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We present a systematic study of the anisotropic spin-1/2 Heisenberg model in staggered magnetic fields in
two dimensions. To mimic real materials, we consider a system of coupled, antiferromagnetic chains, whose
interchain interaction can be either ferro- or antiferromagnetic. When the staggered field is commensurate with
the magnetic interactions, an energy gap opens immediately and follows a power law as a function of the applied
field, similar to the situation in one dimension. When the field competes with the interactions, a quantum phase
transition (QPT) occurs from a gapless, magnetically ordered phase at low fields to a gapped, disordered regime.
We use a continuous-time Monte Carlo method to compute the staggered moment of the ordered phases and the
spin gap of the disordered phases. We deduce the phase diagrams as functions of the anisotropy ratio and the
applied field, and calculate the scaling behavior of the models in both quantities. We show that in the competitive
case, the staggered field acts to maintain a regime of quasi-1D behavior around the QPT, and we discuss as a
consequence the nature of the crossover from one-dimensional (1D) to 2D physics.
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I. INTRODUCTION

The spin-1/2 antiferromagnetic Heisenberg model in a
staggered magnetic field has attracted increasing interest as
the number of real materials it describes continues to rise.
While the model in zero field is gapless in all dimensions,
the staggered field lowers symmetries, changes universal-
ity classes, and induces gapped states and unconventional,
gapped elementary excitations. Intensive investigations into
staggered-field effects in quantum magnets were motivated
originally by inelastic neutron-scattering experiments on the
quasi-one-dimensional spin chain copper benzoate.1 Appli-
cation of a uniform magnetic field to this material caused an
unexpected gap to open in the excitation spectrum. This energy
gap follows a power law as a function of the applied magnetic
field, but its magnitude depends strongly on the direction of
the applied magnetic field.

This unusual experimental finding was soon explained2,3

by the fact that copper benzoate is not a perfect chain,
but has an alternating crystal structure giving rise to a
staggered gyromagnetic tensor, possibly accompanied by a
Dzyaloshiskii-Moriya (DM) interaction. The full Hamiltonian
in a uniform external magnetic field is

Ĥ =
∑

i

(J Ŝi · Ŝi+1 − (−1)iD · Ŝi × Ŝi+1

−μBH · [gu + (−1)igs] · Ŝi), (1)

where the three terms are, respectively, the antiferromagnetic
Heisenberg interaction, the DM interaction, and the Zeeman
splitting energy. In addition to the superexchange coupling
J > 0, D is the DM vector, H is the external field, and gu,s are
the uniform and staggered components of the gyromagnetic
tensor. By making a local gauge transformation, which rotates

the spins on two separate sublattices, and by neglecting all
contributions at higher orders in D/J , Eq. (1) can be mapped
to the simplified Hamiltonian

Ĥ =
∑

i

[
J Ŝi · Ŝi+1 − HSx

i − (−1)ihsS
z
i

]
, (2)

where hs is an effective staggered field proportional to the
product of H with a linear combination of D and gs ; novel
features therefore arise only when such a material is subject
to an external magnetic field. The Hamiltonian of Eq. (2)
can be mapped (by neglecting Zeeman splitting in the z

direction) into a sine-Gordon model, a minimal framework
whose bosonized version provides a good description of the
opening of the spin gap.2–9 Further unconventional features
of this model include the specific heat,6 magnetization,10–12

magnetic susceptibility,3,11 dynamical structure factor,5,7,9 line
shape in electron spin resonance (ESR) measurements,4 and
the presence of midgap states.13–16

While these numerous studies assumed that the second term
in Eq. (2) has no significant role for weak magnetic fields,
in fact the uniform and staggered components may compete.
A complete description of systems with DM interactions in
arbitrary fields still requires the full exploration of the original
Hamiltonian (1). A systematic investigation by Wang and
co-workers14 using the density-matrix renormalization-group
(DMRG) technique showed that the low-energy, high-field
properties of copper benzoate are dominated by the uniform
magnetic field, on which the spin gap depends linearly, while a
crossover regime exists at intermediate fields. This prediction
was later confirmed by ESR experiments in applied fields up
to 35 T.17

Most staggered-field studies have focused on materials
that are almost ideally one-dimensional (1D) in nature,
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such as copper benzoate,1,17–20 copper pyrimidine,10,11,21–23

Yb4As3,24–26 and KCuGaF6.27 However, real materials always
have some interchain coupling, which in some cases may
be comparable to the staggered magnetic field, if not also
to the intrachain coupling. How the interchain interaction
may change the essential physical properties remains an open
question. Recent experiments on the weakly coupled chain
system CuCl2·2(dimethylsulfoxide) (CDC)28,29 indicate that a
gap opens at a finite value of hs , rather than at zero, when the
uniform magnetic field is applied; the power-law dependence
of the excitation gap seems to be different from that observed in
quasi-1D materials. Early attempts to understand this behavior
include calculations for the two-leg ladder,30,31 which show a
quantum phase transition (QPT) taking place as a consequence
of the competition between the staggered magnetic field and
the interchain coupling. A chain mean-field theory developed32

to study the spin gap as a function of the staggered field in two
and three dimensions found a spin gap opening immediately
with the applied field (the “noncompetitive case” defined in
Sec. II and discussed in Sec. IV), a conclusion confirmed by
DMRG.33

In a system where the staggered field competes with the
ordering pattern favored by the magnetic interactions, a finite
value of hs is required to induce a QPT. To date the only
results available for this case are at the mean-field level,
and may not deliver reliable conclusions for 2D systems. In
particular, the linear dependence of the excitation gaps on the
magnetic field appears to be inconsistent with experiment.28

In this paper we contribute to the understanding of coupled
Heisenberg chains in staggered magnetic fields by performing
continuous-time Monte Carlo simulations using the worm
algorithm,34–36 and use our results to discuss the influence
of interchain interactions and staggered fields on the ground
state and the low-energy excitations.

This paper is organized as follows. In Sec. II we provide
a formal introduction to the model and to the Monte Carlo
method. In Sec. III we test our numerical techniques by
computing the staggered magnetization in zero field, making
contact with known results for coupled-chain systems and
the square lattice. In Sec. IV we present our Monte Carlo
results for the noncompetitive case, which demonstrate the 2D
nature of the system. Section V contains our complete results
for the competitive case, including the determination of the
QPT, the staggered magnetization in the ordered phase, the gap
in the disordered phase with corresponding fitting exponents,
and a comparison of the phase diagram with different mean-
field theories. We summarize our investigation in Sec. VI.

II. MODEL AND METHOD

In this study we investigate the S = 1/2 Heisenberg
model on a spatially anisotropic square lattice in a staggered
magnetic field. We stress that the purpose of our analysis is
to determine, both qualitatively and quantitatively, the effects
of a staggered field in different geometries. We do not aim
to make a direct comparison with experiment, but rather to
demonstrate the physical properties that may motivate the
search for and characterization of an appropriate material in
this class. Thus we focus here on effective models without the
uniform magnetic field. For completeness we consider both

the noncompetitive case, where the geometry of the magnetic
interactions and the staggered field are commensurate, and
the competitive case, where they are not. We consider an
antiferromagnetic intrachain coupling with both ferromagnetic
and antiferromagnetic interchain couplings, which we will
label respectively as (π,0) and (π,π ). The two different spatial
arrangements of the staggered field, also (π,0) and (π,π ), then
give one competitive and one noncompetitive situation for each
case.

The Hamiltonians can be expressed in the forms

Ĥ1 =
L∑

i,j=1

[
J Ŝi,j · Ŝi+1,j + J⊥Ŝi,j · Ŝi,j+1 + (−1)i+jhsS

z
i,j

]
,

(3)

Ĥ2 =
L∑

i,j=1

[
J Ŝi,j · Ŝi+1,j + J⊥Ŝi,j · Ŝi,j+1 + (−1)ihsS

z
i,j

]
,

(4)

where L is the linear dimension of the lattice and J is the
intrachain coupling, which we take as the unit of energy.
The interchain coupling is J⊥, hs is the magnitude of the
effective staggered magnetic field, and Ŝi,j is the spin operator
at lattice site (i,j ), with i the index in the chain direction (x)
and j the interchain index (y direction). The four situations
are represented schematically in Fig. 1, where the sign of
J⊥ determines the nature of the interchain interaction and
the dots or crosses correspond to up and down orienta-
tions of the applied staggered field. Figures 1(a) and 1(b)

J = 1

J⊥ < 0

J = 1

J⊥ < 0

J = 1

J⊥ > 0

J = 1

J⊥ > 0

(b)(a)

(d)(c)

FIG. 1. Representation of couplings and staggered fields for the
four possible cases considered here. Dots denote a field positive along
z and crosses a negative field. The magnetic interactions have (π,π )
geometry in cases (a) and (d), and (π,0) geometry in cases (b) and
(c). The applied field geometry is (π,π ) in cases (a) and (b), which
are described by Eq. (3), and (π,0) in cases (c) and (d) [Eq. (4)].
Cases (a) and (c) are therefore noncompetitive, while (b) and (d) are
competitive.
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represent, respectively, the noncompetitive and competitive
cases of model (3), while Figs. 1(c) and 1(d) represent the
noncompetitive and competitive cases of model (4).

For our investigation of the ground states and lowest
excitations of these models, we use the continuous-time
worldline quantum Monte Carlo (QMC) method with “worm”
updates. The concept of continuous-time worldlines was first
induced in QMC by Prokof’ev and co-workers in 1996.34

Unlike the standard, discrete-time QMC algorithms, which are
based on the Suzuki-Trotter decomposition, in the continuous-
time method the Hamiltonian Ĥ = Ĥ0 + V̂ is separated into
a diagonal term and a perturbation term. For a time-dependent
perturbation, the partition function Z = Tr(e−βĤ ) can be
expressed as Z = Tr[e−βĤ0U (β)], with U (β) the Matsubara
evolution operator,

U (β) = 1 −
∫ β

0
dτ1V̂ (τ1)U (τ1)

= 1 −
∫ β

0
dτ1V̂ (τ1) +

∫ β

0
dτ1

∫ τ1

0
dτ2V̂ (τ1)V̂ (τ2)U (τ2)

= (−1)n
∞∑

n=0

∫ β

0
dτ1 · · ·

∫ τn−1

0
dτn−1V̂ (τ1) · · · V̂ (τn), (5)

in which V (τ ) = eτH0V e−τH0 . In this series, each integral
corresponds to a worldline configuration with n “kinks,”
located at the points 0 < τn < τn−1 < · · · < τ1 < β and
varying continuously in the imaginary-time direction.34 The
integrals are evaluated by Monte Carlo sampling of the kink
configurations. In contrast to discrete-time QMC algorithms,
there is no systematic error caused by imaginary-time dis-
cretization.

Based on this continuous-time worldline formulation,
Prokof’ev and co-authors also developed an update algo-
rithm based on breaking a worldline by inserting a pair of
creation and annihilation operators, which then evolve by
local moves.35 (This became known as the “worm” update
from the motion of pairs of worldline kinks.) The algorithm
considers two configuration spaces, denoted Z and G: while
Z contains only closed worldlines, and is the space of the
partition function, G contains a worldline broken by a physical
process connecting points (�ri,τi) and (�rj ,τj ). The Z and G

configuration spaces can be exchanged by creation or annihi-
lation of an (i,j ) worm pair on the same flat worldline. This
is equivalent to processes in the grand canonical ensemble.
In the G configuration space, processes that move the worms
in both time (changing worm position in the imaginary time
direction on the same site) and space (the worm is moved to
a neighboring site, creating or annihilating a kink) update the
configuration and change its structure.

In the Z configuration space it is easy to compute thermody-
namic quantities such as energy, magnetization, susceptibility,
and specific heat. In the G configuration space, each accepted
worm move results in a contribution to the histogram of the
Green function, G(�ri − �rj ,τi − τj ). With sufficiently many
Monte Carlo steps, one obtains a convergent Matsubara Green
function, defined as

G(r,τ ) = G(�ri − �rj ,τi − τj ) = 〈Tτ S
+
�ri

(τi)S
−
�rj

(τj )〉, (6)

where Tτ is is the time-ordering operator. The average 〈· · · 〉
is obtained from the histogram, and is normalized by G(0,0).
From the statistical average of the Green function, one may
obtain the critical exponents of G, the single-particle excitation
spectrum, and certain correlation functions.

In comparison with previous results by the DMRG
technique,33 QMC algorithms have the major advantage
of treating 2D models. In the continuous-time worldline
approach, lattice sizes of L up to 100 and inverse temperatures
β = 1/T up to 100 can be accommodated in approximately
24 h of calculation time when working on a server with an
Inter XEON E5460 CPU. A further advantage of QMC is
that it is easy to work with periodic boundary conditions,
so that there are no difficulties caused by edge states.33 We
therefore expect that reliable numerical results can be obtained
for the 2D case by this technique. In this paper, we focus
on the energy gap �, which characterizes gapped phases,
and the transverse staggered magnetization Ms

⊥, which is
characteristic of ordered phases. The gap is obtained36 from
the Green function through the expression

� = − ln[G(p,τ )/G(p,τ0)]

τ − τ0
, (7)

while the staggered correlation function

Cs
Q(r) = 〈Ŝ+

0 Ŝ−
r eiQ·r〉 (8)

is obtained from the Green-function histogram. The staggered
magnetization is defined as Ms

⊥ =√∑
r Cs

Q(r)/N, where Q =
(π,π ) for model (3), and Q = (π,0) for model (4).

III. MAGNETIZATION AT ZERO FIELD

We begin by investigating the case hs = 0, which also
serves to benchmark our method for accuracy and sys-
tematic errors. We consider both the spatially anisotropic
antiferromagnetic Heisenberg square lattice and the lattice of
Heisenberg chains with ferromagnetic interchain coupling. For
|J⊥|/J > 0.15, the lattice size L in our calculation is 100,
with β set equal to L. For lower values of the interchain
coupling, we find that rectangular lattices are required to
achieve reliable results, and we adjust the cluster aspect ratio
accordingly. The staggered magnetization we compute for the
2D antiferromagnetic Heisenberg model is shown in Fig. 2.
For benchmarking purposes, in the isotropic square lattice
(J = J⊥ = 1) we find Ms

⊥ = 0.313 ± 0.006, which agrees
very well with the known value of 0.306.38 The case of ferro-
magnetic interchain coupling is not entirely symmetrical, the
nonuniversal behavior at larger values of |J⊥| being manifest
as a more rapid saturation in the antiferromagnetic case.

The problem of the weakly coupled Heisenberg spin chains
is a fundamental one in quantum magnetism, and has received a
great deal of attention over the last five decades. It encapsulates
the physics of the crossover from truly 1D systems, dominated
by quantum fluctuation effects, to high-dimensional, renor-
malized classical behavior. Because the S = 1/2 Heisenberg
chain is already critical, with a gapless ground state, any
transverse coupling in an unfrustrated geometry is thought
to give rise to magnetic order, and extensive investigation has
reinforced the general agreement that the critical J⊥c = 0.
Early discussion of the critical behavior of the ordered moment
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FIG. 2. (Color online) Staggered magnetization Ms
⊥ as a function

of interchain coupling for both signs of J⊥, at zero staggered field.
The isotropic square lattice is represented by J⊥ = 1. Inset: Ms

⊥ as a
function of −√|J⊥|(1 + 0.095|J⊥|) ln1/3 |J⊥/1.3| (Ref. 37) showing
the strong logarithmic corrections to the square-root form of a
chain mean-field theory. Up- and down-pointing triangles denote
data obtained for L×L samples with L = 100, while squares and
diamonds denote data obtained on rectangular samples with aspect
ratio Lx/Ly = 8. The solid line is the fitting function deduced in
Ref. 37.

and Néel temperature used the high-dimensional framework of
renormalized spin waves, and suggested a purely logarithmic
rise of M⊥ with |J⊥|.39 By contrast, in a chain-based weak-
coupling approach,40 where the transverse interactions are
modeled as an effective staggered magnetic field, the ordered
moment has a power-law dependence, M⊥ ∝ √|J⊥|, albeit
with suspected logarithmic corrections. The definitive study
of the problem was performed by Sandvik,37 using QMC
within a multichain mean-field theory, and reveals strong
logarithmic corrections to the square-root dependence, M⊥ ∝
−√|J⊥| ln1/3 |J⊥| (with a weak additive linear term). The
power of 1/3 in the logarithm was also found in the problem
of the single chain in a staggered field.3 The importance of the
logarithmic terms lies in the presence of marginally irrelevant
operators, which are neglected in the transformation of the
high-dimensional Heisenberg model to a chain in an effective
staggered field.

Our data for both signs of the transverse coupling, shown
in Fig. 2, have the same form at small |J⊥|. Our results are
fully consistent with those of Ref. 37. First, we confirm our
sensitivity to the expected logarithmic corrections, which will
be essential in the sections to follow. Second, our results
for square lattices deviate from the expected form at values
of the transverse coupling below |J⊥| ≈ 0.15. We simulate
instead rectangular systems of different aspect ratios up to
Lx/Ly = 8,37 which allows us to obtain accurate values of
M⊥ at least to |J⊥|/J = 0.05, below which the calculations
become very time-consuming. This study of the staggered
magnetization at hs = 0 therefore allows us to benchmark the
accuracy of our results for highly anisotropic systems. The
effect of the finite temperature in our calculations is not thought
to be significant.37 Quantifying the logarithmic corrections to
the chain mean-field picture in this way will be important
in Sec. V, where we will use it as a guide to understanding
our numerical results in the presence of a staggered field.

We will show that the field acts to alter significantly the
effective dimensionality of the system and the relevance of
these logarithmic terms.

IV. NONCOMPETITIVE CASE

In the two noncompetitive cases, the magnetic interactions
and the applied staggered field have the same spatial pattern
[Figs. 1(a) and 1(c)]. For any finite value of J⊥, the system is
magnetically ordered at hs = 0, by a spontaneous breaking
of the SU(2) spin symmetry, and has massless spin-wave
excitations. When a commensurate staggered field is applied,
the symmetry is broken explicitly as the field direction selects
the spin orientation. As for a ferromagnet in a uniform
field, the staggered field serves as an anisotropy term, which
opens a spin-wave gap for any finite value of hs . In the
conventional mean-field approach,32 a standard linear spin-
wave approximation gives a gap

� ≈
√

4SJhs[1 + (hs/4SJ )]. (9)

By extrapolation from smooth and rapidly convergent DMRG
results for antiferromagnetic Heisenberg ladders in staggered
fields, the authors of Ref. 33 also obtained a 2D field
dependence of � = (2.27 ± 0.01) h0.50±0.01

s . However, the
noncompetitive geometry may also be discussed within a chain
mean-field theory, where the interchain interactions are treated
as an effective staggered field, h = −2J⊥M⊥(h),40 which is
reinforced by the applied staggered field. In this treatment, the
dominant physics is the breaking of the continuous symmetry
of the spin direction, and the exact dependence on J⊥ is not
clear; that the gap � is independent of J⊥ in Eq. (9) underlines
the fact that it is in essence purely an effect of the field on the
chain, which would suggest some influence of 1D physics.

Our analysis is the first direct numerical calculation of
the gap evolution in this case. We begin by considering the
“isotropic” square lattice (|J⊥| = J ) with systems of L = 100
and temperatures β = 100, to maximize the reliability of
our data by systematic extrapolation. In Fig. 3 we show

0 0.05 0.1 0.15 0.2
h

s

0

0.3

0.6

0.9

1.2

Δ

J⊥/J < 0

J⊥/J > 0

1D chain

FIG. 3. (Color online) Excitation gap as a function of staggered
magnetic field for the 2D spin- 1

2 Heisenberg square lattice (|J⊥| = J )
in the noncompetitive case. Monte Carlo results are presented as filled
circles for the (π,π ) geometry [model (3)] and as squares for (π,0)
[model (4)]. The solid lines are fitting curves. Shown also (triangles)
are Monte Carlo results for the Heisenberg chain.
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TABLE I. Fitting coefficients and exponents for five data sets with
different point spacings δhs .

J⊥/J = 0.1
δhs a0 α

0.005 1.351 0.535
0.01 1.415 0.548
0.05 1.512 0.574
0.1 1.522 0.583
0.2 1.554 0.624

the dependence of the gap on the staggered field for both
noncompetitive cases. A fit to the formula

� = a0h
α
s (10)

yields excellent results (Fig. 3), with � = 2.19h0.50±0.01
s for

the (π,π ) case [Fig. 1(a)] and � = 1.65h0.50±0.01
s for the (π,0)

case [Fig. 1(c)]. The exponents in both cases agree perfectly
with the result predicted both by mean-field theory and by
extrapolation from Heisenberg ladders. The isotropic square
lattice shows unambiguously 2D behavior, with an immediate
opening and square-root growth of the gap.

By contrast, in the purely 1D case is it known2,3 that the
gap opens according to � ∝ h

2/3
s with logarithmic corrections.

This behavior is shown as the triangles in Fig. 3. The more
rapid growth of the gap in two dimensions may be considered
heuristically as the consequence of a mutual reinforcement
of the applied and effective staggered fields, the latter arising
from the magnetic moment enhanced by the former. The key
question to address is whether the system displays any kind
of continuous crossover, as a function of |J⊥|, from a regime
characterized by 1D exponents to a 2D regime. By taking the
noncompetitive (π,π ) case at J⊥ = 0.1 and fitting the gap
obtained from ten sets of data points with five different hs

intervals, 0.005, 0.01, 0.05, 0.1, and 0.2, we find the fitting
parameters listed in Table I. It is clear that the exponent
changes from a 2D form to a 1D form: for large hs , the system
is effectively no longer aware of the coupling, and has 1D
behavior, while at sufficiently small hs the 2D behavior always
emerges. The same result is illustrated in Fig. 4 using the data
points with δhs = 0.005 and δhs = 0.2. It is clear that the latter
data set does not fall on the square-root curve obtained from
the former. We may conclude that the 2D regime in this model
is given approximately by hs < J⊥/2.

V. COMPETITIVE CASE

We turn now to the competitive case, where the interchain
coupling and the staggered field compete to establish the
pattern of magnetic order. From a mean-field analysis of
this system,32 there exist two different phases at finite hs ,
an ordered phase with spontaneous symmetry-breaking [SSB,
of the continuous U(1) symmetry] in the plane normal to the
staggered field and a gapped, “symmetric” phase in which the
spins are oriented in the field direction.

A phenomenological description of the situation is illus-
trated in Fig. 5 for the case of a (π,π ) staggered field applied
to a system with J⊥ < 0. At hs = 0, the system is ordered
with a spontaneous breaking of SU(2) symmetry and one-site

0 0.5 1 1.5 2
h

s

0

0.5

1

1.5

2

2.5

Δ

MC data in [0.2,2]
MC data in [0.005,0.05]

0 0.025 0.05
0

0.1
0.2

FIG. 4. (Color online) Excitation gap as a function of staggered
field for the anisotropic 2D spin- 1

2 antiferromagnetic Heisenberg
model in the noncompetitive case for J⊥/J = 0.1. Triangles and
squares correspond, respectively, to hs steps of 0.005 and 0.2. The
fitting curve is obtained from the data with δhs = 0.005 (inset). The
blue, dashed line marks the 2D regime for J⊥/J = 0.1.

translational invariance in the transverse direction. For hs =
0+, a spin-flop transition occurs into the plane perpendicular
to the field, represented as the (xy) plane, but there remains
a SSB in this plane [Fig. 5(a)]. For finite hs , the spins are
forced to rotate into the direction of the staggered field, or
into the yz plane in Fig. 5(b), adopting a canted structure with
two-site translational invariance in the transverse direction.
The finite magnetic order parameter in this phase is reduced
by the staggered field, and the excitations of the system remain
gapless. Finally, when the staggered field is increased beyond
a critical value hc, the order parameter is driven to zero,
long-range order collapses, and the spins are fully oriented
in the field direction [Fig. 5(c)].

We begin by our numerical analysis by illustrating the
staggered correlation function within the system. Figure 6
shows Cs(r) as a function of distance for model (3), with
J⊥ = −1 and for two values of hs . For hs = 1.05, staggered
correlations are finite and there is long-range order in the
plane transverse to the applied field. By contrast, for hs = 1.2,
Cs(r) falls to zero abruptly away from the edges of the
system; these two values of hs therefore fall on opposite
sides of the anticipated critical staggered field hc. We use the
staggered magnetization to analyze both the SSB phase and
the field-induced quantum phase transition between the SSB

J⊥ < 0

J = 1

(c)

J⊥ < 0

J = 1

(b)

J⊥ < 0

J = 1

(a)

FIG. 5. Schematic representation of the spin state in the com-
petitive case on varying the staggered field hs . The system has
FM interchain interactions and a (π,π ) staggered field [model (3)].
Black arrows represent the spin directions and the staggered field is
represented by dots (up) and crossed circles (down).
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s(r
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FIG. 6. (Color online) Staggered correlation function Cs(r) =
〈Ŝ+

0 Ŝ−
r eiQ.r〉 (see text) with L = 64 and J⊥/J = −1.0, for two

staggered fields, hs = 1.05 and 1.2, chosen to represent, respectively,
the ordered and the gapped phase.

and symmetric phases. We characterize the symmetric phase
by its gap, defined in Eq. (7), and by the scaling of this gap.

A. Critical point

From the discussion above, the critical point hc is the
single most important quantity in the description of the
competitive case. Once hc is determined, a process achieved
most accurately using the behavior of the order parameter in
the SSB phase, the gap and the 2D excitations of the symmetric
phase can be calculated with high accuracy. To determine the
critical point, or the phase boundary in the space of J⊥ and hs ,
we apply the finite-size-scaling hypothesis to the behavior of
the staggered correlation functions Cπ,0 and Cπ,π [respectively
for models (3) and (4)] as functions of L. These are expected41

to obey the scaling form

C(δ) = L2−d−zf (δL1/ν,β/Lz), (11)

where δ = hs − hc, β is the inverse temperature, and z is the
dynamical exponent.

The critical point hc can be measured accurately by
computing the staggered correlation function near the critical
point for different lattice sizes L × L. On fixing β/Lz = 1,
the scaling function f depends on a single parameter, δL1/ν .
Precisely at the critical point, δ = 0, CLd+z−2 is independent
of the lattice size, which implies that calculated curves for
CLd+z−2 as functions of hs for different lattice sizes should
cross at the critical point. It is clear from this form that z is
a measure of the system coherence: as z becomes larger, the
coherence of the system vanishes more rapidly in space at the
critical point. Here we test that the dynamical exponent takes
the value z = 1, and we find this to hold at all points around
the critical region.

We have simulated 11 different values of |J⊥| for both
ferro- and antiferromagnetic interchain coupling, with fixed
L/β = 1 and at least four lattice sizes, namely L = 40, 48,
60, and 64. We have verified the accuracy of our results by
performing calculations with L = 100 for the case J⊥ = 0.5.
For a determination of the critical point, we work only with
square samples at all values of |J⊥|; the simultaneous vanishing
of the superfluid density (spin stffness) in both directions at
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FIG. 7. (Color online) Determination of hc from the finite-size-
scaling hypothesis for (a) J⊥ = 0.5 and (b) J⊥ = −0.5. Error bars
are set by the inexact crossing of the lines, shown in the insets.
In panel (a), 0.6471 � hs � 0.6472 and 0.462 � LCπ,π � 0.471. In
panel (b), 0.49 300 � hs � 0.49 315 and 0.502 � LCπ,0 � 0.510.

hc negates the advantages of rectangular samples for low |J⊥|
(Sec. III) in this case. Examples of the sets of crossing curves
are illustrated in Fig. 7 for J⊥ = 0.5 and −0.5. The error
in hc can be estimated from the separation of the different
intersection points within a single manifold of curves; all errors
δhc are of order 10−4. The full numerical details determined
from this procedure are presented in Table II. The phase
diagram deduced from these values of hs is discussed in
Sec. V D.

B. Staggered magnetization

For applied fields hs < hc, the SSB phase possesses a
transverse staggered moment (or off-diagonal long-range
order) Ms

⊥. We have calculated this quantity for the case
hs = 0 in Sec. III. In general one expects the magnetic order

TABLE II. Critical staggered fields hc for systems with transverse
couplings |J⊥| varying from 0.05 to 1. Shown are results for both
ferromagnetic interchain coupling in a (π,π ) staggered field (3) and
antiferromagnetic interchain coupling in a (π,0) field.

(π,π ) (π,0)

J⊥ hc δhc J⊥ hc δhc

−0.05 0.02459 0.00007 0.05 0.02606 0.00008
−0.1 0.06336 0.00011 0.1 0.06964 0.00027
−0.2 0.15805 0.00015 0.2 0.18495 0.00013
−0.3 0.26495 0.00016 0.3 0.32470 0.00022
−0.4 0.37775 0.00014 0.4 0.48034 0.00008
−0.5 0.49305 0.00012 0.5 0.64715 0.00015
−0.6 0.60990 0.00006 0.6 0.82166 0.00018
−0.7 0.72630 0.00012 0.7 1.00225 0.00020
−0.8 0.84300 0.00011 0.8 1.18617 0.00014
−0.9 0.95850 0.00017 0.9 1.37339 0.00015
−1.0 1.07300 0.00021 1.0 1.56290 0.00019
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FIG. 8. (Color online) Transverse staggered order parameter Ms
⊥

as a function of hs for different values of the interchain coupling
J⊥. (a) Regime of large |J⊥|, showing conventional suppression of
Ms

⊥ by the competing field hs . (b),(c) Regime of small |J⊥|, showing
unconventional increase of Ms

⊥ with hs at low applied fields.

to be suppressed by the competing staggered field, because of
the different ordering patterns they favor, until Ms

⊥ vanishes
at hs = hc. In Fig. 8 we show Ms

⊥ as a function of hs for
different values of the interchain coupling J⊥. For larger values
of J⊥, of both signs, the order parameter shows a conventional,
monotonic decrease [Fig. 8(a)]. However, when |J⊥| � 0.2,
for both signs of J⊥ [Figs. 8(b) and 8(c)], we observe that Ms

⊥
first increases despite the increase in the competing staggered
field. We stress that our results for small |J⊥| were obtained on
rectangular samples with aspect ratio Lx/Ly = 8, following
the procedure established in Sec. III as providing the highest
available accuracy.

To our knowledge, this novel and purely quantum-
mechanical effect has not been remarked upon previously
in coupled Heisenberg chains. An analogous effect can be
found in dimerized quantum magnets42 such as NH4CuCl3,
where an applied uniform magnetic field, which in principle
competes with the transverse staggered order, nonetheless
causes the staggered moment to rise at the same time as the
uniform polarization is increased. A heuristic understanding
of this phenomenon is that all forms of magnetic order are
in fact competing with quantum fluctuation effects favoring
disordered states. When the disordered state is suppressed by
an applied field, more ordered spin “weight” is available both
for the magnetization component favored by the field and for
the component favored by the magnetic interactions.

As hs is increased further, Ms
⊥ is suppressed for all values

of |J⊥|, and it falls continuously to zero at the second-order
quantum phase transition. In this regime the finite-size effects
in our simulations are large, even though the statistical
errors are very small. Unlike the determination of hc itself,
there is neither a systematic approach by extrapolation with
different system sizes, which may allow a sufficiently accurate

determination of Ms
⊥ close to hc, nor a method for the accurate

estimation of such errors. Thus we are not able to deduce
the critical exponents of the transverse staggered moment in
order to characterize this side of the quantum phase transition.
The results of Sec. V C below suggest that some anomalous
behavior may be expected.

C. Energy gap

In the gapped, symmetric phase we wish to consider the
properties of the excited states. We compute the energy gap
� and extract the scaling behavior of the gap in the region
hs − hc < |J⊥|/2 deduced in Sec. IV. In Fig. 9 we present
selected examples of the function �(hs) for a range of positive
and negative values of J⊥. Unlike in the SSB phase, there are
no strong finite-size effects on the gap data close to hc for
the symmetric phase, a result we have confirmed by studies
on lattices of various sizes up to L = 100. For a given hc,
determined from finite-size scaling of the transverse order
parameter in the SSB phase (Sec. V B), we collect eight data
points within the scaling regime hs − hc < |J⊥|/2.

Our gap calculations are of course consistent with the values
of hc computed in the SSB phase. The gaps for J⊥ values of
opposite sign show only small, quantitative differences. The
two gaps converge to that of the 1D chain when J⊥ → 0. As
in Sec. V A, hc increases with the magnitude of J⊥, reflecting
the fact that it is the competition between the staggered field
and the interchain coupling that drives the quantum phase
transition.

We fit all of our numerical data for the gaps to a simple
power law, � = a0(hs − hc)α . The quantity α is an effective
exponent, which is the net result of both a real power-
law behavior and a possible logarithmic correction. In one
dimension (J⊥ = 0), where exact results are available and
the logarithmic corrections can be quantified, the real power
law has an exponent of 2/3, while the effective exponent
is α = 0.61. Away from one dimension, no reliable results
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FIG. 9. (Color online) Gaps as a function of staggered magnetic
field hs for four different values of |J⊥|. Monte Carlo results for
the gap are presented by black circles and red squares, respectively,
for ferro- and antiferromagnetic interchain couplings. The critical
points hc are determined from finite-size scaling of the transverse
order parameter in the SSB phase. The gap is fitted to the form � =
a0(hs − hc)α . Fitting curves are shown by solid lines and complete
fitting parameters presented in Table III.
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TABLE III. Fitting coefficients and exponents for the excitation
gap in systems with traverse couplings |J⊥| varying from 0.05 to 1.
Shown are results for both ferromagnetic interchain coupling in a
(π,π ) staggered field (3) and antiferromagnetic interchain coupling
in a (π,0) field (4).

(π,π ) (π,0)

J⊥ a0 α δα J⊥ a0 α δα

−0.05 0.929 0.693 0.003 0.05 0.943 0.698 0.004
−0.1 0.926 0.718 0.005 0.1 0.880 0.708 0.010
−0.2 0.862 0.724 0.006 0.2 0.822 0.715 0.005
−0.3 0.815 0.718 0.006 0.3 0.759 0.706 0.008
−0.4 0.761 0.704 0.004 0.4 0.744 0.703 0.003
−0.5 0.735 0.700 0.004 0.5 0.732 0.702 0.006
−0.6 0.716 0.693 0.003 0.6 0.686 0.692 0.008
−0.7 0.709 0.694 0.005 0.7 0.676 0.689 0.009
−0.8 0.705 0.692 0.005 0.8 0.673 0.688 0.005
−0.9 0.698 0.692 0.007 0.9 0.667 0.686 0.006
−1.0 0.693 0.692 0.007 1.0 0.661 0.686 0.008

are available for the logarithmic corrections. Numerically,
logarithmic plots of our data reveal a set of perfectly straight
lines, from which no corrections can be extracted (these appear
as double logarithms). Thus we choose to focus only on the
effective exponent for illustration.

Full details of the fitting parameters for the gap, including
the errors in the exponents we extract, are listed in Table III,
while Fig. 10 shows the gap exponent for different values of
J⊥. The exponent shows an initial increase as |J⊥| increases,
but then falls weakly and remains close to α = 0.7 over the
remainder of the range up to |J⊥| = 1. The values for the
two cases of ferro- and antiferromagnetic J⊥ differ only very
slightly, and no universal value is indicated. It is clear, however,
that the value of α does not fall to 0.5, even arbitrarily close to
the transition, as would be expected in a 2D mean-field theory
or from the results of Sec. IV. Our results therefore provide
strong evidence for nontrivial quantum physics.

For a heuristic explanation of these data, we appeal to
the chain mean-field theory of Ref. 40, where the interchain
interactions are treated as an effective staggered field h0 =
−2J⊥M0

⊥. The presence of a real staggered field either
reinforces this effective one, as in the noncompetitive geometry
of Sec. IV, or suppresses it in the competitive geometry.
Unlike the noncompetitive case, where the applied field breaks

0 0.25 0.5 0.75 1
-J⊥

0.6

0.65

0.7

0.75

0.8

α

0 0.25 0.5 0.75 1
J⊥

(a) (b)

FIG. 10. (Color online) Critical exponents α of the gap �

(Table III) as a function of |J⊥| for (a) ferromagnetic interchain
coupling and (b) antiferromagnetic interchain coupling. The solid
lines are a guide to the eye.

all continuous symmetries, in the competitive case a U(1)
symmetry is maintained and the system may still be treated
as a chain in a single effective field.

At lowest order, one may write heff = −2J⊥M⊥(hs) =
−2J⊥M0

⊥ + hs , from which M⊥(hs) = M0
⊥(1 − hs/2J⊥M0

⊥).
This simple linear approximation contains directly the compe-
tition between the applied and effective staggered fields, and
suggests a quantum phase transition at hc = 2J⊥M0

⊥, where
the applied field cancels the interactions. The quasilinear
relation between hc and J⊥ is clear from our calculations, while
the relevance of next-order, and possibly also logarithmic,
corrections is clear from our results with ferro- and antiferro-
magnetic J⊥. The spin chain in a positive effective staggered
field is once again a problem with no continuous symmetry,
in which a spin gap opens directly. The key point about this
heuristic picture is that the cancellation of the applied and
effective staggered fields results in a quasi-1D problem close
to hc, and hence the anomalous exponents we observe for all
values of J⊥ are to be expected: hc is always the staggered
field required to cancel the 2D coupling and reduce the model
to a 1D system.

The inexact values of the exponent can be ascribed to
departures from universality in the 1D nature of this system,
and are not indicative of a phase genuinely intermediate
between one and two dimensions. Because of the effectively
1D nature of the system close to the critical applied staggered
field, logarithmic corrections to the gap scaling may remain
significant for all values of |J⊥|. The calculation of such
corrections lies beyond the scope of the current analysis. We
conclude these considerations by commenting on the coupled
spin-chain system CDC,28 where anomalous gap exponents
have been measured despite the fact that the interchain
coupling is thought to be significant. We suggest on the basis
of our results that the origin of this behavior may lie in the
effects of a competitive staggered field.

D. Phase diagram

Finally, we present in Fig. 11 the phase diagrams of the
two competitive-case models for ferro- and antiferromagnetic
interchain coupling. The data are taken from Table II. For
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MC 
MFT 
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SSB phase

Symmetric phase
Symmetric 
 phase
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FIG. 11. (Color online) Phase diagrams for competitive-case
models in (a) (π,π ) and (b) (π,0) staggered fields, i.e., with (a)
ferromagnetic and (b) antiferromagnetic interchain coupling. Monte
Carlo results, given in Table II, are shown by solid circles and
power-law fits (see text) by solid lines. In (b), the blue, dotted
line marks the phase boundary predicted by a 2D mean-field theory
and the red, dashed line that from a chain-based mean-field theory
(Ref. 32).
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comparison we show also the chain mean-field results and 2D
mean-field results of Ref. 32. The numerically exact boundary
determined by our quantum Monte Carlo simulations lies
between those obtained from the two mean-field theories
[Fig. 11(b)], showing that neither is particularly accurate for
the problem of the 2D staggered magnetic field, and confirming
the general departure from universality of this type of system.

The phase boundary, or critical point as a function of the
interchain coupling constant, can be fitted well over the full
range of J⊥ by a simple power law,

hc = b0|J⊥|γ , (12)

with parameters hc = 1.08|J⊥|1.15 for the case of ferromag-
netic interchain coupling and hc = 1.57|J⊥|1.30 for antiferro-
magnetic coupling.

VI. SUMMARY

In summary, we have studied the zero-temperature phase
diagram and low-energy spin excitations of anisotropic,
two-dimensional spin- 1

2 Heisenberg models on the square
lattice under a staggered magnetic field. We have used a
continuous-time Monte Carlo method to calculate ordered
moments and spin gaps, and hence phase boundaries and
scaling relations. At zero field, we compute the properties
of the anisotropic Heisenberg model and benchmark our

calculations for the complexities of high anisotropy and strong
logarithmic corrections. When the applied field and magnetic
interactions cooperate, a gap opens immediately and scales
exactly as the square root of the staggered magnetic field.
When the two compete, we find a field-driven quantum phase
transition from a gapless phase of staggered magnetic order,
and characterized by spontaneous symmetry breaking in the
transverse direction, to a gapped, disordered, field-dominated
phase. In the ordered phase, we find an unconventional
enhancement of the staggered moment by a competing field, a
purely quantum effect. We determine scaling regimes, discuss
the scaling properties of the gap, and show that the physics
of the system in the competitive case is essence always
one-dimensional at the quantum critical point due to the
cancellation of applied and effective staggered fields.
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