is
much larger than both the transverse domain width l (see
Fig. 1) and the London penetration depth λ. The domain
period 2l at equilibrium results from the balance between
a positive contribution to the energy density due to domain
walls and a negative contribution from the magnetic induction,
as the magnitude of both increases when l is reduced. An
exact energy minimization7 shows that for the condition
λ > w̃/(8π ) (where w̃ is an effective domain wall width that
parametrizes the wall energy), superconductivity decreases the
domain size due to partial penetration of the magnetic field
near the domain wall. This energy decrease is proportional to
λ, and the formation of the domain wall is favorable when
this contribution counterbalances the energy of the domain
wall itself, which is proportional to w̃. For λ < w̃/(8π )
the system is in a monodomain state, without any domain
wall.6–8 In the present paper we extend Fauré and Buzdin’s
work7 by deriving the expression of the energy valid for
any thickness 2Lz and we discuss the DS in all limits, in
particular, when λ,l � Lz. Furthermore, we investigate the
possible effects of singlet and triplet superconductivity on the
DS, as well as the conditions for the existence of vortices in
the domains.

Model. We consider a ferromagnetic film of thickness
2Lz that can also become superconducting (see Fig. 1). The
z axis, assumed to be the easy axis, is chosen perpendicular
to the film with the surface edges at z = ±Lz. Note that,
in principle, in the case of thin films this situation may be
changed and the magnetic moment could lie in the planes,
but in this case, if Lz � λ the influence of superconductivity
on the magnetic structure is expected to be very small.
Domain walls parallel to the yz plane separate the periodic
ferromagnetic structure into domains of equal width l and

with magnetization M = M(x)ez alternating along the x axis,
i.e., M(x) = ±M0 = (4M0/l)

∑∞
k=0 sin(qx)/q, with

q ≡ (2k + 1)π

l
. (1)

This means that we consider the domain wall thickness
very small compared to l and λ. The energy per surface
unit is F(B,l) = FM (B,l) + FSC(B,l) + FDW(l), where the
magnetic field energy is given by the relation

FM (B,l) = 1

8πdxdy

(∫
|z|�Lz

|B − 4πM|2dV

+
∫
|z|>Lz

|B|2dV

)
, (2)

and the superconducting current energy is expressed in the
London limit9 (i.e., the superconducting coherence length
ξ � λ,l),

FSC(B,l) = 1

8πdxdy

∫
|z|�Lz

λ2|∇ × (B − 4πM)|2dV. (3)

Here dxdy is the total area of the film surface. The explicit
dependencies with respect to the domain width result from the
ansatz we made for the magnetization M(l). The contribution
from the domain walls may be written as7

FDW(l) = M2
0 w̃Lz

l
, (4)

where w̃ is a domain wall characteristic length scale. Usually
w̃ provides an upper limit of the real domain wall width.7

Hereafter, the temperature T will be considered phenomeno-
logically within an explicit dependence of the London pene-
tration depth λ(T ). The latter is finite in the superconducting
low-T phase and diverges at the critical temperature Tc.

Outline of the article. In the second section we analytically
calculate the field distribution and the energy of a periodic
stripe DS in a SFM of arbitrary thickness. An exact expression
of the energy is obtained as an infinite sum. In Sec. III the
equilibrium size of the domains is determined in the supercon-
ducting state as a function of the penetration depth. Analytical
expressions of the domain width are obtained in limiting cases.
The stability of the domain structure is also discussed. We then

134503-11098-0121/2011/84(13)/134503(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.134503
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FIG. 1. (Color online) Geometry of the considered stripe domain
structure: the domain width is l and the film thickness is 2Lz. The alter-
nating magnetizations M of the domains are perpendicular to the film.

investigate the difference between singlet and triplet super-
conducting states. Specifically, the triplet pairing is described
by a domain wall energy which is temperature dependent,
in contrast with the singlet pairing. In Sec. IV we draw the
condition for the vortices appearance at the center of a domain.
Finally, in Sec. V we apply our results to the DS in uranium-
based superconducting ferromagnets before concluding.

II. METHOD OF SOLUTION

First, we minimize the energy F(B,l) with respect to the
magnetic induction B. This yields the London equation �(B −
4πM) = λ−2B in the film and �B = 0 outside. Once B(l)
is found by solving the London equation, the resulting total
energy, F(l) = F[B(l),l], will be minimized with respect to l

to determine the domain width at equilibrium.

A. Magnetic field B(l)

We find the magnetic induction B by Fourier expansion.
Using the Maxwell-Thomson equation ∇ · B = 0 and symme-
try relations Bz(−x) = −Bz(x) and Bx(−x) = Bx(x), the field
can be written as

B(x,z) = 16πM0

l

∞∑
k=0

∂zbq(z)

q
cos(qx)ex + bq(z) sin(qx)ez,

(5)

where we remember that q ≡ (2k + 1)π/l. When solving the
London equation in the film and Maxwell’s equation outside,
we use the symmetry condition Bz(−z) = Bz(z) and the
continuity condition at the surfaces. This yields, for |z| � Lz,

bq(z) = q

q2
z

(
1 − q cosh(qzz)

qz sinh(qzLz) + q cosh(qzLz)

)
, (6)

and for |z| � Lz,

bq(z) = q exp[−q(|z| − Lz)]

qz[qz + q coth(qzLz)]
, (7)

with

qz ≡
√

q2 + λ−2. (8)

Figures 2 and 3 show the distribution of the magnetic field in
the normal state and the superconducting state. It is plotted
between the domain wall and the domain center. In the normal
state the magnetic field distribution in a wide domain (l � Lz)

FIG. 2. (Color online) Magnetic field distribution of a wide
domain (l � Lz) (a) in the normal state and (b) in the superconducting
state (λ = 3Lz). Flux lines (gray-and-white solid lines) and the
contour plot of the field magnitude |B|/4πM0 (shaded background)
are shown between x = 0 and x = l/2. The horizontal dotted line is
the upper film surface.

is concentrated around the domain wall [see Fig. 2(a)], while
in a narrow domain (l � Lz) it is nearly uniform and equal to
±4πM0ez [see Fig. 3(a)]. The supercurrent screens the field
around the domain wall on a length scale λ (compare, for
example, the contour |B|/4πM0 = 0.4 in (a) and (b) of Fig. 3).
Note that the supercurrent is responsible for a kink that the
lines of constant |B| show at the film surface [see Fig. 2(b)
and Fig. 3(b)]. This is because ∇ × B is discontinuous at the
interface when λ−2 �= 0. Flux lines also have a kink at the
domain wall since the magnetization M is discontinuous there.

B. Energy F (l) of the domain structure

To simplify the expressions of the energy it is convenient
to introduce the normalized lengths

L ≡ l

Lz

, � ≡ λ

Lz

, �eff ≡ λeff

Lz

, and W ≡ w̃

Lz

, (9)

where λeff ≡ λ2/Lz is Pearl’s penetration depth, which, in
the limit Lz � λ, takes the place of λ as the effective
magnetic length scale.10 Note that in these notations �eff =
�2. Furthermore, we consider the normalized energy F̄ =
F/(32πM2

0 Lz) and omit the bar henceforth. So the domain
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FIG. 3. (Color online) Magnetic field distribution of a narrow
domain (l � Lz) (a) in the normal state and (b) in the superconducting
state (λ = 0.02Lz). Same conventions as in Fig. 2.

wall contribution is FDW(L) = W/(32πL), and the volume
contribution Fvol ≡ FM + FSC is

Fvol(L) = 1

8
− �

4L
tanh

L

2�
+ 1

L2

∞∑
k=0

Q

Q3
z(Qz + Q coth Qz)

,

(10)

where Q ≡ (2k + 1)π/L and Qz ≡
√

�−2 + Q2. For a thick
film, i.e., Qz ≡ qzLz � 1 so that coth(Qz) = 1, Fauré and
Buzdin’s result7 is recovered as expected. Since the limit l �
Lz has been previously investigated,7 we discuss below the
limit l � Lz, that is, L � 1, in more detail.

1. Regime λ � l

This parameter regime is realized in the normal phase where
λ = ∞, as well as inside the superconducting phase, in the
vicinity of the critical temperature Tc. When λ � l (i.e., when

� � L), the sum in (10) may be expanded in powers of L/�

before summing. Hence for λ � l � Lz,

Fvol(L) ≈ 1

8
+ 1

8�eff
−

(
1

2π
+ 2

3π�eff

)
ln L

L
+ 2 ln π − 3

4πL
,

(11)

while for l � Lz,

Fvol(L) ≈ 7ζ (3)L

16π3
+ L2

96�2
. (12)

2. Regime l � Lz and l � λeff

This parameter regime may be realized in the supercon-
ducting phase, for either thin films or large domains. When
L � 1 the sum in (10) can be approximated by an integral.
Euler-MacLaurin’s approximation yields

Fvol(L) ≈ 1

8
+

(
I (�)

2π
− �

4

)
L−1 + π�4

12
L−3, (13)

where the I (�) is defined by Eq. (A1) in the Appendix. Then
using asymptotic expression (A2) of I (�) in the limit � � 1,
one finds

Fvol(L) ≈ 1

8
+ 1

π

(
− ln � + ln 2

2
− 11

24

)
L−1 + π�4

12
L−3,

(14)

and for � � 1, asymptotic expression (A3) yields

Fvol(L) ≈ 1

8
+

(
−�

4
+ (1 − ln 2)�2

2π

)
L−1 + π�4

12
L−3.

(15)

III. DOMAIN WIDTH AT EQUILIBRIUM

A. General results

The equilibrium size lS is obtained by minimization of the
total energy F(l) = FDW(l) + Fvol(l). Figures 4–6 show lS as
a function of the penetration depth λ for different values of the
normalized wall thickness W . In the superconducting state λ

decreases with decreasing temperature, from infinity at T = Tc

to a finite value at T = 0. As discussed below, just below
Tc the domain width always decreases from the normal state
value lN realized for λ = ∞. One can distinguish two regimes.
When the domains in the normal state are wide (lN � Lz)
the decrease is negligible, while when the domains are narrow
(lN � Lz) their width can drastically shrink to lS ∼ λ. Then, in
both regimes lS reaches a minimum value before diverging at a
critical lower bound λc. This limit corresponds to the situation
where the ferromagnetic induction is completely screened by
the supercurrent6–8 and there is no stray field that needs to be
accommodated by a DS.

The λ dependence of the width is similar to the prediction
for DS in superconductor-ferromagnet (S/F) bilayers11,12

except for two aspects. First the shrinkage factor in a S/F
hybrid is limited and lS �

√
2/3lN .11 Experiments performed

on heterostructures made of a ferromagnetic garnet layer
combined with a superconducting layer of Pb13 or Nb14

have observed the shrinkage of the domain size due to
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FIG. 4. (Color online) Normalized domain width lS/Lz as a
function of the normalized penetration depth λ/Lz for different values
of the normalized effective domain wall thickness W ≡ w̃/Lz.

superconductivity. The smallest observed shrinkage factor of
∼0.3 was substantially smaller than the theoretical prediction√

2/3. This circumstance is a nonequilibrium effect and is
related to the special dynamics of the vortex structure created
in the superconducting layer and coupled to ferromagnetic
domains.14 The second point is that although the DS can also
be unstable in S/F bilayers when λ decreases, it exists in a
range of parameters (when the thickness of the F layer is
approximately larger than half the domain width in the normal
state) in which lS remains finite even in the limit λ = 0,12

in contrast with SFM where the DS is never stable for a
vanishing λ.

FIG. 5. (Color online) Normalized domain width lS/Lz as a
function of the normalized penetration depth λ/Lz for different values
of the normalized effective domain wall thickness W . lS converges to
the normal-state width lN when λ tends to infinity, and it diverges at
the critical value λc. lN and λc are increasing functions of W .

FIG. 6. (Color online) Normalized domain width lS/Lz as a
function of the normalized penetration depth λ/Lz for different values
of the normalized effective domain wall thickness W .

Hereafter, complementary to the exact numerical solution,
we present the analytical results obtained in various asymptotic
regimes.

1. Normal state and vicinity of the transition

In the limit L � 1, using expression (11) valid for the
vicinity of the superconducting transition where �2 � L, one
finds that the minimum of the energy F(L) is realized at

LS = exp

(
1 + W/16 − 3/2 + ln π

1 + 4/3�2

)
, (16)

which yields the domain width

LN = π√
e

exp (W/16) (17)

in the normal state (see Fig. 7). The domain width LS just
below the superconducting transition is then related to the
normal-state width LN by

LS = LN

(
1 − 4(ln LN − 1)

3�2

)
. (18)

In the other limit L � 1, the approximation (12) yields the
standard result15,16

LN =
√

π2

14ζ (3)
W, (19)

FIG. 7. (Color online) Normalized domain width lN/Lz in the
normal state as a function of the normalized effective domain wall
thickness w̃/Lz. Dashed lines are the plots of the asymptotic formulas.
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(see Fig. 7) and

LS = LN

(
1 − π3

42ζ (3)

LN

�2

)
, (20)

in accordance with Ref. 7. Hence the domain width always
decreases when the system enters the superconducting phase.

2. Stability of the periodic domain structure

The periodic domain structure is always stable in the normal
state, where the energy minimum is obtained for a finite width
L. This is not the case in the superconducting state. In the limit
L � �2 and L � 1, the saddle-point equation for the energy is

L2 = π2�4

π� − 2I (�) − W/8
, (21)

where the function I (�) is defined by Eq. (A1) in Appendix.
There is an energy minimum at a finite L only for
π� − 2I (�) − W/8 > 0. Since [π� − 2I (�)] increases
with �, this condition defines a lower bound �c below which
the periodic structure is unstable. In the thought experiment
where � decreases from infinity (normal state) to zero, the
period LS first decreases from LN but then it increases back
before diverging as (� − �c)−1/2 (see Fig. 4). Note that the
limit of vanishingly small � has been considered in Ref. 6
and the conclusion of the absence of DS was drawn. When
LN � 1 in the normal state, the approximations of I (�) yield

�c ≈
√

2 exp

(
W

32
− 11

24

)
≈

√
2LN

πe5/12
, (22)

while when the normal-state width LN � 1, the periodic
structure exists down to

�c ≈ W

8π
≈ 7ζ (3)

4π3
L2

N. (23)

Figures 8 and 9 show that these analytical relations fit well
the numerical results in the limiting regimes.

One can now understand the difference in the shrinkage
factor between a narrow domain and a wide domain. For
a narrow domain with l and λ � Lz, the width in the
superconducting state decreases with the penetration depth as
lS ∼ λ. The shrinkage goes on until the DS is destabilized by
an excessive superconducting screening. The minimum value
that the width can have is then lmin

S ∼ λc ∼ l2
N/Lz, which is

much smaller than lN . In the opposite limit when l and λ � Lz,
the actual magnetic length scale is λeff , not λ. And the domain
width behaves as lS ∼ λeff when λeff is smaller than lN . Thus
the minimum lmin

S ∼ λ2
c/Lz ∼ lN , so that a wide domain does

FIG. 8. (Color online) Normalized critical penetration depth
λc/Lz as a function of the normalized effective domain wall thickness
w̃/Lz. Dashed lines are the plots of the asymptotic formulas.

FIG. 9. (Color online) Normalized critical penetration depth
λc/Lz as a function of the normal domain width lN/Lz. Dashed lines
are the plots of the asymptotic formulas.

not significantly shrink while the penetration depth decreases
to the instability value λc.

B. The case of triplet superconductivity

As we see in a following section, the temperature de-
pendence of the domain equilibrium size can provide a
phenomenological way of distinguishing triplet from singlet
pairing. Here we describe the general formalism; numerical
applications to some specific compounds will be shown
later as examples within the framework of uranium-based
superconductors.

1. Modification of wall energy due to depletion of
condensation energy

Keeping in mind the known magnetic superconductors,
we may expect that there the multicomponent triplet order
parameter is realized.17 Such a superconducting state should
have a magnetic moment. For example, for the two-component
order parameter we may expect the realization of the state
with Cooper-pair spin orientation parallel or antiparallel to
the z direction (along the ferromagnetic moment). Therefore
in the domain structure the superconducting order parameter,
corresponding to the Cooper pair with its moment parallel
to the ferromagnetic magnetization,18 should be different
in the adjacent domains. Then the magnetic domain walls
should also be the domain walls for the superconducting
order parameter. Naturally this situation corresponds to the
case when the domain wall thickness is smaller than the
superconductivity coherence length, which we expect to be
the case in ferromagnetic superconductors due to the strong
magnetic anisotropy. The superconducting order parameter
would be suppressed near the domain wall inside a region
with a width of the order of ξ , but provided λ � ξ , this will
only weakly modify the screening of the magnetic field.

For Cooper pairs fully spin polarized by the intrinsic
magnetization of the ferromagnetic domains, a depletion of the
triplet order parameter occurs on a width ∼ξ at both sides of the
interface separating two domains of opposite magnetizations.
This inhomogeneity results in a loss of condensation energy of
∼2EcondξdyLz at a domain wall. At a first approximation the
domain wall energy for T � Tc is modified by replacing the
effective domain wall width w̃ by the temperature-dependent
w̃t defined by

w̃t ≡ w̃(1 + ω(1 − t)3/2), (24)
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where t ≡ T/Tc, and

ω ≡ 2Econd(0)ξ (0)

M2
0 w̃

(25)

is proportional to the ratio of the superconducting en-
ergy at T = 0 to the magnetization energy. Here we
have assumed ξ (t) = ξ (0)/

√
1 − t , λ(t) = λ(0)/

√
1 − t , and

Econd(t) = Econd(0)(1 − t)2. Using the asymptotic expressions
relating w̃ to the normal state width lN , one can estimate ω

from experimental data in the limit lN � Lz with

ω = π2ξ (0)LzEcond(0)

7ζ (3)l2
NM2

0

(26)

and in the limit lN � Lz with

ω = ξ (0)Econd(0)

8
(

ln lN
πLz

+ 1
2

)
LzM

2
0

. (27)

2. Behavior of domain width below the transition

A triplet order parameter yields a vanishing correction to
the domain wall energy at the transition. The temperature
dependence of the domain size is in the limit LN � 1,

LS = LN

(
1 − π3

42ζ (3)

LN

�(0)2
(1 − t) + ω

2
(1 − t)3/2

)
, (28)

and in the limit LN � 1,

LS = LN

(
1 − 4(ln LN − 1)

3�(0)2
(1 − t) + ωW

16
(1 − t)3/2

)
.

(29)

So, as in the singlet case, lS always decreases with decreasing
temperature in the vicinity of Tc. However, at a lower
temperature and for a large parameter ω, the behavior for
the triplet case can be significantly different from the singlet
case. Since for a given LN there is a universal curve LS(�)
for the singlet pairing, it is possible to detect an experimental
signature of triplet superconductivity as a deviation from this
curve. This is schematically illustrated in Fig. 10, which shows
the temperature dependence of LS in the singlet and in the
triplet case. When temperature is reduced from Tc [on the
right side where λ(T ) → ∞] to T = 0 [on the left side where
λ(T ) = λ(0)], the LS curve in the triplet case interpolates
between curve (a) obtained with a constant w̃ = w̃t=1 and
curve (b) for w̃ = w̃t=0. The triplet-case curve follows the
singlet-case curve with w̃ = w̃t=1 at high temperature, but at
a lower temperature a deviation appears which is maximum
at T = 0.

In the expression (29) of LS for the triplet pairing, the first-
order term is proportional to L2

z while the second-order term is
proportional to L−2

z , so one can expect that the singlet/triplet
discrepancy can be amplified when reducing the thickness of
the film. As shown in Fig. 10, this discrepancy is enhanced
when the ratios λ(0)/Lz and w̃t/Lz become larger. For small
enough thickness the difference is not only quantitative but
is also qualitative, as the triplet-pairing curve can increase
with decreasing temperature while the singlet-pairing curve
decreases.

FIG. 10. (Color online) Schematic temperature dependence of
the domain width lS for the singlet case (thin solid lines) and for the
triplet case (thick solid lines) in (i) a film of thickness Lz and (ii) in
another one with a smaller thickness Lz/4. The dashed-line curves
show the full λ dependence of lS in the case of a constant effective
wall thickness (a) w̃ = w̃t=1 and (b) w̃ = w̃t=0.

IV. CONDITION FOR VORTEX APPEARANCE

In this section we estimate the energy for the creation of
a vortex-antivortex pair in the middle of adjacent domains.
This additional energy is the sum of (i) the energy decrease
when (anti)vortices are driven by screening currents away from
domain boundaries to domain centers and (ii) the concomitant
increase of the interaction energy between one vortex and its
antivortex as they move apart from each other. For simplicity
we neglect the vortex-core energy, assuming the limit of large
κ = λ/ξ .

A. Energy decrease due to the screening current

The force of the screening current acting on a vortex9 is
�0
4π

∫ Lz

−Lz
[∇ × (b − 4πM)] × ez dz, where the quantum of flux

�0 = 2.07 × 10−15 T.m2. When the vortex moves from the
domain wall to the domain center, the current then produces a
work equal to

Wsc = 4W∞
�2L

∞∑
k=0

(−1)k

Q2
z

(
1

Q
− 1

Qz(Qz + Q coth Qz)

)
,

(30)

where W∞ ≡ 2Lz�0M0 is the coupling energy of the flux
carried by one vortex with the magnetization M0 of a
ferromagnetic domain.

The work has simple analytical expressions in limit cases.
In the regime l � λ,

Wsc ≈ W∞

[
1 − 2

π
�L

(
−1,1,

1 + Lzl/πλ2

2

)]
, (31)
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where the Lerch transcendent �L(z,s,a) ≡ ∑∞
k=0 zk/(a + k)s .

If furthermore, l � λ2/Lz, expression (31) can be simplified
as

Wsc ≈ W∞

(
1 − 2λ2

Lzl

)
. (32)

Thus Wsc increases with the width of the domain, and when
the latter becomes large compared to the magnetic radius of
a vortex, the work is simply equal to the coupling energy
W∞ ≡ 2Lz�0M0.

In the opposite regime λ � l, the screening current is
vanishingly small so its work is equal to only a fraction of
W∞. For wide domains (l � Lz) the dependence of Wsc on
the domain width is linear as

Wsc ≈ 4GW∞
π2

l

λeff
, (33)

where Catalan’s constant G ≈ 0.916, while for narrow do-
mains (l � Lz) the dependence is quadratic as

Wsc ≈ W∞
8

l2

λ2
. (34)

B. Interaction energy of a vortex-antivortex chain

The interaction energy of a chain composed of one vortex
(antivortex) located at the center of every domain of positive
(negative) magnetization is the magnetic energy required to
separate by a distance l vortices and their paired antivortices
created at domain walls. In the case λ � l or λeff � l, the
energy per one vortex19 has the asymptotic expression

Evv = 2Lz

(
�0

4πλ

)2

ln
l

ξ
. (35)

We have assumed ξ � l. In a large-κ superconductor with
ξ (0) � l, there is always a temperature regime close to Tc in
which λ � l � ξ .

In the opposite limit, for l � λeff � Lz the interaction
energy per vortex is

Evv = 2Lz

(
�0

4πλ

)2

ln
λeff

ξ
, (36)

while for Lz � l � λ it is

Evv = 2Lz

(
�0

4πλ

)2

ln
λ

ξ
. (37)

C. Condition for the appearance

From the above results we can derive the condition of
the vortex stability in a superconducting domain structure.
The latter is assured when the total energy per vortex Etot =
Evv − Wsc is negative. This condition defines a critical value
of magnetization Mv above which vortices appear. One can
distinguish four regimes in which Mv has a simple analytical
expression. In a film with narrow domains (i.e., l � Lz),

4πMv = �0

4πλ2
ln

(
λ

ξ

)
when l � λ (38)

and

4πMv = 2�0

πl2
ln

(
l

ξ

)
when l � λ. (39)

Note that Eq. (38) recovers the expected result that vortices
appear when the magnetization 4πM0 exceeds the lower
critical field of a nonmagnetic superconductor defined as
H ∗

c1 ≡ �0
4πλ2 ln(λ

ξ
). However, when the penetration depth is larger

than the domain width, the coupling of the vortex flux with the
DS magnetization is not energetically optimum so the critical
magnetization (39) is higher than the monodomain value H ∗

c1.
In the opposite limit of wide domains (i.e., l � Lz), the

critical magnetization is

4πMv = �0

4πλ2
ln

(
λeff

ξ

)
for l � λeff, (40)

while

4πMv = π�0

16GLzl
ln

(
l

ξ

)
for l � λeff . (41)

In this regime of parameters, ln (λeff/ξ ) � ln (λ/ξ ) so
Eqs. (40) and (41) can be interpreted as an extension of results
Eqs. (38) and (39) for the limit l � Lz, where λ is replaced
by λeff .

V. APPLICATION TO URANIUM-BASED
SUPERCONDUCTING FERROMAGNETS

According to experimental data (see Table I), the uranium-
based superconductors UGe2, UCoGe, and URhGe are in the
limit lN � Lz. The effective domain wall thickness w̃ can
then be easily calculated in this limit from the experimental
value of the domain width lN in the normal state. We
roughly estimate the zero-temperature condensation energy
with the BCS formula Econd(0) ≈ 0.166Tc�C, where �C is
the jump at Tc of the specific heat per unit volume. Among
the three compounds UCoGe has the smallest magnetization,

TABLE I. Experimental values of the magnetization energy 2πM2
0 , the coherence length ξ (0), the magnetic penetration depth λ(0), the half

thickness Lz, and the normal-state domain width lN in the compounds UGe2,1,20–22 UCoGe,3,20,23,24 and URhGe.2,20,25,26 The effective domain
wall thickness w̃ is obtained from the experimental value of lN and Lz. For an estimate of the condensation energy, we used the BCS formula
Econd ≈ 0.166Tc�C, where �C is the specific heat jump at Tc. The parameter ω is calculated with definition (25).

2πM2
0 (J/m3) ξ (0) (nm) λ(0) (μm) Lz (mm) lN (μm) w̃ (nm) Econd (J/m3) ω

UGe2 14200 15 1 2 4 13.6 40 0.039
UCoGe 51 15 1.2 0.15 2 45 29 2.36
URhGe 3070 18 0.9 0.2 20 3450 30 6.5 ×10−4
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FIG. 11. (Color online) Temperature dependence of the domain
width lS (thick line) calculated with experimental parameters for
UCoGe in a film of half thickness Lz = 150 μm. The thin line is lS(T )
obtained with ω = 0, which corresponds to singlet superconductivity.

resulting in the largest ω ∼ 1 (see Table I). It is then the
most promising candidate for possible observation of the
nonmonotonic temperature dependence of the domain width
in the superconducting phase. Using its estimated parameters,
we plotted the temperature dependence of the domain width
for the singlet and the triplet scenario in a film of half thickness
Lz = 0.15 mm (Fig. 11) and Lz = 3 μm (Fig. 12). For
Lz = 0.15 mm (Fig. 11) the domain width decreases below Tc

in both the singlet and the triplet case, but there is a significant
difference in size at T = 0 between the two. By reducing the
film thickness the discrepancy is amplified. For instance, with
Lz = 3 μm (Fig. 12) one obtains a qualitative difference: for
the triplet case the width increases by 32% from its value in
the normal state, while for the singlet case it shrinks by 21%.

VI. CONCLUSION

We have done the complete analysis, within the London
approximation, of the domain width lS at equilibrium in a
SFM film of arbitrary thickness 2Lz. We have shown that the

FIG. 12. (Color online) Temperature dependence of the domain
width lS (thick line) calculated with experimental parameters for
UCoGe in a film of half thickness Lz = 3 μm. The thin line is lS(T )
obtained with ω = 0, which corresponds to singlet superconductivity.

ratio lS/Lz follows a universal dependence on the normalized
penetration depth λ/Lz and the normalized effective wall
thickness w̃/Lz (see Figs. 4–6). In addition to the exact
numerical dependence, we have derived analytical expressions
of this relation in limit cases. In particular, we have recovered
the previously published results by Fauré and Buzdin7 which
had been established for Lz � λ and lS , and we have
complemented them with the analysis in the opposite limit
Lz � λ and lS .

We have found that the domain width always decreases with
temperature when the DS enters the superconducting phase.
The screening supercurrent induces a decrease of the domain
width if the latter is larger than the penetration depth. However,
the paramagnetic screening suppresses the DS below a critical
value λc of penetration depth, which means that the system may
become monodomain at a finite temperature if λ(0) < λc. The
domain shrinkage is relatively small when the domain width
lN in the normal state is much larger than the film thickness.
Indeed, in this limit the width decreases as λ2/Lz, which is
only a fraction smaller than lN since λc �

√
LzlN . With the

other limiting shape of domains, i.e., lN � Lz, the shrinkage
can be important since then the domain width decreases as λ

while the critical penetration depth λc ∼ l2
N/Lz � lN .

Furthermore, we have investigated the effect of the triplet
pairing within an effective temperature-dependent renormal-
ization of the domain wall energy. Actually, the DS magnetiza-
tion alternatively suppresses the order-parameter components
with opposite spin projections. This inhomogeneity results in
an additional positive contribution to the domain wall energy
that is absent for the singlet pairing. The supplementary term
vanishes at the transition temperature but can be significant at
a lower temperature. The variation of the domain width is then
no more described by the universal dependence of lS/Lz on
λ/Lz obtained for the singlet case. This gives a phenomeno-
logical way of distinguishing triplet from singlet pairing in
experiments. And, as we have shown, the discrepancy can be
amplified by reducing the film thickness (see Figs. 11 and
12). Note that in the case of singlet superconductivity, the pair
breaking effect due to magnetic moments is weakened near
the domain walls. This may result in a small decrease of the
domain wall energy due to superconductivity contribution, in
contrast to triplet case.

We have also established that vortices can appear when
the magnetization exceeds a critical value 4πMv . In narrow
domains (i.e., l � Lz), the latter is equal to the lower critical
field H ∗

c1 of a nonmagnetic superconductor if λ � l, but in
the opposite limit λ � l, it is much larger than H ∗

c1. For
wide domains (i.e., l � Lz) we have found that the critical
magnetization behaves similarly, with the difference that λ is
then replaced by Pearl’s effective penetration depth λeff .

The available experimental data (Table I and Refs. 1–3,20–
26) for UGe2, URhGe, and UCoGe show that in these com-
pounds l � Lz and the conditions for the vortices appearance
(Sec. IV) are fulfilled. This means that the effects of domain
shrinkage (considered in Sec. III for the case where the vortices
are absent) should be weakened. Another difficulty to exper-
imentally observe the evolution in the superconducting state
may be related to the pinning of the domain wall and/or vortex
pinning. At present there are no convincing experimental data
on the change of the domain structure below Tc.
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It has been recently observed in S/F bilayers13,14 that
the coupling between vortices and magnetic domains leads
to a strong shrinkage of domains in the presence of the
oscillating field used for equilibration of the domain struc-
ture. It would be interesting to perform similar experiments
with superconducting ferromagnets to study these coupling
effects.
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APPENDIX: THE FUNCTION I(�)

We define the function I (�) as the integral

I (�) ≡
∫ ∞

0

u du√
1

�2 + u2
3 (√

1
�2 + u2 + u coth

√
1

�2 + u2
) .

(A1)

1. Limit � � 1

The integral can be rewritten as

I (�) =
∫ ∞

0

u du

(�−2 + u2)(�−2 + u2 + u)

+
∫ ∞

0

u2(1 − √
�−2 + u2 coth

√
�−2 + u2)du

(�−2 + u2)(�−2 + u2 + u)(�−2 + u2 + u
√

�−2 + u2 coth
√

�−2 + u2)
,

so by using the approximations√
�−2 + u2 coth

√
�−2 + u2 ≈ 1 + (�−2 + u2)/3 in the

numerator and ≈1 in the denominator when u < 1, and√
�−2 + u2 coth

√
�−2 + u2 ≈ u when u > 1,

I (�) ≈
∫ ∞

0

u du

(�−2 + u2)(�−2 + u2 + u)

− 1

3

∫ 1

0

u2 du

(�−2 + u2 + u)2

+
∫ ∞

1

u2(1 − u)du

(�−2 + u2)(�−2 + u2 + u)(�−2 + 2u2)
.

Then for � � 1,

I (�) ≈ π�

2
− 2 ln � − 11

12
+ ln 2. (A2)

2. Limit � � 1

In the limit � � 1, coth
√

�−2 + u2 ≈ 1, then

I (�) ≈
∫ ∞

0

u du√
1

�2 + u2
3 (√

1
�2 + u2 + u

)
= �2

∫ ∞

0

v dv
√

1 + v23
(
√

1 + v2 + v)

≈ (1 − ln 2)�2. (A3)
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