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Polaron-phonon interaction in a finite-size lattice: A perturbative approach
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The finite-size exciton-phonon system is revisited within the small polaron theory. Two strategies are used
to treat the polaron-phonon interaction. The interaction is first expanded as a Taylor series with respect to the
coupling strength. It describes polaron scattering mediated by the exchange of real and virtual phonons, the
latter resulting from phonon vacuum fluctuations. However, this method does not improve energy calculations
when compared with standard second-order perturbation theory. A more accurate approach is obtained by using
a normally order expansion of the interaction. The vacuum fluctuations are renormalized up to infinity and a
polaron Hamiltonian is defined in terms of inhomogeneous effective hopping constants. Due to the finite size
of the lattice, the polaron energy spectrum exhibits discrete energy levels that are red shifted owing to the
polaron-phonon interaction. By contrast, each phonon frequency is either red or blue shifted depending on the
nature of the state occupied by the polaron that accompanies the phonon. But the larger is the lattice size, the
smaller is the phonon frequency shift. Finally, for odd lattice sizes, the phonon frequencies remain unchanged
when the polaron occupies the band center.
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I. INTRODUCTION

Quantum-state transfer (QST) from one region to another
is a fundamental task in quantum computing.1 Over short-
length scales, to ensure communication inside a computer or
between adjacent computers, solid-state based system is the
ideal candidate for scalable quantum computing.2 Because
the quantum channel depends on the way the information is
encoded, different strategies have been elaborated involving,
for instance, optical lattices.3 arrays of quantum dots,4 and
quantum spin networks.5,6 However, it has been pointed out
that qubits may be encoded on high-frequency vibrational
modes.7–9 Vibrational exciton-mediated QST is thus a promis-
ing way for quantum information processing.10,11

In that context, the dynamics of a finite-size exciton-
phonon system has been recently studied.12,13 Based on the
Fröhlich model14 (acoustic phonons), the nonadiabatic weak-
coupling limit was considered, i.e., a common situation for
vibrational excitons in molecular lattices such as adsorbed
nanostructures15–24 and biopolymers.25–40 To investigate QST,
special attention has been paid for describing coherences of
the exciton reduced density matrix that measure the ability of
the exciton to develop superimpositions involving the vacuum
and one-exciton states. Because generalized master equation
breaks down in finite-size lattices,41 standard perturbation
theory (PT) has been applied.

Within PT, the dynamics is governed by an effective
Hamiltonian that takes exciton-phonon entanglement into
account. The exciton is clothed by a virtual phonon cloud
whereas the phonons are dressed by virtual excitonic tran-
sitions. In that case, quantum decoherence is encoded in
the decoherence function42,43 that provides information on
the ability of the phonons to evolve freely in spite of the
exciton-phonon coupling. At zero temperature, the phonons
are in a pure state. The decoherence function reduces to a phase
factor involving the frequency difference between free and
dressed phonons. At finite temperature, an average procedure
yields a sum over phase factors, which interfere with the
others, resulting in the decay of the excitonic coherences.

Consequently, temperature-enhanced quantum decoherence
takes place. Nevertheless, when compared with infinite
lattices,44 the confinement softens the decoherence and allows
high-fidelity QST.

The previous scenario12,13 reveals that exciton-phonon
interaction-induced phonon frequency shift is a key ingredient
for understanding quantum decoherence. Unfortunately, our
previous works were restricted to the weak-coupling limit.
To go beyond this restriction, the finite-size exciton-phonon
system is thus revisited within the polaron concept,45–47 a
more accurate approach for treating intermediate- and strong-
coupling regimes. In the nonadiabatic limit, this approach
involves the Lang-Firsov (LF) transformation that partially
removes the exciton-phonon interaction.48 A new point of view
is generated in which the elementary excitation is no longer
a bare exciton but a small polaron, i.e., an exciton dressed by
a lattice distortion. The dressing modifies the exciton energy
but it does not affect the phonon frequency.

In fact, LF is not exact and a polaron-phonon coupling
remains. It turns out that before the 2000s, most of the works
focused on the influence of the polaron-phonon interaction
on the polaron properties. Only few studies were performed
to understand the way this interaction modifies the phonon
frequency.49,50 Fortunately, Ivic and co-workers have recently
developed several methods to characterize the modification
of the phonon spectra in infinite lattices with translational
invariance.51–54 They showed that the polaron-phonon interac-
tion yields either the softening or the hardening of the phonon
frequency, depending on the sign of the exciton hopping
constant.

Quite naturally, in the present work, we address a detailed
study by combining LF and PT to understand what is
happening in a finite-size lattice. It will be shown that the
polaron energy spectrum exhibits discrete energy levels that
are red shifted owing to the polaron-phonon interaction.
Similarly, each phonon experiences a frequency shift when
it is accompanied by a polaron. This effect is an intrinsic
property of a confined lattice because the larger is the lattice
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size, the smaller is the shift. Whatever the sign of the exciton
hopping constant, the polaron-phonon interaction leads either
to the softening or to the hardening of the phonon frequency,
depending on the state occupied by the polaron. However, for
odd lattice sizes, the phonon frequencies remain unchanged
when the polaron exactly lies at the band center.

The paper is organized as follows. In Sec. II, the finite-size
exciton-phonon system is described and the results provided
by PT are briefly summarized. Then, the small-polaron point
of view is introduced in Sec. III. Two different strategies to
treat the polaron-phonon interaction are presented in Secs. IV
and V, respectively. Finally, numerical calculations are carried
out and discussed in Sec. VI.

II. FINITE-SIZE EXCITON-PHONON SYSTEM

As detailed in numerous papers,12,13,39,41 the exciton-
phonon properties in a finite-size lattice containing N sites
x = 1, . . . ,N are governed by the Hamiltonian

H = ω0IA + �T +
N∑

p=1

�pa†
pap +

N∑
p=1

Mp(a†
p + ap). (1)

The first two terms define the exciton Hamiltonian HA that
characterizes the dynamics of N coupled two-level systems
with Bohr frequency ω0. It is defined in terms of the exciton
potential energy ω0IA, where IA is the identity operator in
the one-exciton subspace EA. The contribution �T denotes
the kinetic energy that describes the delocalization of the
exciton between neighboring sites. It involves the bare hopping
constant � and the Hermitian transfer matrix T defined as

T =
N−1∑
x=1

|x + 1〉〈x| + |x〉〈x + 1|, (2)

where |x〉 is the first excited state of the xth two-level
system. Owing to the confinement, the exciton eigenstates are
stationary waves with quantized wave vectors Kk = kπ/L,
with k = 1, . . . ,N and L = N + 1, as

|k〉 =
N∑

x=1

√
2

L
sin(Kk)|x〉. (3)

The corresponding eigenenergies ωk = ω0 + 2� cos(Kk)
form a symmetric ladder of N discrete energy levels that
belong to a band centered on ω0 and whose width is
approximately 4�. The third term in Eq. (1) is the phonon
Hamiltonian HB . It describes the external motions of the lattice
sites viewed as point masses M connected via force constants
W . With fixed boundary conditions, the phonons correspond
to N stationary normal modes with quantized wave vectors
qp = pπ/L, with p = 1, . . . ,N . The associated frequencies
are �p = �c sin(qp/2) with �c = √

4W/M . In the phonon
Hilbert space EB , the dynamics is described in terms of the
standard phonon operators a

†
p and ap and the eigenstates are

well-known phonon number states |{np}〉 = |n1,n2,. . .,np〉.
The last term in Eq. (1) is the exciton-phonon interaction
�H that acts in EA ⊗ EB . It involves the Hermitian operator
Mp that measures the coupling strength between the exciton
and the pth phonon mode. The interaction yields a stochastic
modulation of each two-level system Bohr frequency by

the lattice vibrations. In the local basis {|x〉}, Mp is thus
represented by a diagonal matrix as

Mpxx ′ = 2ηp cos(qpx)δxx ′ , (4)

where ηp = [(EB�p/L)(1 − (�p/�c)2)]1/2 is the modulation
amplitude induced by the pth phonon mode, EB being the
small-polaron binding energy. In the exciton eigenbasis {|k〉},
Mp is no longer diagonal and its elements are expressed as

Mpkk′ = ηp(δp,k−k′ + δp,k′−k − δp,k+k′ − δp,2L−k−k′ ). (5)

Equation (5) shows that �H favors exciton scattering from
state |k〉 with energy ωk , to state |k′〉 with energy ωk′ via
the exchange of a phonon p with energy �p. The allowed
transitions are specified by the selection rules Mpkk′ �= 0 that
generalize the concept of momentum conservation in a finite-
size lattice.

In the nonadiabatic (4� < �c) weak-coupling (EB � �)
limit, it has been shown that standard PT is particularly suitable
to solve H and to highlight exciton-phonon entanglement.12,13

�H being a small perturbation, the unperturbed states |k〉 ⊗
|{np}〉 refer to a free exciton accompanied by free phonons.
Although �H favors transitions between unperturbed states,
it turns out that there is no resonance between coupled
unperturbed states. PT was thus used to evaluate energy
corrections up to second-order in �H . Therefore, in a state
|k〉, the energy of an exciton ω̂k = ωk + δω

(0)
k is renormalized

due to its coupling with the phonons. Similarly, each phonon
of the pth mode experiences a frequency shift δ�

(0)
pk when it is

accompanied by an exciton in state |k〉. The energy corrections
are defined as

δω
(0)
k =

N∑
p=1

N∑
k′=1

M2
pkk′

ωk − ωk′ − �p

,

(6)

δ�
(0)
pk =

N∑
k′=1

2M2
pkk′(ωk − ωk′)

(ωk − ωk′)2 − �2
p

.

Because no resonance occurs in the nonadiabatic limit,
Eq. (6) reveals that the exciton is dressed by a virtual phonon
cloud whereas each phonon is clothed by virtual excitonic
transitions. Unfortunately, it provides a quite good description
of the exciton-phonon dynamics in the weak-coupling limit,
only. To go beyond and to investigate intermediate- and strong-
coupling regimes, a small polaron approach is developed in the
following sections.

III. THE SMALL POLARON POINT OF VIEW

The polaron concept arises through the assumption that the
interaction �H predominates over the kinetic energy �T . The
system Hamiltonian is thus rewritten as

H = H ′
0 + V, (7)

where V = �T whereas H ′
0 reduces to H in the limit � =

0. It describes an immobile exciton coupled with confined
phonons and exhibits a local character owing to the diagonal
representation of Mp in the local basis [Eq. (4)]. In that context,
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LF is the unitary transformation U that exactly removes �H

in the limit � = 0, as

U =
N∑

x=1

θ †
x |x〉〈x|, (8)

where the dressing operator θx is the representation of a general
operator defined as

θ = exp

⎛
⎝−

N∑
p=1


pAp

⎞
⎠ . (9)

In Eq. (9), 
p = Mp/�p defines the Hermitian coupling
operator that acts in EA. Isomorphic to Mp, it is diagonal in the
local basis. By contrast, Ap = a

†
p − ap is an anti-Hermitian

phonon operator that acts in EB . Note that [
p,
p′ ] = 0,
[Ap,Ap′ ] = 0, and [
p,Ap′ ] = 0 ∀p,p′.

By applying LF, H̃ ′
0 = UH ′

0U
† becomes diagonal in the

local basis |x〉 ⊗ |{np}〉, as

H̃ ′
0 =

N∑
x=1

(ω0 − εx)|x〉〈x| + HB, (10)

where εx = ∑N
p=1 M2

pxx/�p. Because LF conserves eigen-
values, both H ′

0 and H̃ ′
0 exhibit the same energy spectrum.

However, the eigenstates of H ′
0 differ from those of H̃ ′

0 and
they are defined as |x〉 ⊗ θx |{np}〉.

LF generates a new point of view in which |x〉 no longer
refer to an exciton localized on the xth two-level system.
Instead, it defines an immobile small polaron, i.e., an exciton
dressed by a virtual phonon cloud. The dressing favors a
redshift εx of the xth two-level system Bohr frequency. With
fixed boundary conditions, it turns out that this shift is site
independent, i.e., εx = εB ∀x. Nevertheless, it depends on
the lattice size so that the modified Bohr frequency becomes
ω̃0 = ω0 − εB with εB = EB(1 − 2/L). In the new point of
view, the phonon frequencies remain identical to those of
unperturbed phonons. Nevertheless, the polaron formation
affects the phonon eigenstates. For each phonon mode, they
behave as coherent quasiclassical states that depend on the
exciton position. These coherent states define the virtual
phonon cloud that surrounds the exciton, namely, the so-
called lattice distortion, and they partially take exciton-phonon
entanglement into account.

When the exciton is allowed to move, the polaron-phonon
dynamics is governed by the transformed Hamiltonian H̃ =
UHU † defined as

H̃ = ω̃0IA + HB + �θ †T θ. (11)

When � �= 0, LF partially removes the interaction and a
polaron-phonon coupling, Ṽ = �θ †T θ remains. This cou-
pling favors polaronic transitions between neighboring sites,
either freely or through phonon exchanges. It is as if the
polaron exhibited hopping constants that randomly fluctuate
owing to the lattice motions.

Therefore, within the small-polaron point of view, a major
problem rapidly occurs. How to intelligently split H̃ to
treat efficiently the polaron-phonon interaction? To answer
that question the so-called 1/λ expansion has been used by

Alexandrov and co-workers46,47 for an infinite lattice and in the
strong-coupling limit (λ = EB/2�). Within this method, the
first two terms in Eq. (11) define an unperturbed Hamiltonian,
whereas Ṽ is addressed using second order perturbation
theory. In the present paper, an alternative approach is used to
investigate weak-, intermediate-, and strong-coupling regimes.
Quite simple, it is based on the expansion of Ṽ in terms
of the exciton-phonon coupling strength. Although such a
procedure may appear less accurate than other methods, it has
the advantage to remove a certain arbitrariness to better control
the invoked approximations. In doing so, it turns out that Ṽ

can be expanded in two different ways, called the standard
expansion (SE) and the normally ordered expansion (NOE),
respectively. As shown in the next two sections, SE yields
results quite similar to those obtained within standard PT
(weak-coupling regime), whereas NOE allows to investigate
intermediate- and strong-coupling regimes.

IV. STANDARD EXPANSION

Within SE, Ṽ = �θ †T θ is expanded by using the well-
known Baker-Hausdorff formula.55 After straightforward al-
gebraic manipulations, one finally obtains Ṽ = ∑∞

m=0 Ṽm with

Ṽm =
∑
p1

∑
p2

. . .
∑
pm

Ṽm,p1p2...pm
Ap1Ap2 · · · Apm

, (12)

and

Ṽm,p1p2...pm
= �

m!
[
p1 ,[
p2 ,. . .[
pm

,T ]· · ·]]. (13)

Because 
p measures the exciton-phonon coupling
strength, SE is clearly a perturbative expansion. At lowest
order, Ṽ0 = �T is the kinetic energy of a bare exciton.
By adding this term to ω̃0IA, we can define a new polaron
Hamiltonian that includes both potential and kinetic energy
effects:

Hpo = ω̃0IA + �T . (14)

The polaron-phonon Hamiltonian is thus split as

H̃ = H̃0 + Ṽ1 + Ṽ2 + · · ·, (15)

where H̃0 = Hpo + HB is the unperturbed polaron-phonon
Hamiltonian.

As shown in Eq. (14), Hpo is isomorphic to the exciton
Hamiltonian HA [Eq. (1)]. The polaron eigenstates are thus sta-
tionary states |k〉 whose eigenvalues ω̃k = ω̃0 + 2� cos(Kk)
are red shifted by on amount equal to εB when compared with
the corresponding excitonic eigenenergies. By contrast, the
phonon frequencies remain unchanged. Therefore the unper-
turbed states |k〉 ⊗ |{np}〉 refer to a free polaron accompanied
by free phonons, polaron, and phonons being independent.
Note that it should be keep in mind that although they factorize,
the unperturbed states take exciton-phonon entanglement into
account via the dressing effect that results form LF.

To first order, the interaction is written as

Ṽ1 =
N∑

p=1

Ṽ1,pa†
p + Ṽ

†
1,pap, (16)
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where Ṽ1,p = �[
p,T ] is an anti-Hermitian operator whose
matrix elements are defined as

〈k|Ṽ1,p|k′〉 = ω̃k′ − ω̃k

�p

Mpkk′ . (17)

Ṽ1 favors polaron scattering from |k〉 to |k′〉 via the exchange
of a real phonon p. The allowed transitions satisfy selection
rules similar to those connected to the exciton-phonon problem
(Mpkk′ �= 0) excepted that diagonal terms vanish (〈k|Ṽ1,p|k〉 =
0). However, the key point concerns the strength of the inter-
action. Indeed, as pointed out in Refs. 12 and 13, the phonon
mode p = 1 yields the largest perturbation. This perturbation
affects polaronic states located close to the band center so
that one approximately obtains 〈k|Ṽ1,p|k′〉 ≈ 2BMpkk′ . For
B � 1, Ṽ1 appears smaller than �H suggesting that PT is
a priori more accurate after performing LF.

To second order, the interaction is written as

Ṽ2 =
N∑

p,p′=1

Ṽ2,pp′ (apap′ + a†
pa

†
p′ − a†

pap′ − apa
†
p′ ), (18)

where Ṽ2,pp′ = �[
p,[
p′ ,T ]]/2 is a hHermitian matrix.
As shown in Eq. (18), Ṽ2 exhibits four contributions whose
physics can be explained as follows. According to the first
contribution (term apap′ ), a polaron |k〉 and two phonons p

and p′ first propagate freely. Then, owing to the interaction,
the polaron is scattered in |k′〉, whereas the two phonons
are absorbed. The second contribution (term a

†
pa

†
p′ ) is the

complementary process during which the polaron scattering
results from the emission of the two phonons. The third
contribution (term a

†
pap′ ) first describes the free evolution of

a polaron accompanied by a phonon p′. Then, the phonon
p′ is absorbed and the phonon p is emitted giving rise to
polaron scattering. Finally, it turns out that the last contribution
(term apa

†
p′ ) is not the complementary process of the third

contribution. Although it still refers to polaron scattering, it
is as if the phonon p′ was emitted spontaneously before the
interaction and that the phonon p was absorbed long after
the coupling. To overcome this problem and obtain a coherent
scenario, Ṽ2 must be normally ordered. To proceed, all creation
phonon operators are moved to the left of all annihilation
phonon operators by using the phonon commutation rules. Ṽ2

is thus rewritten as

Ṽ2 =
N∑

p,p′=1

Ṽ2,pp′ (apap′ + a†
pa

†
p′ − a†

pap′ − a
†
p′ap − δpp′).

In normal order, the first four contributions define complemen-
tary processes that characterize polaron scattering mediated
by the exchange of real phonons. However, a fifth contribution
occurs. Independent on the phonon operators, it originates
in the phonon vacuum fluctuations. These fluctuations favor
processes during which a virtual phonon is emitted and
spontaneously reabsorbed, giving rise to polaron scattering.
They thus provide a correction to Hpo equal to 〈0B |Ṽ2|0B〉,
|0B〉 denoting the phonon vacuum state.

We have verified that the previous scenario generalizes
to high-order contributions. By using Wick’s theorem,45 it
turns out that Ṽm can be reorganized as the sum of normally
order contributions. The rth component of the sum describes

polaron scattering mediated by the exchange of r real phonons,
(m − r)/2 virtual phonons being emitted and spontaneously
reabsorbed owing to phonon vacuum fluctuations.

In that context, SE provides a starting point to apply PT for
evaluating energy corrections. Up to second-order, the energy
of a polaron in state |k〉 is renormalized due to its coupling with
the phonons. The energy correction exhibits two contributions
δω̃k = δω̃

(1)
k + δω̃

(2)
k as

δω̃
(1)
k =

N∑
p=1

N∑
k′=1

(
ω̃k − ω̃k′

�p

)2 M2
pk′k

ω̃k − ω̃k′ − �p

,

(19)

δω̃
(2)
k = −

N∑
p=1

N∑
k′=1

(
ω̃k − ω̃k′

�p

)
M2

pk′k

�p

.

The correction δω̃
(1)
k results form the interaction Ṽ1. It

originates in the spontaneous emission of a phonon p in the
course of which the polaron realizes a transition from |k〉
to |k′〉. Provided that B < 1/2, the energy is not conserved
during the transition so that the phonon emission is not a real
process.12,13 The polaron is only able to exchange a phonon,
which is first emitted and then immediately reabsorbed. The
exchanged phonon behaves as a virtual phonon that forms
a virtual cloud, which accompanies the polaron during its
propagation. By contrast, δω̃

(2)
k results from the interaction

Ṽ2 that favors the emission of a true virtual phonon that is
spontaneously reabsorbed. This phonon yields an additional
virtual cloud that clothes the polaron during its propagation
and renormalizes its energy.

When the polaron occupies a state |k〉, each phonon of the
pth mode experiences a frequency shift δ�pk = δ�

(1)
pk + δ�

(2)
pk ,

defined as

δ�
(1)
pk = 2

N∑
k′=1

(
ω̃k − ω̃k′

�p

)2 M2
pk′k(ω̃k − ω̃k′)

(ω̃k − ω̃k′)2 − �2
p

,

(20)

δ�
(2)
pk = −2

N∑
k′=1

(
ω̃k − ω̃k′

�p

)
M2

pk′k

�p

.

The shift δ�
(1)
pk , due to Ṽ1, results from two mechanisms.

First, the phonon p can be absorbed giving rise to polaronic
transitions from |k〉 to |k′〉. Such a process does not conserve
the energy provided that B < 1/2 so that the phonon is
immediately reemitted. Second, the phonon p can induce
the stimulated emission of a second phonon during which
the polaron realizes transitions, but the emitted phonon is
immediately reabsorbed. Both mechanisms indicate that the
phonon does no longer evolve freely but is dressed by virtual
polaronic transitions. By contrast, δ�

(2)
pk results from the

diagonal contribution of Ṽ2 that involves the phonon number
operators. It turns on because the expectation value of this
contribution does not vanish when the polaron occupies the
state |k〉.

At this step, a quite surprising feature occurs. Indeed,
after simple algebraic manipulations, it turns out that δω

(0)
k =

−εB + δω̃
(1)
k + δω̃

(2)
k and δ�

(0)
pk = δ�

(1)
pk + δ�

(2)
pk . Although LF

partially removes the exciton-phonon interaction, SE com-
bined with PT does not improve the energy calculations when
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compared with standard PT applied in the original exciton-
phonon point of view. Up to second order in the exciton-
phonon interaction, the polaron eigenenergies are identical
to the exciton eigenenergies. Similarly, the phonon-frequency
shifts are the same whether one works in the original or in the
small-polaron point of view. However, it is worth mentioning
that within the polaron point of view a better description of
the system quantum states is obtained because exciton-phonon
entanglement is already partially included by using LF. This
is the reason why PT is more efficient in the polaron point of
view.

V. NORMALLY ORDERED EXPANSION

As point out in Sec. IV, the mth contribution of SE
accounts for polaron scattering induced by the exchange
of m real phonons. In addition, owing to phonon vacuum
fluctuations, it partially renormalizes processes in the course
of which m − 2, m − 4, . . . real phonons are exchanged. The
renormalization results from the emission of virtual phonons
that are spontaneously reabsorbed. Consequently, it seems
possible to obtain an alternative to SE in which the order no
longer refer to the coupling strength but specifies the number
of real phonon exchanged. Within this approach, called the
normally ordered expansion (NOE) of the polaron-phonon
interaction, the mth contribution describes all the processes
involving m real phonons and either zero, one, two, etc. virtual
phonons.

Starting from SE, NOE is formally obtained using normal
ordering. However, this approach provides a perturbative
expansion in terms of renormalized quantities. To perform
an exact resummation, it is more efficient to apply normal
ordering to the original expression of the polaron-phonon
interaction represented in the local basis {|x〉} [Eq. (11)]. As
detailed in Appendix A, Ṽ is written as Ṽ = ∑∞

m=0 W̃m. The
mth contribution of the expansion is defined as

W̃m =
∑
p1

∑
p2

. . .
∑
pm

W̃m,p1p2...pm
: Ap1Ap2 · · ·Apm

: , (21)

where the double dot operation means normal ordering without
taking into account of the commutation relation of the phonon
operators. The operator W̃m,p1p2Apm

that acts in EA only, is
written as

W̃m,p1p2...pm
= �

m!
[
p1 ,[
p2 ,. . .[
pm

,T̄ ]· · ·]], (22)

where T̄ is the effective transfer matrix defined as

T̄ =
N−1∑
x=1

e− ∑
p

1
2 λ2

px (|x + 1〉〈x| + |x〉〈x + 1|). (23)

with λpx = 
px+1x+1 − 
pxx .
Within NOE, W̃m describes polaron scattering mediated

by the exchange of m real phonons. The scattering strength
is renormalized up to infinity by taking into account exactly
of the phonon vacuum fluctuations. The influence of these
fluctuations is encoded in the effective transfer matrix defined
as T̄ = 〈0B |θ †T θ |0B〉.

Inserting NOE into Eq. (11) yields an alternative partition
of the system Hamiltonian as

H̃ = ω̃0IA + HB + W̃0 + W̃1 + W̃2 + · · ·. (24)

At lowest order, W̃0 = �T̄ is an operator acting in EA, only.
By adding this operator to the local term ω̃0IA, one obtains a
new polaron Hamiltonian written as

Hpo = ω̃0IA + �T̄ . (25)

The polaron-phonon system Hamiltonian is thus split as

H̃ = H̃0 + W̃1 + W̃2 + · · ·, (26)

where H̃0 = Hpo + HB is the new unperturbed polaron-
phonon Hamiltonian.

The polaron Hamiltonian Hpo is no longer isomorphic to
the exciton Hamiltonian because the kinetic energy involves
the effective transfer matrix. This matrix accounts for the
delocalization of the polaron owing to direct couplings
between neighboring two-level systems. It also includes the
influence of the vacuum fluctuations that favor polaronic
hops mediated by the emission of virtual phonons that are
spontaneously reabsorbed. Consequently, the motion of the
polaron is governed by site dependent effective hopping
constants that are smaller than the bare hopping constant.
The hopping constant that connects two sites x and x + 1
is defined as �̃x = � exp(−Sx), where Sx = ∑N

p=1 λ2
px/2

is the inhomogeneous band-narrowing factor.46 Owing to
this inhomogeneity, the polaronic eigenstates |μ〉 and the
associated eigenenergies ω̃μ no longer refer to stationary
waves. They must be evaluated numerically, as illustrated in
the next section.

Within NOE, the unperturbed states |μ〉 ⊗ |{np}〉 describe
a free polaron accompanied by free phonons, polaron, and
phonons being independent. Therefore by treating W̃1 at
second order and W̃2 at first order, second-order PT can be
applied to evaluate the energy corrections. When compared
with SE, this procedure allows the exact resummation of some
contributions up to infinity in the exciton-phonon coupling
strength through the dependence of both W̃m and Hpo in the
effective transfer matrix. In that context, it is easy to show
that the energy of a polaron in a state |μ〉 is renormalized
due to its coupling with the phonons. The energy correction is
defined as

δω̃μ =
N∑

p=1

N∑
μ′=1

(
ω̃μ − ω̃μ′

�p

)2 M2
pμ′μ

ω̃μ − ω̃μ′ − �p

, (27)

where δω̃μ originates in the interaction W̃1. It describes energy
correction induced by the spontaneous emission of a phonon
p in the course of which the polaron realizes a transition from
|μ〉 to |μ′〉. However, because polaron eigenstates no longer
refer to stationary states, the allowed transitions satisfy new
selection rules Mpμ′μ �= 0. These selection rules differ from
those that arise in the SE approach. At this step, there is no
evidence that the energy is not conserved during a transition,
even if the nonadiabatic limit is reached. Energy conservation
during the polaron scattering may occur giving rise to PT break
down. This fundamental point will be illustrated in the next
section. Note that W̃2 does not contribute to the correction
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because the influence of the phonon vacuum fluctuations has
already been taken into account.

Similarly, when the polaron occupies a state |μ〉, each
phonon of the pth mode experiences a frequency shift δ�pμ =
δ�(1)

pμ + δ�(2)
pμ, defined as

δ�(1)
pμ = 2

N∑
μ′=1

(
ω̃μ − ω̃μ′

�p

)2 M2
pμ′μ(ω̃μ − ω̃μ′)

(ω̃μ − ω̃μ′)2 − �2
p

,

(28)

δ�(2)
pμ = −2

N∑
μ′=1

(
ω̃μ − ω̃μ′

�p

)
M2

pμ′μ

�p

.

The shift δ�(1)
pμ originates in the interaction W̃1. It results from

the fact that the phonon p can either be absorbed or induce the
stimulated emission of a second phonon, both processes being
accompanied by the polaron scattering from |μ〉 to |μ′〉. By
contrast, δ�(2)

pμ originates in the diagonal contribution of W̃2

that involves the phonon number operator a
†
pap. It switches

on because the expectation value of this contribution does not
vanish when the polaron occupies the state |μ〉.

Finally, allowing the renormalization of the phonon vacuum
fluctuations up to infinity, NOE combined with standard PT
appears more accurate than SE to evaluate energy corrections.
However, numerical calculations are required for character-
izing the polaron eigenstates |μ〉 and the coupling matrix
elements Mpμ′μ. These calculations are carried out in the next
section where Eqs.(27) and (28) are computed.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, the previous formalism is applied for
describing polaron-phonon interaction-induced energy cor-
rections in a finite-size lattice. To proceed, the adiabaticity
B = 2�/�c is fixed to 0.16, a common value for vibrational
exciton.12,13 Then, one defines C = �0/2� as the measure
of the coupling strength, with �2

0 = EB�c/2.29 As shown
in Sec. IV, SE yields energy corrections identical to those
provided by PT applied in the original exciton-phonon
point of view. Because these corrections have already been
discussed,12,13 special attention will be paid for describing
results provided by NOE.

The first step consists in characterizing the eigenstates
of Hpo [Eq. (25)] whose properties depend on the effective
transfer matrix elements T̄ (x,x + 1) = exp(−Sx) [Eq. (23)].
As shown in Fig. 1, these elements behave as in an infinite
lattice. They decrease as C increases and they approximately
scale as exp(−S∞) ∀x, where S∞ = 8EB/3π�c is the band-
narrowing factor in an infinite lattice. Nevertheless, Fig. 1
reveals that exp(−Sx) slightly depends on x. Indeed, as
illustrated in Fig. 2, the dressing effect is enhanced near the
lattice sides resulting in an inhomogeneous band-narrowing
factor. Quite large on the side sites x = 1 and x = N − 1, Sx

decreases gradually as one reaches the core of the lattice. It
reaches a minimum at the center of the lattice whose value
SL/2, that depends on the lattice size, is always larger than
S∞. Note that SL/2 tends to S∞ when L → ∞. Consequently,
the polaron is characterized by effective hopping constants
�̃x that are approximately �̃ = � exp(−S∞) in the core of
the lattice but slightly smaller close to the lattice sides, i.e.,

FIG. 1. T̄ (x,x + 1) vs C for N = 11.

�̃1 = �̃N−1 < �̃L/2. Note that this inhomogeneous character
is enhanced by both L and C. Nevertheless, the inhomogeneity
converges to a constant value provided that N > 20 for which
S1 − SL/2 ≈ 0.105 × S∞.

By using Eq. (4), straightforward calculations yield Sx =
S∞[FL(x) + FL(N − x)], where FL(x) is defined as

FL(x) = 3π

32L

{
cot

(
π

4L

)
+ cot

(
3π

4L

)

+ cot

[
π

L
(x + 1/4)

]
+ cot

[
π

L
(x − 1/4)

]}
.

When L → ∞, FL(L/2) ≈ 1/2 resulting in SL/2 ≈ S∞.
Moreover, FL(1) ≈ 7/10, whereas FL(N − 1) ≈ 17/42 so
that (S1 − SL/2)/S∞ = 11/105, in a perfect agreement with
the numerical results. In fact, provided that N is larger than
10 − 20, the N dependence of Sx results in the superimposition
of two functions localized on x = 1 and x = N , respectively.
An overlap effect occurs so that SL/2 � S∞. The equality holds
for L → ∞, only.

From the knowledge of the T̄ matrix, the diagonalization of
Hpo is carried out numerically. In spite of the inhomogeneity
of Sx , this procedure reveals that the polaron eigenstates are
quite similar to stationary states defined as

ω̃μ ≈ ω̃0 + 2�̃ cos(Kμ), |μ〉 ≈
N∑

x=1

√
2

L
sin(Kμx)|x〉

(29)

FIG. 2. T̄ (x,x + 1) vs x for C = 1.55 and for N = 11 (circles),
N = 20 (squares) and N = ∞ (dashed line).
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FIG. 3. Unperturbed polaronic energies ω̃μ vs C for N = 11.

with Kμ = μπ/L. Note that ω̃μ=1 > ω̃μ=2 > · · · > ω̃μ=N .
As shown in Fig. 3, the polaron energy spectrum exhibits
N discrete energy levels that belong to a band centered on
ω̃0 and whose width ∼4�̃ decreases as C increases. The
spectrum is antisymmetric with respect to the band center
[ω̃μ − ω̃0 = −(ω̃N−μ − ω̃0)]. As a result, for odd N values,
the polaron eigenstate μ = L/2 is exactly located at the band
center (ω̃μ=L/2 = ω̃0).

As displayed in Fig. 4(a), each polaron eigenenergy experi-
ences a redshift owing to the polaron-phonon interaction. This
shift depends on the nature of the state. The closer to the band
center the state is located, the larger is the shift. Moreover,
the energy corrections do not follow a mirror symmetry and
δω̃μ slightly differs from δω̃N−μ. These features result from
the fact that the polaron energy spectrum shows small Bohr
frequencies near the band edges whereas it exhibits quite large
Bohr frequencies close to the band center [Eq. (27)]. In the

µ

FIG. 4. Polaron energy correction δω̃μ vs μ for N = 8. The
corrections well behave in (a), whereas a resonance is shown in (b)
(see the text).

FIG. 5. (Color online) Polaron energy correction δω̃μ vs C for
N = 8.

weak-coupling regime, Fig. 4(a) reveals that the interaction
enhances the redshift. In that case, we have verified that SE
and NOE provide similar results. By contrast, for stronger
couplings, SE overestimates the redshifts that become larger
and larger as C increases. As shown below [Fig. 5], a different
behavior is observed within NOE.

As illustrated in Fig. 4(b), NOE breaks down for critical
values of the model parameters. As mentioned in Sec. V, this
feature results from the occurrence of resonances between the
unperturbed states coupled via W̃1. For instance, a detailed
analysis of Mpμμ′ for p = 1 reveals that the interaction
favors two kinds of transitions. First, it gives rise to main
transitions involving neighboring states μ′ = μ ± 1 as if the
states were stationary states [see Eq. (5) for p = 1]. Then,
because of the inhomogeneity of the T̄ matrix, the interaction
allows additional transitions μ′ = μ ± 3,μ ± 5,. . . The main
transitions do not induce resonances in the nonadiabatic limit.
Unfortunately, this is no longer the case for the additional
transitions that may favor resonances for specific values of
the model parameters. For N = 8 and C = 2.747, a resonance
takes place between the polaron eigenstates μ = 2 and μ = 7
and the phonon mode p = 1 so that ω̃μ=2 − ω̃μ=7 ≈ �p=1.
This resonance yields a singularity in the energy correction
δω̃μ=2. However, the resonances are very sensitive to the
coupling strength so that they rapidly disappear when one
moves away from the critical point in parameter space.

The C dependence of the polaron energy corrections is
displayed in Fig. 5 for N = 8. For each μ value, δω̃μ decreases
from zero as C increases. Then, it reaches a minimum for
C ≈ 3.1 whose value is approximately one order of magnitude
smaller than the bare hopping constant �. This minimum
ranges between −0.069� for μ = 8 and −0.163� for μ = 4.
Finally, as C increases again, δω̃μ increases and it converges
to zero in the strong-coupling limit. Note that the curve
δω̃μ vs C defines a continuous function almost everywhere.
Nevertheless, singularities occur for critical values of the
coupling. These singularities are the signature of resonances
for which NOE breaks down.

The comparison between NOE and SE is shown in Fig. 6
that displays the C dependence of ω̂μ = ω̃μ + δω̃μ (full
lines) and ω̂k = ω̃k + δω̃

(1)
k + δω̃

(2)
k (dashed lines). Provided
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FIG. 6. (Color online) ω̂μ = ω̃μ + δω̃μ vs C for N = 8 within
NOE (full lines) and SE (dashed lines).

that C < 1, both approaches yield similar results. However,
a different behavior takes place in the intermediate- and
strong-coupling regimes. Within SE, the energy corrections
diverge as C increases. This is no longer the case within NOE
because the energy corrections, after reaching a maximum
value, vanish in the strong-coupling limit. Consequently, the
corrected energies ω̂μ form discrete energy levels that converge
to ω̃0 as C increases. Theses results show that NOE is more
accurate than SE almost everywhere in the parameter space.
Nevertheless, although it is not well distinguishable in Fig. 6,
it should be kept in mind the NOE breaks down for critical
values of the model parameters.

To interpret these results, an approximate expression of
δω̃μ can be obtained by invoking simplifying assumptions. To
proceed, we first suppose that the polaron eigenstates reduce
to stationary waves [Eq. (29)]. Then, we restrict our attention
to normal scattering processes μ′ = μ − p and μ′ = μ + p,
only. Consequently, Eq. (27) is expressed as a Taylor series in
terms of the adiabaticity as

δω̃μ ≈ −2EBB̃2 − 8EBB̃3

π
cos(Kμ)

+EBB̃2 cos(2Kμ) + 56EBB̃3

15π
cos(3Kμ), (30)

where B̃ = B exp(−S∞). Equation (30) reproduces the be-
havior observed in Figs. 4–6. It reveals that the coupling
dependence is encoded in both EB and exp(−S∞). This is
the reason why δω̃μ first decreases as C increases and then
vanishes in the strong-coupling limit. Moreover, it shows that
the interaction yields a correction to the small polaron binding
energy, modifies the polaron hopping constant and induces
transitions between second and third nearest neighbor sites.
However, Eq. (30) does not reproduce the resonances that
result from the small discrepancy between exact polaronic
states and stationary waves.

As displayed in Fig. 7, the frequency of each phonon mode
is either red or blue shifted owing to its interaction with a
polaron. Although δ�(1)

pμ and δ�(2)
pμ have the same sign, it

turns out that δ�(2)
pμ is approximately one order of magnitude

FIG. 7. (Color online) Phonon frequency shifts for C = 2.0 and
for (a) N = 8 and (b) N = 9. (a) μ = 1 (full circles), μ = 2 (full
squares), μ = 3 (full diamonds), μ = 4 (full triangles), μ = 5 (open
triangles), μ = 6 (open diamonds), μ = 7 (open squares), and μ = 8
(open circles). (b) μ = 1 (full circles), μ = 2 (full squares), μ = 3
(full diamonds), μ = 4 (full triangles), μ = 5 (thin x), μ = 6 (open
triangles), μ = 7 (open diamonds), μ = 8 (open squares), and μ = 9
(open circles).

larger than δ�(1)
pμ. In a general, a polaron whose energy lies

above ω̃0 yields a redshift of the phonon frequency whereas a
polaron whose energy lies below ω̃0 favors a blue shift. The
shifts are antisymmetric with respect to the polaron band center
(δ�(i)

pμ = −δ�
(i)
pL−μ ∀i). Nevertheless, opposite situations may

appear, especially when the polaron occupies states close to
the band center. For instance, for N = 9, the polaron in state
μ = 4 favors a blue shift of the frequency of the phonon mode
p = 6, whereas the polaron in state μ = 5 induces a redshift.
In addition, some phonon modes remain almost insensitive to
the polaron that occupies specific states. For N = 9, when the
polaron is either in μ = 3 or 7, the phonon mode p = 7 is only
slightly perturbed. As shown in Fig. 7(b), a remarkable effect
arises for odd N values. In that case, phonons dressed by a
polaron whose energy is exactly located at the band center are
not perturbed, i.e., δ�

(i)
pμ=L/2 = 0 ∀ p and ∀i.

We have verified that SE provides phonon frequency shifts
quite similar to those predicted by NOE in the weak-coupling
limit (C < 1). However, both approaches differ as C increases.
In the intermediate- and strong-coupling regimes, SE over-
estimates the shifts that gradually increase as C increases.
As illustrated in Fig. 8 for p = 1, a different behavior is
obtained within NOE. In absolute value, the frequency shift
first increases with C from zero. Then, for C ≈ 4.8, it reaches
a maximum whose value ranges between 0.072� (for μ = 1
and N ) and 0.005� (for μ ≈ L/2). Finally, the shift decreases
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FIG. 8. (Color online) δ�p=1μ vs C for N = 14.

in the strong-coupling regime and it tends to zero. However,
the curve exhibits singularities that characterize resonances
for which the method breaks down. For instance, for N = 14
and C = 2.215, two resonances have been identified. The first
resonance involves the states μ = 2 and 7 (ω̃μ=2 − ω̃μ=7 ≈
�p=1), whereas the second resonance involves the states μ = 8
and 13 (ω̃μ=8 − ω̃μ=13 ≈ �p=1). Consequently, δ�p=1μ takes
unphysical values when the polaron occupies the states μ = 2,
7, 8, or 13.

The behavior of the maximum value of the phonon
frequency shift δ�m is displayed in Fig. 9. As shown in
Fig. 9(a), δ�m decreases with the lattice size and it scales as
δ�m ∝ 1/L. Therefore, the larger is the lattice size, the smaller

FIG. 9. (a) L dependence of the maximum phonon frequency
shift for C = 2.0, and (b) C dependence of the maximum phonon
frequency shift for N = 14.

is the perturbation experienced by the phonons. As illustrated
in Fig. 9(b) (full line), δ�m first increases with C from zero.
It reaches a maximum value ∼ 0.17� for C ≈ 4.580. Then,
it decreases as C increases again and it tends to zero in the
strong-coupling limit. By contrast, although SE works quite
well in the weak-coupling limit (C < 1.0), it breaks down in
the intermediate- and strong-coupling regimes. It predicts a
shift that diverges as C increases.

To discuss this results, an approximate expression of δ�pμ

can be obtained by assuming that the polaron eigenstates
behave as stationary states. Restricting our attention to normal
scattering processes, the main contribution to the phonon
frequency shift is expressed

δ�pμ ≈ −8B̃EB

L

(
�p

�c

)[
1 −

(
�p

�c

)2 ]
cos(Kμ). (31)

Equation (31) shows that δ�pμ < 0 if μ < L/2 whereas
δ�pμ > 0 if μ > L/2, in quite good agreement with the
numerical results. It reveals that δ�pμ = 0 ∀ p for μ = L/2,
as observed in Fig. 7(b). Moreover, Eq. (31) shows that ±δ�m

is the shift experienced by the phonon whose frequency is
�p = �c/

√
3 and that is accompanied by a polaron either

in state μ = 1 or μ = N . This maximum frequency shift
is approximately δ�m ≈ 3.08B̃EB/L. It scales as 1/L, as
observed in Fig. 9(a). Its coupling dependence is encoded in
both EB and exp(−S∞) so that it first increases as C increases
and then decreases in the strong-coupling limit. Nevertheless,
as Eq. (30), Eq. (31) does not reproduce the resonances.

At this step, let us point out the similarities and the dif-
ferences between the present results and previous works.51–54

Indeed, Eq. (31) is quite similar to the expression of the phonon
frequency shift obtained by Ivic et al.51 (see Appendix B).
Nevertheless, fundamental differences occur. Indeed, Ivic and
co-workers used a finite temperature mean-field theory in
which the effective hopping constant is defined in terms of
a temperature dependent band-narrowing factor. Moreover, a
statistics was performed so that the phonon frequency shift
depends on the thermal average of the population of the
polaronic states. Our approach is more like a zero-temperature
mean-field theory. The phonon-frequency shift originates in
the polaron-phonon entanglement that arises when the system
eigenstates are characterized within second-order PT. Indeed,
PT is based on a unitary transformation that provides a new
point of view in which the corrected energies no longer
describe independent excitations.12,13 A state |μ〉 defines a
polaron dressed by a virtual phonon cloud, whereas the
number state |{np}〉 describes phonons clothed by virtual
polaronic transitions. Consequently, the temperature is taken
into account when dynamical processes are considered using
the density matrix formalism.

To conclude, let us discuss the implication of the present
work in the field of quantum decoherence. To proceed, it
should be careful according to whether one consider the
excitonic coherence or the polaronic coherence. Indeed,
according to our previous works,12,13 the phonon perturbation
induced by a polaron is responsible for the decay of the
coherence that measures the ability of the polaron to develop
a superimposition between the vacuum and a one-polaron
state |μ〉. The corresponding decay rate is approximately
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μ ≈ (
∑N

p=1 �n̄2
pδ�2

pμ)1/2, where �n̄2
p = n̄p(n̄p + 1) mea-

sures the thermal fluctuations of the pth phonon number
around its average value n̄p. From Fig. 7, it turns out that
the closer to the band center the polaron state is located, the
smaller is μ and the slower is the decoherence. In particular,
for odd lattice sizes, the coherence of the state located at the
band center (μ = L/2) survives over an infinite time scale
because δ�pμ=L/2 = 0 ∀p.

By contrast, it would be premature to discuss the behavior
of the excitonic coherences. Indeed, these coherences will
depend on the phonon frequency shifts but also on the
dressing operators. This latter dependence originates in the
LF transformation that links both the original point of view
and the polaron point of view. In the weak-coupling limit,
the influence of the dressing operators will remain small so
that excitonic coherences will behave as polaronic coherences.
However, it will no longer be the case in the intermediate- and
strong-coupling regimes. A detailed study is thus required and
it will be addressed in a forthcoming paper.

VII. CONCLUSION

In the present paper, the finite-size exciton-phonon system
has been revisited within the small polaron theory. Based on LF
transformation, a new point of view was generated in which
a polaron defines an exciton dressed by a lattice distortion.
When the polaron is immobile, its frequency is red shifted by
an amount that depends on the lattice size, whereas the phonon
frequencies remain unchanged. However, when the polaron is
allowed to move, a polaron-phonon interaction occurs. It favors
polaronic transitions between neighboring sites, either freely
or through phonon exchanges. Two strategies have thus been
proposed to treat this interaction.

Within SE, the interaction is expanded as a Taylor series
with respect to the coupling strength. At zero order, the
expansion reduces to the kinetic energy of a bare exciton.
It was used to define a polaron Hamiltonian whose eigen-
states correspond to stationary waves. Therefore, high-order
contributions describe polaron scattering mediated by the
exchange of real and virtual phonons, the latter resulting
from phonon vacuum fluctuations. Up to second order, PT
has been applied for characterizing polaron energy corrections
and phonon-frequency shifts. Quite surprisingly, it turned
out that SE does not improve energy calculations when
compared with PT applied in the exciton-phonon point of
view.

Within NOE, the interaction is expanded as a Taylor series
involving normally ordered terms. Each term describes polaron
scattering mediated by the exchange of real phonons, only. The
scattering strength is renormalized up to infinity by taking into
account exactly of the phonon vacuum fluctuations. The po-
laron Hamiltonian is thus defined in terms of inhomogeneous
effective hopping constants so that the polaronic eigenstates
slightly differ from stationary waves. It has been shown that
NOE is more accurate than SE, especially in the intermediate-
and strong-coupling regimes. The interaction yields a redshift
of the polaron frequency. It modifies the effective hopping
constants and favors transitions between second and third
nearest neighbor sites. Similarly, each phonon experiences a
frequency shift when it is accompanied by a polaron. This

effect is an intrinsic property of a confined lattice because the
larger is the lattice size the smaller is the shift. It turns out
that the interaction yields either the softening or the hardening
of the phonon frequency, depending on the state occupied
by the polaron. However, for odd lattice sizes, the phonon
frequencies remain unchanged when the polaron occupies the
state exactly located at the band center. Unfortunately, it has
been observed that NOE breaks down for critical values of the
model parameter. Because polaronic eigenstates differ from
stationary states, additional scattering processes are allowed.
These processes may conserve the energy resulting in the
occurrence of resonances at the origin of divergences in the
energy corrections.

Through this paper, we have identified the strengths and
weaknesses of NOE. Consequently, in forthcoming works, we
shall first develop a more efficient formalism to overcome
the problems induced by the resonances. Then, NOE will be
applied to simulate dynamical processes at finite temperature.
Special attention will be paid for describing excitonic coher-
ences as well as QST in the intermediate- and strong-coupling
regimes.

APPENDIX A: NORMAL ORDERING OF THE
INTERACTION

In the local basis, the polaron-phonon interaction is written
as

Ṽ =
N−1∑
x=1

�(θ †
x+1θx |x + 1〉〈x| + θ †

xθx+1|x〉〈x + 1|). (A1)

Using Glauber-Weyl formula,55 the product involving dressing
operators is normally ordered as

θ
†
x+1θx = e− ∑

p
1
2 λ2

px e+ ∑
p λpxa

†
p e− ∑

p λpxap ,
(A2)

θ †
xθx+1 = e− ∑

p
1
2 λ2

px e− ∑
p λpxa

†
p e+ ∑

p λpxap ,

where λpx = 
px+1x+1 − 
pxx . Therefore inserting Eq. (A2)
into Eq. (A1) and expanding the exponentials as a Taylor series,
Ṽ is written as Ṽ = ∑∞

m=0 W̃m, W̃m being defined as

W̃m = �

m!

N∑
p1=1

· · ·
N∑

pm=1

N∑
x=1

e− ∑
p

1
2 λ2

px λp1x · · ·λpmx |x + 1〉

× 〈x|
m∑

r=0

(−1)r (
m
r )a†

p1
· · ·a†

pm−r
apm−r+1 · · ·apm

+ �

m!

N∑
p1=1

· · ·
N∑

pm=1

N∑
x=1

e− ∑
p

1
2 λ2

px λp1x · · ·λpmx |x〉

× 〈x + 1|
m∑

r=0

(−1)m−r (
m
r )a†

p1
· · ·a†

pm−r
apm−r+1 · · ·apm

.

(A3)

This equation can be expressed in a more useful form that
does not depend on the nature of the polaronic basis. To
proceed, it should first be noted that the λpx coefficients yield
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the occurrence of the coupling operators as

λpx |x + 1〉〈x| = [
p,|x + 1〉〈x|],
(A4)

λpx |x〉〈x + 1| = −[
p,|x〉〈x + 1|].
Then the sum over x simplifies through the introduction of
the effective transfer matrix Eq. (23). After simple algebraic
manipulations, one finally obtains Eqs. (21) and (22). Note
that the double dot operation can be used because W̃m,p1p2...pm

is invariant under the m! permutations over the indexes
p1,p2, . . . ,pm.

APPENDIX B: COMPARISON WITH THE WORKS OF IVIC
AND CO-WORKERS

In a translationally invariant lattice containing N sites, Ivic
and co-workers used a finite temperature mean-field procedure
for characterizing the modifications of the phonon spectra
induced by the polaron-phonon interaction.51–54 They showed
that the frequency of the phonon mode with wave vector q and
harmonic frequency �q = �c| sin(q/2)| is defined as

�̃2
q = �2

q(1 + Fq), (B1)

where Fq is expressed as

Fq = −8B|Fq |2e−S(T )

�c�q

1

N

∑
K

nK cos(K). (B2)

In Eq. (B2), |Fq | = [2EB�q(1 − (�q/�c)2)]1/2 is the cou-
pling strength, S(T ) is the so-called temperature dependent
band-narrowing factor and nK is the small-polaron mean num-
ber in the Bloch state with wave vector K . In the nonadiabatic
limit, i.e., provided that B � 1, Eq. (B1) simplifies and one
obtains �̃q = �q + δ�q with

δ�q ≈ −8B̃EB

N

(
�q

�c

)[
1 −

(
�p

�c

)2 ]
×

∑
K

nK cos(K),

where B̃ = B exp[−S(T )]. As discussed in Sec. VI, this
equation basically reduces to Eq. (31) at zero temperature
[S(T ) = S∞] and when a specific polaronic Bloch state
K is occupied (nK ′ = δKK ′ ). Size effects arise through
the quantization of both the phonon wave vector and
the polaron wave vector. Nevertheless, this equation re-
mains too simple to capture all the features displayed in
Figs. 7, 8, and 9.
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