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Tunable multiphoton Rabi oscillations in an electronic spin system
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We report on multiphoton Rabi oscillations and controlled tuning of a multilevel system at room temperature
(S = 5/2 for Mn2+:MgO) in and out of a quasiharmonic level configuration. The anisotropy is much smaller than
the Zeeman splittings, e.g., the six-level scheme shows only a small deviation from an equidistant diagram. This
allows us to tune the spin dynamics by compensating for the cubic anisotropy with either a precise static-field
orientation or a microwave field intensity. Using the rotating-frame approximation, the experiments are explained
very well by both an analytical model and a generalized numerical model. The calculated multiphoton Rabi
frequencies are in excellent agreement with the experimental data.
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I. INTRODUCTION

Harmonic systems are a basic manifestation of quantum
mechanics and appear in various forms, down to the nanoscale,
as electromagnetic or mechanical oscillators. In the case
of a finite number of excited states, multilevel systems are
proposed to perform quantum algorithms in size-limited1,2

or scalable3 schemes by using microwave (MW) pulses to
generate entangled states. The coherent manipulation of spins
in a multilevel system is fundamental to the implementation of
the Grover algorithm.4 At the same time, the quasiharmonic
nature of the system can lead to interesting effects, where
the system behavior is tunable between a multi-level and a
two-level type of system.5

Spin systems benefit from relatively large coherence and
relaxation times, which makes them suitable as quantum-
bit implementations or as a different type of quantum
random access memory.6–9 In some studies, the spin qubit
operation is demonstrated at temperatures up to ambient.10

Recent studies demonstrated that in diluted systems, spin-spin
dipolar interactions are sufficiently low to allow coherent,
quantum manipulations. Such situations are well exemplified
by systems such as the nitrogen-vacancy color centers in
diamonds,11,12 N atoms in C60,13 Er3+,14,15 and Cr5+ (Ref. 16)
ions and molecular magnets.17,18

In a previous work5 we demonstrated multiphoton spin
coherent manipulation in a multilevel system (Mn2+) diluted
in MgO, a highly symmetric nonmagnetic matrix. In this
work we report on the possibility of using a multilevel
system to tune the Rabi oscillations using a combination
of two parameters: microwave power and/or magnetic-field
orientation. To this end, one needs a magnetic system with
a well-defined anisotropy, but sufficiently small in size to
be overcome by microwave amplitudes achievable in typical
experimental conditions.

The S = 5/2 Mn2+ spin is our system of choice. As
detailed in Sec. II, the crystalline anisotropy for this high
cubic symmetry is orders of magnitude smaller than the
magnetic (Zeeman) energy and therefore the multilevel system
is quasiharmonic. This is essential for successful multiphoton

spin manipulation and for state tunability by magnetic-field
orientation. At the same time, the anisotropy remains smaller
than or comparable to the microwave drive, an aspect that is
essential for tunability by drive.

In this S = 5/2 system we demonstrate multiphoton Rabi
oscillations and controlled tuning of the system in and out of
a quasiharmonic level configuration. Using the rotating-frame
approximation, the experiments are explained very well by
both an analytical model and a generalized numerical model.
The calculated multiphoton Rabi frequencies and amplitudes
are in excellent agreement with the experimental data.

The article is structured as follows. In Sec. II we describe
the spin Hamiltonian and its parameters. In Sec. III the
experimental procedure and setup are detailed. In Sec. IV
an analytical and a numerical model are given, describing
the tunability of the multiphoton dynamics. The experimental
findings are described in Sec. V.

II. QUASIHARMONIC SPIN HAMILTONIAN

The spins S = 5/2 of the Mn2+ ions are diluted in a MgO
nonmagnetic matrix of cubic symmetry Fm3̄m (lattice constant
4.216 Å). The Mn2+ ions are located in substitutional positions
of Mg2+ ions. The high degree of symmetry ensures that the
spins experience an almost isotropic crystalline environment
and thus the fourth-order magnetic anisotropy can be made
much smaller than the Zeeman splittings. Interactions between
Mn2+ ions and symmetry deformations are neglected. The spin
Hamiltonian at resonance is given by19,20

H = a/6
[
S4

x + S4
y + S4

z − S(S + 1)(3S2 − 1)/5
]

+ γ �H0 · �S − A�S · �I + γ �hMW · �S cos(2πf t), (1)

where γ = gμB/h is the gyromagnetic ratio (g = 2.0014
is the g factor, μB is Bohr’s magneton, and h is Planck’s
constant), Sx,y,z are the spin projection operators, �S is the total
spin, a = 55.7 MHz is the anisotropy constant, A = 244 MHz
is the hyperfine constant of 55Mn (I = 5/2), hMW and f rep-
resent the microwave amplitude and frequency, respectively,
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FIG. 1. (Color online) Level diagram of the Mn2+ spin in a cubic
crystal field for a Zeeman splitting γH0 = E1/2 − E−1/2. Arrows
indicate one-photon (black), three-photon (red), and five- photon
(blue) monochromatic transitions between spin projections m, as
shown on the left-hand side. The dashed and dotted lines show
equidistant virtual levels enhancing the multiphoton transitions.

and �H0 is the static field ( �H0 ⊥ �hMW). In our experiments, the
static field ensures a Zeeman splitting of γH0 ≈ f ∼ 9 GHz,
which is much stronger than all other interactions of Eq. (1).
This implies that (i) �H0’s direction can be approximated as
the quantization axis and (ii) coherent MW driving is confined
between levels of the same nuclear spin projection mI (see
also Refs. 5, 21, and 22).

The six-level system is consequently quasiharmonic, as
shown by the level diagram in Fig. 1. The dashed and dotted
lines show virtual levels of equidistant separation gμBH0 =
hf , which strongly enhance the multiphoton transition proba-
bilities. Since a � f , the distance between the real and virtual
levels in Fig. 1 is exaggerated for clarity. The number of
arrows for each monochromatic transition suggests the type of
multiphoton coherent excitation (one, three, or five photons). A
coherent Rabi superposition of the m = −5/2, . . . ,5/2 states
(as counted on the left-hand side of the figure) can thus be
obtained, which is strongly dependent on the microwave drive
power and nutation time.

III. EXPERIMENTAL PROCEDURE

Rabi oscillation measurements have been performed in a
Bruker Elexsys 680-pulse electron paramagnetic resonance
(EPR) spectrometer working at about f = 9.6 GHz (X band).
The sample is a (3 × 3 × 1)-mm3 single crystal of MgO
doped by a small amount of Mn2+ (a few parts per 106).
The orientation between the sample and the static field is
controlled by a goniometer (with a precision to 1◦) with the
rotation axis parallel to the MW magnetic-field direction �hMW.
In the measurements presented here, �hMW||[−110] (see Fig. 2
inset). All measurements have been made at room temperature.
Calibration of the microwave field hMW has been made
using the 1,3-bisdiphenylene-2-phenylallyl (BDPA) standard:

(a)

PR

t=0 τR

τDT

(b)

PR

t=0 τR τP

τ

π/2

MW
DT

FIG. 2. (Color online) Pulse sequence used in the multiphoton
Rabi oscillation measurements, which starts with a strong excitation
pulse PR inducing the multiphoton nutation. (a) Right after the pulse
PR , the free-induction-decay signal gives the transverse magnetiza-
tion state between −1/2 and 1/2. (b) After a time τP � T2, a π/2
pulse rotates the longitudinal magnetization so it can be measured by
our setup (see the text for more details). The inset shows the static-
and electromagnetic-field orientations with respect to the crystalline
axes.

A small amount of BDPA containing isotropic S = 1/2 spins
gives a Rabi frequency of exactly FR = μBhMW/h.

By design, the detection is sensitive to frequency f and
therefore it can probe only transitions between consecutive
spin projections, m ↔ m + 1. As the transition | − 1/2〉 ↔
|1/2〉 is of highest probability, as ensured by Fermi’s golden
rule, and is not sensitive to crystal strain effects we choose to
use the levels m = ±1/2 as a probe of the six-level dynamics.

By definition, the magnetization is given by 〈Si〉 ≡ Tr(ρSi),
where ρ is the density matrix and Si is the S = 5/2 spin
operator i = x,y,z. Since we probe only the transition | −
1/2〉 ↔ |1/2〉 we define the magnetization of the subset
〈Si〉1/2 ≡ Tr(ρ1/2Si), where ρ1/2 is the central block matrix
of ρ corresponding to the base subset | ± 1/2〉.

The drive and detection of the multiphoton Rabi oscillations
are implemented with the pulse sequence presented in Fig. 2.
A drive pulse PR of duration τR and resonant to the | − 1/2〉 ↔
| + 1/2〉 transition is applied at t = 0. At the end of this pulse,
the density of states has been coherently changed.

Right after the PR pulse, spin dephasing and line inhomo-
geneity induce a free induction decay (FID) signal.23 The first
point of this FID (at t = τR) gives the transverse magnetization
traced on the | ± 1/2〉 subset: 〈Sx〉1/2 = ρ−1/2,1/2 + ρ1/2,−1/2.
Unfortunately, the dead time τDT of the spectrometer (∼ 80
ns) prevents the measurement of this first point. If the entire
inhomogeneous line | − 1/2〉 ↔ |1/2〉 of width �H0 is excited
by a sufficiently short PR pulse (nonselective pulse, here
τ−1
R > γ�H0/2π = 0.27 MHz), the FID is simply the Fourier

transform of the absorption line and an exponential decay in
MgO:Mn2+. Therefore, we integrate the detected FID and the
result is proportional to its first point. Note that for a broad
line (not our case), as often seen in solid-state paramagnetic
systems, the FID oscillates and the first point cannot be found
so easily.24,25

The pulse sequence in Fig. 2(a) detects the coherent
evolution of the transverse magnetization 〈Sx〉1/2 as a function
of pulse length τR . To probe the coherent evolution of
the longitudinal magnetization 〈Sz〉1/2 = ρ1/2,1/2 − ρ−1/2,−1/2

(also traced on the | ± 1/2〉 subset), we use the sequence
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shown in Fig. 2(b). After the Rabi pulse PR , one waits a time
τP − τR , which is smaller than the system’s relaxation time T1

but larger than the decoherence time T2. Thus, at t = τP , only
the longitudinal magnetization is nonzero.26

A π/2 pulse follows, rotating the | ± 1/2〉 population in
a coherent mixture, which is located in the xy plane (or the
equatorial plane). The detection observes the FID toward zero
in this mixture, giving essential information such as the initial
total magnetization in the xy plane, its FID decoherence time
T ∗

2 , and a potential shift away from the resonance static field.
As indicated with arrows in Fig. 1, in a cubic symmetry

the three- and five-photon transitions use the | ± 1/2〉 states
as intermediate ones. Therefore, the π/2 pulse can distinguish
between the various multiphoton Rabi oscillations due to their
different frequencies, as detailed in the following section.

IV. RABI ROTATIONS IN A TUNABLE MULTILEVEL
SYSTEM: THEORETICAL TREATMENT

The aim of this section is to present a model that describes
the coherent multiphoton Rabi oscillation that occurs in
a quasiharmonic large spin system under monochromatic
radiation. To compute the multiphoton Rabi frequencies, we
used the density-matrix theory27 applied to the Mn2+ ion
(S = 5/2,I = 5/2) in the rotating-frame approximation.

A. Analytical calculation

Let us consider a quantum system with six states |Sz〉,
Sz = {−5/2, − 3/2, − 1/2,1/2,3/2,5/2}, irradiated by an
electromagnetic field in resonance with the −1/2 and 1/2
levels. We assume initially I = 0, but we will describe the
effect of the nuclear spin at the end of this section. The
Hamiltonian of the system is

H = Ê + V̂ (t) =
5/2∑

Sz=−5/2

ESz
|Sz〉〈Sz| + V̂ (t), (2)

with ESz
the static energy levels, V̂ (t) = γ

2 hMW(Ŝ+ +
Ŝ−) cos(2πf t), S+ (S−) the raising (lowering) operators, and
f = E1/2 − E−1/2.

In a cubic symmetry and first order in perturbation (a �
γH0), the static energy levels are given by

E±5/2 = (±5/2)γH0 + (1/2)pa + O(a2),

E±3/2 = (±3/2)γH0 − (3/2)pa + O(a2), (3)

E±1/2 = (±1/2)γH0 + pa + O(a2),

where19 p = 1 − 5(A2B2 + B2C2 + C2A2), with A, B, and
C representing the cosine directors of �H0 with the crystalline
axes. For our geometry, p is given by

p = 1 − 5 sin2 θ + 15

4
sin4 θ, (4)

with θ the angle between �H0 and the c axis [001]. Since
H0 � hMW, we can use the rotating-wave approximation
(RWA) to make Eq. (2) time independent. Since in a con-
ventional pulsed spectrometer we have access to only the first
harmonic detection hf , we define the unitary transformation
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FIG. 3. (Color online) Eigenvalues of HRWA as a function of h̃.
The dashed lines are the limit hMW � pa.

U (t) = exp(−i2πf Ŝzt) and apply it to Eq. (2). In the rotating
frame, the Hamiltonian in Eq. (2) becomes21,28

HRWA = UHU † + ih̄
∂U

∂t
U †

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2pa

√
5

2 V 0 0 0 0
√

5
2 V − 3

2pa
√

2V 0 0 0

0
√

2V pa 3
2V 0 0

0 0 3
2V pa

√
2V 0

0 0 0
√

2V − 3
2pa

√
5

2 V

0 0 0 0
√

5
2 V 1

2pa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where V = γ hMW/2. By diagonalization, the eigenenergies
En/pa of the dressed states |	n〉 are calculated as a function
of h̃ ≡ V/pa, as illustrated in Fig. 3 (for p > 0).

For high anharmonicity or low microwave power h̃ →
0, in which case |	1〉 = (|1/2〉 + | − 1/2〉)/√2 and |	2〉 =
(|1/2〉 − | − 1/2〉)/√2 are the coherent superposition of states
| ± 1/2〉. The other wave functions remain unchanged: |	3〉 =
|5/2〉, |	4〉 = | − 5/2〉, |	5〉 = |3/2〉, and |	6〉 = | − 3/2〉.
The splitting between |	1〉 and |	2〉 is detected as an oscil-
lation of frequency FR = E2 − E1 = 3 γ

2 hMW, in agreement
with the general formula22

F
(1)
R = γ

2
hMW

√
S(S + 1) − Sz(Sz + 1) (6)

for one-photon Rabi oscillations between consecutive states
Sz and Sz + 1.

When the microwave power hMW increases, the degeneracy
of |	n〉 (n = 3,4,5,6) is lifted, allowing coherent three- and
five-photon transitions (| − 3/2〉 ↔ |3/2〉 and | − 5/2〉 ↔
|5/2〉, respectively). Note that two- and four-photon processes
are out of resonance and therefore are not discussed here. In
first-order perturbation in h̃, only the one-photon process exists
between states |	1〉 and |	2〉. In third-order perturbation, a
three-photon process mixes the states | ± 3/2〉, leading to
a pure three-photon Rabi oscillation with frequency F

(3)
R =

24
25 h̃3pa, as detailed in the Appendix. This three-photon
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process perturbs the aforementioned one-photon process,
which now has the Rabi frequency F

(1′)
R = F

(1)
R − 24

25 h̃3pa.
In fifth-order perturbation, the five-photon process mixes

the states | ± 5/2〉, leading to a Rabi frequency F
(5)
R = 15

2 h̃5pa

(a pure five-photon process). Similarly, the five-photon process
will change the dynamics of the three- and one-photon Rabi
oscillations [see the Appendix, Eqs. (A3)–(A5)].

For h̃ → ∞, the microwave field excites all transitions and
the six levels become equidistant [see Eq. (A7)] while the
dynamics is coherently driven by a five-photon process. This
dynamics resembles that of a spin S = 1/2. The diagonal
of the Hamiltonian in Eq. (5) becomes negligible and the
diagonalization simply rotates the Hamiltonian along the hMW

field.
When the nuclear spin is included, the model becomes

more complicated, but analytical solutions can still be found.
The full spin Hamiltonian of 55Mn2+ (S = 5/2,I = 5/2)
is a 36 × 36 matrix. If we assume no forbidden nuclear
transitions (�mI = 0, with mI quantifying the I projections),
the Hamiltonian in Eq. (1) can be separated into six 6 × 6
matrices of the form in Eq. (2).

The static energies ESz
now depend also on mI and A and

have been computed in first-order perturbation in A/H0 by
Low.19 Having the new ESz

renormalized by the hyperfine
field, we can use the same procedure as above to compute the
eigenvalues of the dressed states and the Rabi splittings.

Finally, note that all other transitions can be computed by
the method presented here by changing the value of f in
Eq. (2). For instance, for f = (E−3/2 − E1/2)/2 one can study
the two-photon Rabi oscillations in the transition | − 3/2〉 ↔
|1/2〉).

B. Numerical calculation

The analytical model presented above describes the mul-
tiphoton frequencies of the Rabi oscillations very well but
fails to describe their intensities (the time evolution of spin
populations). In order to describe the experimental results we
developed a model using the Hamiltonian in Eq. (1), which
shows the actual crystal-field parameters and includes the
hyperfine coupling between the S = 5/2 electronic spin and
the I = 5/2 nuclear spin of 55Mn2+.

The anisotropy a and hyperfine A constants are two orders
of magnitude smaller than the electron Zeeman interaction.
Therefore, it is appropriate to assume that the orientation of
the static field imposes the quantization axis z̃. On this basis,
the Hamiltonian in Eq. (1) is rewritten as in Eq. (2), where ESz

is obtained by exact diagonalization and reflects the hyperfine
coupling.

Once we get the form of Eq. (2) for H, the transformation
into the rotating frame become obvious. Experimentally, the
spectrometer signal represents the transient magnetic resonant
signal in the rotating frame, obtained by mixing the signal
reflected by the cavity [S(t) cos(2πf t)] and the reference arm
[cos(2πf t)]. This leads to a frequency-independent signal S(t)
and a double frequency signal (which is filtered out). The
unitary transformation is fixed by the microwave frequency f ,
with U (t) = exp(−i2πŜzf t), and using Eq. (5) one gets

HRWA = γ

2
hMWŜx + Ê − f Ŝz. (7)

-2 -1 0 1 2

-150

-100

-50

0

50

100

150

-0.03 0.00 0.03

-0.03 0.00 0.03

F
R

1

E
ne

rg
y 

(M
H

z)

Static Field Detuning Δ (mT)

F
R

3

F
R

5

FIG. 4. (Color online) Dressed-state energies for H0||[100],
hMW = 0.8 mT, and mI = 1/2. The large anticrossing F 1

R is the
one-photon Rabi splitting. The insets are close-ups of the three-photon
and five-photon Rabi splittings.

For a fixed mI , the static field H0 is chosen to satisfy the
condition E1/2 − E−1/2 + � = f , where � represents the
detuning of the static field, away from resonance. As an
example, the eigenvalues of the Hamiltonian in Eq. (7), for
H0||[100] and nuclear projection mI = 1/2, are shown in
Fig. 4 as a function of field detuning �. In these simulations,
hMW = 0.8 mT, which is sufficiently strong to induce Rabi
splitting with three and five photons, as shown in insets.

The dynamics of the Hamiltonian in Eq. (7) is described by
the time evolution of the 6 × 6 density matrix ρ(t):

i
dρ

dt
= [HRWA,ρ]. (8)

In the rotating frame (Dirac or interaction picture), the solution
is ρ(t) = Up(t)ρ0U

†
p(t), with ρ0 the matrix density at thermal

equilibrium,

ρ0 = exp(−Ê/kT )

Tr[exp(−Ê/kT )]
, (9)

and Up(t) is the propagator operator Up(t) =
exp(−i2πHRWAt).

When the Rabi pulse PR is applied, the spin population
is coherently manipulated. At the end of the sequence a
weak π/2 pulse will selectively probe the difference of
population between states −1/2 and 1/2. The signal out of
the spectrometer is S(t) = σ−1/2(t) − σ1/2(t). Note that for a
spin S = 1/2, S(t) = 〈Sz〉(t).

With the method presented here, the time evolution of
S(t) can be computed for a fixed value of the static H0 and
microwave hMW fields. To extract the Rabi frequencies, we
perform a fast Fourier transform (FFT) on the computed S(t).
Since the model does not take into account the decoherence
or decay effects of the Rabi oscillations, we multiply the
simulated S(t) by a phenomenological exponential decay, with
a characteristic time (or FFT width) similar to that of the
experimentally observed oscillations.

V. EXPERIMENTAL RESULTS

A typical MW absorbtion spectrum of MgO:Mn2+ as a
function of H0 shows six sets (one for each mI projection)
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FIG. 5. (Color online) Rabi oscillation and its Fourier transforms
for three H0 orientations and for a microwave field hMW = 1.48 mT.
For H0 along the compensation angle (blue curves), the dynamics
is the same as that of a S = 1/2 system. For H0||[001] (red curves)
the microwave field is smaller than the effective anisotropy and only
the one-photon process is induced. For H0||[110] (black curves) the
microwave field and the effective anisotropy are comparable and the
three-photon process becomes visible.

of five lines (Sz → Sz + 1,Sz = −5/2, . . . ,3/2). In the ex-
periments described below, the magnetic field is tuned to
study resonances in the set corresponding to mI = 1/2. All
experimental and theoretical results are valid for any other
nuclear spin projection.

A. Tunable multiphoton Rabi oscillations by changing the
orientation of the static field

The static-field orientation is described by the p parameter
[see Eq. (4)] and therefore can tune the reduced microwave
field h̃ = V/pa. We measured Rabi oscillations and corre-
sponding FFTs at constant microwave field (hMW=1.48 mT)
for three different orientations (and p values) of H0, as shown
in Fig. 5. One could see a highly anisotropic behavior of
the coherent dynamics depending on the relative orientation
between H0 and the crystal axes.

For H0||[001] (p = 1, maximum value), only one frequency
is observed, but its value (57 MHz) is smaller than the one
expected for the one-photon Rabi frequency in the transition
−1/2 ↔ 1/2 in S = 5/2 [62.5 MHz; see Eq. (6) and the
red dashed line in Fig. 5]. Although the multiphoton Rabi
oscillation is not clearly resolved, it is indirectly slowing down
the expected one-photon dynamics, as described in Sec. IV A
by the difference F

(1)
R − F

(1′)
R = F

(3)
R .

For H0||[110] (p = −1/4), in addition to the high-
frequency one-photon process, a low-frequency three-photon
Rabi oscillation becomes observable due to a lower-p value
and thus a larger h̃. Finally, for θ = θCA [the compensation
angle of the cubic anisotropy: p(θCA) = 0] and hence h̃ → ∞,
only one Rabi frequency is observed (Fig. 5, top). Its value is
the same as the one expected for an isotropic spin (dash-dotted
line in Fig. 5). As explained in Sec. IV A and the Appendix, a
coherently driven five-photon process (and only this process)
is induced, leading to a spin dynamics similar to that of a spin
1/2.

A detailed θ dependence of detected Rabi frequencies,
defined as FFT peaks of coherent oscillations (as introduced in
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FIG. 6. (Color online) Rabi frequency distribution of MgO:Mn2+

while the static field H0 rotates in the plane (−110) and for a
microwave field hMW = 1.48 mT. The static field H0 = 348.5 mT
and frequency f = 9.676 GHz are set to probe the transition |mS =
−1/2,mI = 1/2〉 ↔ |mS = 1/2,mI = 1/2〉. The points represent
peaks in the Fourier transform of the experimental data. The error
bars are the width of the Fourier transform (consequence of the
damping). The color plot is calculated with the numerical model
given in Sec. IV B.

Fig. 5), is given in Fig. 6 for the same value of hMW. The FFT
peaks are shown by points. The error bars are FFT linewidths,
which are due to decay processes in the Rabi oscillations. The
contour plot is computed using the numerical model described
in Sec. IV B, with no adjustable parameters: The crystal field
and hyperfine constant are from Ref. 19 and the MW field has
been independently calibrated using a standard. The agreement
between our model and the experimental data is quite good;
however, there are some discrepancies when |pa| is small (but
not zero) compared to γ hMW/2. In this case, the four EPR
satellite lines are close to the central line and can overlap due
to a small inhomogeneity caused by crystal-field strain. Since
the multiphoton Rabi frequency is highly dependent on |pa|
(especially when |pa| is small), the distribution in pa induces
a high distribution of multiphoton Rabi frequencies, which in
turn overdamps the Rabi oscillation signal.

B. Tunable multiphoton Rabi oscillations by
changing the MW field

Aside from the tuning method based on static-field ori-
entation, described in the preceding section, an alternative
method is based on the MW drive intensity. To demonstrate the
method, we apply a static field not far from the compensation
angle θCA described above such that the spin system is slightly
anisotropic. We choose an angle θ = 31 ± 1◦ and record
coherent Rabi oscillations as a function of the microwave field
hMW. The FFT peaks (Rabi frequencies) are shown in Fig. 7
by points and the error bars represent the FFT linewidths. The
dashed blue line is the MW field dependence of Rabi frequency
for a pure one-photon transition between levels | − 1/2〉 ↔
|1/2〉 of the S = 5/2 system [FR = 3 γ

2 hMW; see Eq. (6)].
The dotted black line is the MW field dependence of Rabi
frequency in the case of a pure isotropic spin [FR = γ

2 hMW;
see Eq. (A7)].

Indeed, at low MW power, the system has the dynamics
of an anisotropic S = 5/2 system, as shown by the very
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FIG. 7. (Color online) Rabi frequencies of the Mn2+ spin, as a
function of drive field, obtained by a FFT of the detected coherent
oscillations. The error bars are the FFT linewidths. The solid (open)
colored symbols correspond to high- (low-) intensity signals. The
dashed line indicates the expected one-photon dependence given by
Eq. (6), whereas the dotted line models the isotropic S = 5

2 case [see
Eq. (A7)].

good agreement between experimental points (up-pointing
triangles) and the expected dependence for a one-photon
process (dashed line). At intermediate powers, the FFT clearly
shows the existence of a three-photon process (left-pointing
triangles) as well as a five-photon process. The latter is
indicated by open squares for shallow peaks in the FFT and by
solid squares corresponding to well-defined FFT peaks. The
low-hMW behavior of the three- and five-photon processes is
nonlinear, as described by Eqs. (A4) and (A5).

A quantitative numerical description is quite difficult
because of the extreme nonlinearity of h̃ near θCA. At the
compensation angle (θCA = 29.67◦) h̃ → ∞, but a small
change in θ induces significant changes in h̃ (e.g., at θ =
30◦, h̃ = 16.3hMW; at θ = 31◦, h̃ = 4.1hMW; and at θ =
32◦, h̃ = 2.4hMW). As the accuracy of our goniometer is
1◦, a numerical quantitative description around θCA is not
relevant. Qualitatively, one notes that for hMW > 0.5 mT, the
one-photon Rabi frequency deviates from F

(1)
R of Eq. (6)

due to the formation of multiphoton processes. For high
microwave powers (hMW > 1 mT), the one-photon FFT peak
is barely visible (shown by open up-pointing triangles) while
the five-photon process entirely dominates the dynamics. This
is indicated by the good agreement between the five-photon
FFT peaks (solid squares) and the dotted line resulting from
an isotropic S = 5/2 model (or a spin 1/2), as explained by
Eq. (A7).

Our experiment demonstrates that a sufficiently intense
microwave field can tune the spin dynamics from that of an
anisotropic (unequidistant) system to that of an equidistant,
quasiharmonic five-level system (equivalent to a two-level
system).

C. Five-photon Rabi oscillations at the compensation angle

When the static field is applied along a direction for
which θ = θCA (that is, θ = 29.67◦), the cubic anisotropy
is geometrically compensated for and therefore p = 0 and
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FIG. 8. (Color online) Rabi frequencies as FFT peaks (solid
squares) of coherent oscillations for H0 along the compensation di-
rection of the cubic anisotropy θ = θCA. The color plot is numerically
computed, as described in Sec. IV B, while the dashed line shows the
expected behavior for an isotropic S = 5/2 system [see Eq. (A7)].

h̃ → ∞. As explained in Sec. IV A and the Appendix, one
expects a perfectly isotropic S = 5/2 spin system.

We performed room-temperature Rabi oscillations for this
field orientation. The FFT of the coherent oscillations are
single peaked, as shown in Fig. 8 with solid squares (the
FFT width is smaller than the size of the symbol). The color
plot is calculated using the numerical procedure described in
Sec. IV B and the dashed line indicates the analytical result of
Eq. (A7). There is excellent agreement between the analytical
and numerical models and the experimental data points (no fit
parameter has been used).

During a Rabi rotation for this isotropic case, the spin
density gradually moves upward on the equidistant six-level
ladder and when it reaches the highest level (Sz = 5/2), the
dynamics is reversed. In contrast to a one-photon dynamics,
here we have a collective five-photon process, ensuring a
continuous nutation within the Sz = −5/2, . . . ,5/2 space.
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FIG. 9. (Color online) Rabi frequency dependence as a function
of the reduced MW field h̃. Data points are numerically computed
by solving Eq. (A1), while lines are the analytical perturbation
developments [Eqs. (A3)–(A5)]. The inset shows a close-up at low
fields and low Rabi frequencies.
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VI. DISCUSSION

The experimental data and the model presented here
use a monochromatic source to both induce and probe the
multiphoton Rabi oscillations. Therefore, we restrict the types
of multiphoton transitions that are measurable to those that
exist at the same resonant static field as the one-photon
transition (used to induce and probe). In order to probe
directly all types of multiphoton transitions, two tunable
frequencies will be needed: one to induce the multiphoton
oscillations, i.e., to induce a two-photon Rabi oscillation [f1 =
(E1/2 − E−3/2)/2], and one to probe it (f2 = E1/2 − E−1/2).
Note that the experiments described here, with a single or
two tunable frequencies, have the appeal of being applicable
to on-chip studies, using detectors placed in strong magnetic
fields.29–31

VII. CONCLUSION

We report on single-photon and multiphoton coherent
rotations in a S = 5/2 spin system featuring a cubic anisotropy.
The anisotropy is much smaller than the Zeeman splittings,
i.e., the six-level scheme shows only a small deviation from an
equidistant diagram. This allows us to tune the spin dynamics
by compensating for the cubic anisotropy with either a precise
static-field orientation or a microwave-field intensity. In both
cases, we can transition the system between an anisotropic to
an isotropic situation, the latter case showing a spin dynamics
corresponding to a two-level system. The experimental data
are explained well by both theoretical and numerical models.

ACKNOWLEDGMENTS

This work was supported by City of Marseille, Aix-
Marseille University (BQR grant), NSF Cooperative Agree-
ment Grant No. DMR-0654118, NSF Grant No. DMR-
0645408, and the Sloan Foundation. We thank A. Verga
for fruitful discussion and G. Gerbaud (BIP-UPR9036) and
the multidisciplinary EPR facility of Marseille (PFM Saint
Charles) for technical support.

APPENDIX: EIGENVALUES OF DRESSED STATES

Diagonalization of the Hamiltonian in Eq. (5) can be
achieved analytically. Since the most relevant parameter is the
value of the microwave field compared to the anharmonicity
parameter pa, we define the reduced field h̃ = γ hMW/2pa.

The eigenvalues of Eq. (5) are the solutions of the polynomial
equations

P± = 6 ± 9h̃ + 18h̃2 ± 15h̃3 + · · ·
+ (−14 ∓ 12h̃ − 26h̃2)E ∓ 12h̃E2 + 8E3 = 0. (A1)

For h̃ → 0, in first-order perturbation, Eq. (A1)
becomes

P± ≈ 6 ± 9h̃ + (−14 ∓ 12h̃)E ∓ 12h̃E2 + 8E3 = 0, (A2)

with solutions E1,2 = 1 ± 1.5h̃, E3,4 = 0.5, and E5,6 =
−1.5. The RWA wave functions are now |	1〉 = (|1/2〉 +
| − 1/2〉)/√2, |	2〉 = (|1/2〉 − | − 1/2〉)/√2, |	3〉 = |5/2〉,
|	4〉 = | − 5/2〉, |	5〉 = |3/2〉, and |	6〉 = | − 3/2〉. Rabi
oscillations occur only between states |	1〉 and |	2〉 with
frequency F 1

R = (E1 − E2)pa [see Eq. (6)]. We found the
classical result that during the resonance |1/2〉 and | − 1/2〉
are mixed by the electromagnetic wave and the other states
stay unperturbed.

When h̃ is increased, we computed the solutions of Eq. (A1)
up to the fifth-order perturbation in h̃. The Rabi frequencies
FR = (E+ − E−)|pa| are

F 1
R = pa

(
3h̃ − 24h̃3

25
− 768h̃5

125

)
, (A3)

F 3
R = pa

(
24h̃3

25
− 339h̃5

250

)
, (A4)

F 5
R = pa

(
15h̃5

2

)
. (A5)

These equations are used to simulate the solid lines in Fig. 9,
which are compared to the numerical solutions of Eq. (A1)
(discrete data points). The inset shows a close-up view at low
microwave powers and Rabi frequencies. One could conclude
that for powers up to h̃ ∼ 1/2, the perturbative analysis works
very well.

When h̃ → ∞, Eq. (A1) becomes

P± ≈ ±15h̃3 − 26h̃2E ∓ 12h̃E2 + 8E3 = 0, (A6)

with solutions E± = h̃[± 1
2 ; ∓ 3

2 ; ± 5
2 ], which represent dressed-

state energies of an isotropic spin 5/2 with Rabi
frequency:

F iso
5/2 = F1/2 = γ

2
hMW. (A7)
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