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Effect of nearby Pearl vortices upon the Ic versus B characteristics of planar Josephson junctions
in thin and narrow superconducting strips

John R. Clem
Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA

(Received 7 September 2011; published 3 October 2011)

In this paper I show how to calculate the effect of a nearby Pearl vortex or antivortex upon the critical current
Ic(B) when a perpendicular magnetic induction B is applied to a planar Josephson junction in a long, thin,
superconducting strip of width W much less than the Pearl length � = 2λ2/d , where λ is the London penetration
depth and d is the thickness (d < λ). The theoretical results provide a qualitative explanation of unusual features
recently observed experimentally by Golod et al. [Phys. Rev. Lett. 104, 227003 (2010)] in a device with a similar
geometry.
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I. INTRODUCTION

Golod et al.1 recently reported the use of a planar Nb-
CuNi-Nb Josephson junction of length W = 3.8 μm to detect
the presence of a nearby Abrikosov vortex. A hole of diameter
∼30 nm was fabricated in the Nb film at a distance 0.29 μm
from the center of the junction. The hole could be used to trap
a vortex, which carries magnetic flux φ0 = h/2e in the same
direction as a positive applied magnetic induction B, or an
antivortex, which carries φ0 in the opposite direction. Without
a vortex or antivortex in the hole, the Josephson critical current
Ic(B) vs B exhibited a central maximum with secondary
peaks roughly resembling the familiar Fraunhofer single-slit
diffraction pattern. However, when an antivortex was trapped
in the hole, (i) the central maximum was replaced by a
minimum, (ii) the Ic(B) pattern was shifted by �� ≈ φ0/2,
(iii) an approximate doubling of the periodicity appeared on
one side of the pattern, leading to a clear left-right asymmetry,
and (iv) when a vortex was trapped in the hole, the Ic(B)
pattern was the mirror image of that for an antivortex.

To calculate Ic(B) vs B using the exact geometry and
material properties used in Ref. 1 would be a very difficult
numerical problem. Instead, in this paper I consider a simpler
geometry (see Fig. 1) and solve for Ic(B) vs B in the
presence of a nearby vortex or antivortex in the limit that
the strip width W is much less than the Pearl length,2

� = 2λ2/d, where λ is the London penetration depth and
d is the strip thickness (d < λ). This assumption affords
two important simplifications. An applied magnetic induction
B = ẑB induces screening currents in the film, but when
W � �, the self-field generated by the screening currents
can be neglected.3,4 Moreover, in this limit a vortex in the
strip is best described as a Pearl vortex,2 whose properties are
totally dominated by the 1/r sheet-current density circulating
around the vortex core generated by the gradient of the order
parameter’s phase; within a distance r � � from the vortex
core the vortex’s self-field can be neglected.

Various studies have shown that there is a nonlocal
relationship between the Josephson-current distribution in the
vicinity of a Josephson vortex core and the magnetic field
these currents generate,5–10 and when � � �, the charac-
teristic length describing the spatial variation of the gauge-
invariant phase across the junction is � = φ0/4πμ0λ

2jc, where

φ0 = h/2e is the superconducting flux quantum and jc

(assumed to be independent of position) is the maximum
Josephson current density that can flow as a supercurrent
through the junction. When � � �, the characteristic length
scale is

√
��.10 In this paper I assume that the junction length

obeys both W � � and W � √
��, such that the conditions

are equivalent to the short-junction limit in sandwich-type
Josephson junctions.11,12

The purpose of this paper is first to review how the screening
current and the phase gradient induced in response to B affect
Ic(B) and then to calculate how Ic(B) is affected by the
screening current and its phase gradient generated by a vortex
or antivortex trapped near the junction.

II. GAUGE-INVARIANT PHASE DIFFERENCE

In the context of the Ginzburg-Landau (GL) theory,13,14

the superconducting order parameter can be expressed as ψ =
ψ0f eiγ , where ψ0 is the magnitude of the order parameter in
equilibrium, f = |ψ |/ψ0 is the reduced order parameter, and
γ is the phase. The second GL equation (in SI units) is

K = − 2f 2

μ0�

(
A + φ0

2π
∇γ

)
, (1)

where K = jd is the sheet-current density, A is the vector
potential, and B = ∇ × A is the magnetic induction. Since
K is a gauge-invariant quantity, so is the quantity within the
parentheses on the right-hand side. Different choices for the
gauge of the vector potential A result in different expressions
for γ .

Consider the planar Josephson junction sketched in Fig. 1.
With a sinusoidal current-phase relation, the Josephson current
density in the x direction across the junction of width di

at x = 0 is Kx(y) = Kc sin �γ (y), where Kc = jcd is the
maximum Josephson sheet-current density and �γ (y) is the
gauge-invariant phase difference between the left (a) and right
(b) superconductors,

�γ (y) = γa

(
−di

2
,y

)
− γb

(
di

2
,y

)
− 2π

φ0

∫ di/2

−di/2
Ax(x,y)dx.

(2)
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FIG. 1. Considered here is a long, thin, superconducting strip of
width W with a planar Josephson junction of width di (bold line) at
x = 0 separating the two halves a and b. Current leads (not shown)
symmetrically feed current I to the sample along the x direction. A
magnetic induction B can be applied in the z direction. A possible
vortex position on side b is shown by the black point with coordinates
(xv,yv).

I assume here that the induced or applied sheet-current
densities K a and K b on the left- and right-hand sides of the
junction are so weak that the suppression of the magnitude
of the superconducting order parameter is negligible, such
that f = 1. A simple relation between these current densities
and the gauge-invariant phase difference can be obtained
by integrating the vector potential A around a very narrow
rectangular loop of width di in the xy plane that just encloses
the junction (with the bottom end at the origin and the top end
at y), neglecting the magnetic flux up through the contour, and
making use of Eq. (1) with f = 1 for those portions of the
integration along the sides of the junction:

�γ (y) = �γ0 + πμ0�

φ0

∫ y

0
[Kby(0,y ′) − Kay(0,y ′)]dy ′,

(3)

where �γ0 = �γ (0). In the presence of both an applied
magnetic induction B and trapped vortices, the sheet-current
density in general is the vector sum of three contributions:4,15

K = K J + KB + K v , where K J is generated by the injection
of Josephson currents across the junction, KB is induced by
the applied magnetic induction B, and K v is generated by the
trapped vortices.

The short-junction-limit assumption that both W � � and
W � √

�� allows us to neglect the contributions from K J

on the right-hand side of Eq. (3).4,15 Thus there are only two
contributions to the sheet-current density and gauge-invariant
phase difference we need to calculate: KB and �γB induced
by the applied magnetic induction and K v and �γv generated
by any nearby trapped vortices.

III. �γB INDUCED BY AN APPLIED FIELD WHEN NO
VORTICES ARE TRAPPED NEARBY

Let us first calculate the contributions to the sheet-current
density KB and the gauge-invariant phase difference �γB

generated by a perpendicularly applied magnetic induction

B = Bẑ. Since KBa and the corresponding phase field γBa

easily can be obtained by symmetry from KBb and γBb, we
can calculate only the latter in the region x > 0 and suppress
the subscript b.

With the gauge choice A = −x̂By, since ∇ · KB = 0 [see
Eq. (1)], ∇2γB = 0 must be solved subject to the boundary con-
ditions following from KBx(0,y) = 0 and KBy(x, ± W/2) =
0, namely, γBx(0,y) = 2πBy/φ0 and γBy(x, ± W/2) = 0,

where γBx = ∂γB/∂x and γBy = ∂γB/∂y. The solution for
x > 0, obtained by the method of separation of variables, is4

(up to a constant)

γB(x,y) = −8BW 2

π2φ0

∞∑
n=0

(−1)nexp[−(2n+1)X] sin[(2n+1)Y ]

(2n + 1)3

= iBW 2

2π2φ0
e−(X+iY )[−�(−e−2(X+iY ),3,1/2)

+ e2iY �(−e−2(X−iY ),3,1/2)], (4)

where X = πx/W , Y = πy/W , and �(z,s,a) =∑∞
k=0 zk/(k + a)s is the Lerch transcendent.16 Since

γb(di/2,y) in Eq. (2) corresponds to γB(0,y) and
γa(−di/2,y) = −γB(0,y) by symmetry, the gauge-invariant
phase difference given in Eq. (2) can be obtained from Eq. (4)
as �γB(y) = −2γB(0,y):

�γB(y) = 16BW 2

π2φ0

∞∑
n=0

(−1)n sin[(2n + 1)Y ]

(2n + 1)3

= iBW 2

π2φ0
e−iY [�(−e−2iY ),3,1/2)

− e2iY �(−e2iY ),3,1/2)]. (5)

The maximum value of �γB(y) occurs at y = W/2, where

�γB(W/2) = 14ζ (3)BW 2

π2φ0
= 1.705

BW 2

φ0
(6)

and ζ (3) = 1.202 06 is the Riemann zeta function. Figure 2(a)
shows a plot of �γB(y)/�γB(W/2) vs y/(W/2) and for
comparison sin(πy/W ) vs y/(W/2). If desired, the x and y

components of the induced sheet-current density KB(x,y) can
be obtained from Eqs. (1) and (4).

The Josephson critical current Ic(B), the maximum integral
of Kc sin[�γ0 + �γB(y)] over y from −W/2 to W/2, occurs
when �γ0 = ±π/2, such that

Ic(B)

Ic0
= 1

W

∣∣∣∣
∫ W/2

−W/2
cos[�γB(y)]dy

∣∣∣∣ , (7)

where �γB(y) is given in Eq. (5) and Ic0 = KcW . The solid
curve in Fig. 2(b) shows a plot of Ic(B)/Ic0 vs BW 2/φ0.
As noted in Ref. 3, the maxima of Ic(B) decrease as 1/

√
B

instead of 1/B as in the familiar (Fraunhofer-like) bulk case.
Moreover, the spacings between the minima of Ic(B) are not
all the same, in contrast to the Fraunhofer pattern.

Let us define �B1 as the value of B at which Ic(B) has its
first zero, �B2 as the difference of the values at which Ic(B)
has its second and first zeros, and �Bn as the difference of the
values at which Ic(B) has its nth and (n − 1)th zeros. For large
n, the �Bn approach the limiting value

�B = [π3/14ζ (3)]φ0/W 2 = 1.842φ0/W 2, (8)
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π
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FIG. 2. (a) �γB (y)/�γB (W/2) from Eq. (5) vs y/(W/2) (solid
curve). For y < 0, note that �γB (−y) = −�γB (y). For comparison,
the dashed curve shows sin(πy/W ). (b) Ic(B)/Ic0 from Eq. (5) vs
BW 2/φ0 (solid curve). The dashed curve shows the Bessel-function
approximation of Eq. (9).

as pointed out in Refs. 17 and 18. The �Bn are smaller for small
n than for large n. Numerical evaluation of Eq. (7) yields the
following values for n = 1, 2, 3, 4, and 5: �Bn/�B = 0.8173,
0.9866, 0.9946, 0.9968, and 0.9979. The first minimum of
Ic(B) occurs to the left or right of the origin B = 0 at �B1 =
1.505φ0/W 2, as can be seen in Fig. 2(b).

If the y dependence of �γB(y) is approximated by a sine
function as in the dashed curve in Fig. 2(a), then the integral
in Eq. (7) can be evaluated in terms of the Bessel function J0

with the result

Ic(B)

Ic0
=

∣∣∣∣J0

(
14ζ (3)BW 2

π2φ0

)∣∣∣∣ , (9)

shown as the dashed curve in Fig. 2(b). For large n, the spacing
between zeros for this approximation to Ic(B) is exactly the
same as in Eq. (8), but from the well-known zeros of J0(x), we
find the following values for n = 1, 2, 3, 4, and 5: �Bn/�B

= 0.7655, 0.9916, 0.9975, 0.9988, and 0.9993.

IV. �γv GENERATED BY A PINNED VORTEX WHEN NO
MAGNETIC FIELD IS APPLIED

Let us next calculate the contributions to the sheet-current
density K v and the gauge-invariant phase difference �γv

generated by a z-oriented Pearl vortex centered at (xv,yv)
in side b, as shown in Fig. 1. Since we are considering the
limit W � �, we can ignore the magnetic field generated by
the vortex but we must correctly account for the boundary
conditions on the sheet-current density K vb circulating around
the vortex on side b. Because W � �, the current density on

γ π

π

π

π

π

π

π

ππ

π

π

π

FIG. 3. Contour plot of the phase γv(xv,yv; x,y) in the region
x > 0 around a Pearl vortex at (xv,yv) = (0.5W,0).

side a is negligibly small (K va = 0). Since we also may take the
vector potential A to be negligibly small, Eq. (1) and ∇ · K v =
0 yield the equation ∇2γv = 0, which must be solved subject
to the boundary conditions following from Kvx(0,y) = 0 and
Kvy(x, ± W/2) = 0: γvx(0,y) = γvy(x, ± W/2) = 0, where
γvx = ∂γv/∂x and γvy = ∂γv/∂y. In addition, γv must increase
by 2π when traversing a closed contour clockwise around
the vortex axis: ∇ × ∇γv = −ẑ2πδ(x − xv)δ(y − yv). The
solution, obtained using conformal mapping, is

γv(xv,yv; x,y) = Im ln

(
w(ζ ) − w∗(ζv)

w(ζv) − w(ζ )

)
, (10)

where Im denotes the imaginary part, ζ = x + iy, ζv = xv +
iyv , and w(ζ ) = i sinh(πζ/W ). Figure 3 shows a plot of
the vortex-generated phase when the vortex is at (xv,yv) =
(0.5W,0), and Fig. 4 shows a similar plot but with more
contours for a vortex at (xv,yv) = (0.25W,0.25W ). If desired,
the x and y components of the induced sheet-current density
KB(x,y) can be obtained from Eqs. (1) and (10).

FIG. 4. Contour plot of the phase γv(xv,yv; x,y) in the region
x > 0 around a Pearl vortex at (xv,yv) = (0.25W,0.25W ).
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In the limit W � � when there is no vortex on side
a, γa(−di/2,y) = 0, while γb(di/2,y) = γv(xv,yv; 0,y). Since
we can neglect the vector potential A, Eq. (2) thus yields the
gauge-invariant phase difference for a Pearl vortex (up to a
constant) �γv(y) = −γv(xv,yv; 0,y), i.e.,

�γv(y)= − 2 tan−1

[
sin

(
πy

W

) − cosh
(

πxv

W

)
sin

(
πyv

W

)
sinh

(
πxv

W

)
cos

(
πyv

W

)
]

. (11)

The sign of �γv(y) is reversed for a Pearl antivortex.
In zero applied field, the Josephson critical current Ic,

the maximum integral of Kc sin[�γ0 + �γv(y)] over y

from −W/2 to W/2, occurs in general when tan �γ0 =
cos �γv/sin �γv , where

sin �γv = 1

W

∫ W/2

−W/2
sin[�γv(y)]dy, (12)

cos �γv = 1

W

∫ W/2

−W/2
cos[�γv(y)]dy, (13)

such that, since Ic0 = KcW ,

Ic = Ic0
(
sin �γv

2 + cos �γv
2)1/2

. (14)

When a singly quantized (N = 1) vortex or antivortex is
trapped on the x axis, as in Fig. 3, �γv(y) is an odd function
of y, such that sin �γv = 0, and

Ic

Ic0
= |cos �γv| =

∣∣∣1 − 2 tanh
(πxv

W

)∣∣∣. (15)

Thus Ic = 0 at one point along the xv axis, xv/W =
tanh−1(1/2)/π = 0.175. The reason for this behavior is il-
lustrated in Fig. 5. Note that |cos �γv| ≈ 1 for xv/W = 0.001
and 2, but that |cos �γv| = 0 for xv/W = 0.175. See also
Fig. 6(a) for N = 1.

Similarly, when a doubly quantized vortex (or antivortex)
is trapped on the x axis and the gauge-invariant phase �γv is
doubled,

Ic

Ic0
=

∣∣∣1 − 4 tanh
(πxv

W

) [
1 − tanh2

(πxv

W

)] ∣∣∣, (16)

such that Ic = 0 at two points along the xv axis, xv/W = 0.088
and 0.386 [see Fig. 6(a), N = 2]. When a triply quantized

FIG. 5. (Color online) Plot of cos[�γv(y)] vs y/W for a singly
quantized Pearl vortex or antivortex on the x axis (yv/W = 0) for
xv/W = 0.001 (blue), 0.05 (black), 0.175 (red), 0.4 (purple), and 2
(blue).

(a)

(b)

(c)

FIG. 6. Plot of the critical current for a singly (N = 1, solid),
doubly (N = 2, dashed), or triply (N = 3, dotted) quantized Pearl
vortex or antivortex at (xv,yv) as a function of its distance xv from
the junction for (a) yv = 0, (b) 0.2W , and (c) 0.4W .

vortex is trapped on the x axis and the gauge-invariant phase
�γv is tripled,

Ic

Ic0
=

∣∣∣1 − 2 tanh
(πxv

W

)
×

[
3 − 8 tanh2

(πxv

W

)
+ 6 tanh4

(πxv

W

)] ∣∣∣, (17)

such that Ic = 0 at three points along the xv axis, xv/W =
0.059, 0.232, and 0.513 [see Fig. 6(a), N = 3]. However, when
the vortex is trapped at a position off the x axis, as in Fig. 4,
the zeros of Ic are replaced by minima. As shown in Figs. 6(b)
and 6(c), Ic vs xv exhibits one minimum for a singly quantized
vortex (N = 1), two for a doubly quantized vortex (N = 2),
and three for a triply quantized vortex (N = 3).

V. �γ GENERATED WHEN A MAGNETIC FIELD IS
APPLIED IN THE PRESENCE OF A PINNED VORTEX

OR ANTIVORTEX

We are now in a position to calculate how the Ic(B)
characteristics calculated in Sec. III are affected by the
presence of a vortex, described in Sec. IV. Since the resulting
gauge-invariant phase difference �γ is (aside from a constant)
simply the sum of the contributions �γB and �γv (and the
resulting sheet-current density K is the sum of KB and K v),
the junction critical current in the presence of both an applied
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magnetic induction B = ẑB and a z-directed Pearl vortex at
(xv,yv) is given by

Ic(B)/Ic0 = (sin �γ
2 + cos �γ

2
)1/2, (18)

where Ic0 = KcW and the averages are calculated as in
Eqs. (12) and (13) but with �γ (y) = �γB(y) + �γv(y). For
the case of an applied magnetic induction and an antivortex,
the sign of �γv(y) is reversed, and the averages are calculated
with �γ (y) = �γB(y) − �γv(y). For a vortex or an antivortex
on the x axis, since both �γB(y) and �γv(y) when yv = 0 are
odd functions of y, sin �γ = 0, and Ic(B)/Ic0 = |cos �γ |.

Figure 7 exhibits the interesting behavior of how the pattern
of Ic(B) vs B depends upon the position of a nearby Pearl
antivortex at x = xv and y = 0. First let us focus on the
behavior of Ic(0), which corresponds to the case discussed
in Sec. IV. In the limit as xv/W → 0 [blue point in Fig. 7(a)]
the critical current is simply Ic0 = KcW . However, as the
antivortex moves away from the junction, Ic(0) drops to
smaller values [black point at xv/W = 0.05 in Fig. 7(a)] and
becomes zero [red point at xv/W = 0.175 in Fig. 7(a)]. As
xv increases further, Ic(0) rises [purple point at xv/W = 0.4
in Fig. 7(a)] and approaches Ic0 = KcW as xv/W → ∞ as
shown in Fig. 7(a).

Next let us focus on the minimum at B = Bmin, where
initially in the limit xv/W → 0 [blue point at xv/W = 0 in
Fig. 7(b) and blue dotted curve in Fig. 7(c)] BminW

2/φ0 =
−1.505, to the left of the origin of Fig. 7(c). As the antivortex
moves away from the junction, this minimum moves to the
right, as shown by the black point at xv/W = 0.05 in Fig. 7(b)
and the black solid curve in Fig. 7(c). When the antivortex
reaches the point xv/W = 0.175 [red point in Fig. 7(b) and
red dashed curve in Figs. 7(c) and 7(d)], the minimum occurs
at B = 0. As xv increases further, this minimum continues to
move to the right [purple point at xv/W = 0.4 in Fig. 7(b) and
purple solid curve in Fig. 7(d)]. As xv/W → ∞, the minimum
occurs at BminW

2/φ0 = +1.505, as shown in Fig. 7(b), and the
pattern of Ic(B)/Ic0 becomes the same as in the absence of a
vortex or antivortex [blue dotted curve in Fig. 7(d) or black
solid curve in Fig. 2(b)].

Now let us examine the behavior of the pattern of primary
and secondary maxima in Ic(B)/Ic0 as xv increases. When
xv/W = 0, there is a secondary maximum of height 0.34 at
BW 2/φ0 = −2.33 and a primary maximum of height 1.00
at BW 2/φ0 = 0 [blue dotted curve in Fig. 7(c)]. As xv/W

increases, the secondary maximum moves to the right and
grows in height until it becomes the primary maximum, while
the primary maximum also moves to the right but decreases in
height until it becomes a secondary maximum. These changes
can be seen in Fig. 7 in the progression of the black solid curve
in (c), the red dashed curve in (c) and (d), the purple solid curve
in (d), and the blue dotted curve in (d).

Finally we note the asymmetry of the pattern of the primary
and secondary maxima as xv increases. Although Ic(B)/Ic0 has
mirror symmetry in the limits xv/W → 0 and xv/W → ∞,
as shown by the blue dotted curves in Figs. 7(c) and 7(d),
this symmetry is broken for intermediate values of xv/W . The
asymmetry is most pronounced for 0 < xv/W � 0.175. For
example, for xv/W = 0.05 [black solid curve in Fig. 7(c)],
the secondary maxima decrease monotonically for increasing

φ

φ

φ

FIG. 7. (Color online) Behavior of the critical current for an
antivortex at x = xv and y = yv = 0: (a) Normalized critical current
Ic/Ic0 vs xv/W at B = 0. (b) Normalized position of the minimum of
Ic(B) nearest the origin, BminW

2/φ0 vs xv/W . (c) Normalized critical
current Ic(B)/Ic0 vs BW 2/φ0 for xv/W = 0 (blue dotted curve), 0.05
(black solid curve), and 0.175 (red dashed curve. (d) Normalized
critical current Ic(B)/Ic0 vs BW 2/φ0 for xv/W = 0.175 (red dashed
curve), 0.4 (purple solid curve), and ∞ (blue dotted curve).

B > 0 and have nearly the same period. However, for negative
B the heights of the secondary maxima are irregular, and
the larger secondary maxima have approximately double the
period of those for B > 0. These effects also occur for
xv/W = 0.175 [red dashed curve in Figs. 7(c) and 7(d)] but are
less pronounced. For xv/W = 0.4 [purple curve in Fig. 7(d)],
asymmetry is present, with the secondary peaks for B < 0
lower than those for B > 0, but the period doubling is no
longer present.
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φ

φ

(a)

(b)

FIG. 8. (a) �γ (y) and (b) cos[�γ (y)] when xv/W = 0.05 and
yv = 0 [black solid curve in Fig. 7(c)] for the first three maxima for
positive B, for which BW 2/φ0 and Ic(B)/Ic0 are 0.332 and 0.759,
2.506 and 0.323, and 4.373 and 0.236, respectively.

The basic reason for the asymmetry of Ic(B) about B = 0
when yv = 0 is that Ic(B)/Ic0 = |cos �γ |, where �γ (y) =
�γB(y) − �γv(y). Although �γB(y) is an antisymmetric
function of B, −�γv(y) is independent of B, so that when
B �= 0, �γ (y) is neither symmetric nor antisymmetric about
B = 0. The effects of this asymmetry can be very pronounced,
as seen in the example of the black solid curve in Fig. 7(c).
Plots of �γ (y) and cos[�γ (y)] calculated for xv/W = 0.05,
shown in Fig. 8 at the first three maxima for B > 0 and
Fig. 9 at the first three maxima for B < 0, show the dramatic
differences responsible for the asymmetry of Ic(B)/Ic0 and the
approximate period doubling for B < 0.

Numerical calculations of how the Ic(B) vs B patterns
for a doubly (N = 2) or triply (N = 2) quantized antivortex
on the x axis evolve as xv increases from zero to values of
order W or larger reveal behavior similar to those for a singly
(N = 1) quantized antivortex shown in Fig. 7. As xv increases,
the patterns shift to the right, and for intermediate values of
xv the maxima decrease monotonically for B > 0 but have
irregular heights for B < 0. The chief difference from the
behavior for N = 1 is that Ic(0) passes through zero twice
for N = 2 and three times for N = 3 in accordance with
Fig. 6(a).

VI. SUMMARY

In this paper I first reviewed how the gauge-invariant
phase difference �γ (y) across a planar Josephson junction
in a long, thin, superconducting film is affected by the
sheet-current distributions on opposite sides of the junc-
tion. The assumptions that W � � and W � � made it
possible to calculate the two relevant independent contri-
butions to the gauge-invariant phase difference: �γB(y)
due to the perpendicular applied magnetic induction B and

φ

φ

(b)

(a)

FIG. 9. (a) �γ (y) and (b) cos[�γ (y)] when xv/W = 0.05 and
yv = 0 [black solid curve in Fig. 7(c)] for the first three maxima for
negative B, for which BW 2/φ0 and Ic(B)/Ic0 are −2.069 and 0.750,
−4.087 and 0.013, and −5.797 and 0.363, respectively.

�γv(y) due to a nearby trapped Pearl vortex or antivortex.
After calculating the critical current Ic of the junction for
these two contributions separately, I calculated Ic(B) when
both B is applied and a vortex or antivortex is near the
junction.

The features observed in the calculated Ic(B) vs B charac-
teristics show many features in common with the experimental
Ic(B) vs B characteristics observed recently by Golod et al.1

The dashed curve in Fig. 10 shows the calculated curve of Ic(B)
vs B in the absence of a vortex or antivortex, which shows
perfect mirror symmetry about B = 0, a primary maximum
at B = 0 and secondary maxima of monotonically decreasing
heights for increasing |B|. The corresponding experimental
curve [Fig. 3(a) in Ref. 1] shows approximate mirror symmetry
about B = 0, a primary maximum at B = 0, and secondary
maxima, which generally decrease in height for increasing
|B| but not monotonically. The spacings of the minima and

φ

FIG. 10. Theoretically calculated normalized critical current
Ic(B)/Ic0 vs BW 2/φ0 in the absence of a vortex or antivortex (dashed
curve) and in the presence of an antivortex at xv/W = 0.077 and
y = yv = 0 (solid curve).
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φ

FIG. 11. Theoretically calculated normalized critical current
Ic(B)/Ic0 vs BW 2/φ0 in the presence of a doubly quantized antivortex
(N = 2, dashed) and a triply quantized antivortex (N = 3, solid) at
xv/W = 0.077 and y = yv = 0.

maxima along the B axis increase for increasing |B|, as
expected from the discussion in the paragraph containing
Eq. (8).

Figure 3(b) in Ref. 1 showed Ic(B) vs B for one antivortex
trapped in a hole at a distance 0.29 μm from the center
of the junction, whose length was 3.8 μm. In our model
of the experiment, this corresponds to having an antivortex
at xv/W = 0.29/3.8 = 0.077 and yv = 0, for which the
calculated Ic(B) vs B is shown by the solid curve in Fig. 10.
This curve shows a primary maximum shifted to the left of
B = 0 with secondary maxima to the right of the primary
maximum monotonically decreasing for increasing B, and
secondary maxima of irregular heights to the left of the

primary maximum showing an approximate period doubling.
The experimental plot of Ic(B) vs B, shown in Fig. 3(b) in
Ref. 1, exhibits similar features: a primary maximum shifted
to the left of B = 0, secondary maxima to the right of the
primary maximum monotonically decreasing for increasing
B, and secondary maxima of irregular heights to the left of the
primary maximum showing an approximate period doubling.
However, the experimental Ic(B) showed a minimum at B = 0,
while the theoretical curve has this minimum shifted to the left
of the origin.

Figure 11 shows theoretical predictions of Ic(B) vs B

patterns for a doubly quantized antivortex (N = 2, dashed) or
a triply quantized antivortex (N = 3, solid) trapped in the hole
at xv/W = 0.077 and yv = 0. Note the monotonic decrease of
the maxima for B > 0 and irregular heights for B < 0.

Although the theoretical model does not assume the exact
geometry and material properties of the sample used in Ref. 1,
the theoretical results presented here provide a good quali-
tative and semiquantitative explanation of the experimental
results.
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