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We discuss aging and localization in a simple “Eshelby” mesoscopic model of amorphous plasticity. Plastic
deformation is assumed to occur through a series of local reorganizations. Using a discretization of the mechanical
fields on a discrete lattice, local reorganizations are modeled as local slip events. Local yield stresses are randomly
distributed in space and invariant in time. Each plastic slip event induces a long-ranged elastic stress redistribution.
Mimicking the effect of aging, we focus on the behavior of the model when the initial state is characterized by
a distribution of high local yield stress values. A dramatic effect on the localization behavior is obtained: the
system first spontaneously self-traps to form a shear band, which then only slowly broadens. The higher the
“age” parameter the more localized the plastic strain field. Two-time correlations computed on the stress field
show a divergent correlation time with the age parameter. The amplitude of a local slip event (the prefactor of
the Eshelby singularity) as compared to the yield stress distribution width acts here as a mechanical effective
temperaturelike parameter: the lower the slip increment, the higher the localization and the decorrelation time.
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I. INTRODUCTION

While metals are characterized by a low elastic limit
and large deformation before failure, their amorphous coun-
terparts, bulk metallic glasses (BMGs) are known for the
exact opposite, high mechanical strength and low ductility.
The propensity of plastic deformation in BMGs to localize
and form shear bands is the main mechanism leading to
mechanical failure. Understanding and thus controlling shear
band formation is the main challenge that has so far limited
the use of glasses as structural materials.1,2

Although plastic deformation may be responsible for
significant heat production, recent experimental studies have
shown that the origin of nucleation and propagation of shear
bands could not be attributed to an adiabatic shear banding
instability via local temperature rise.3 In the absence of such
a thermal softening mechanism, Falk, Shi, and collaborators
have explored by molecular-dynamics simulations the hypoth-
esis of a structural softening mechanism.4 They showed in
particular that shear banding was facilitated by a high degree
of relaxation of the glassy structure.

They proposed an interpretation of this phenomenon in
the framework of the shear transformation zones (STZs)
theory5 describing plastic deformation of metallic glasses as
resulting of local inelastic transformations.6 Let us recall that
according to STZ theory plastic deformation is assumed to
result from a series of local reorganizations occurring within
a population of “small” atomic/molecular clusters (zones)
through microinstabilities. Plastic deformation directly results
from the balance between flips in the positive and negative
directions of these shear transformation zones at a rate that
depends on an intensive parameter (e.g., free volume or
effective structural temperature). Shi and Falk could associate
the shear band with a structural signature characterized by
an effective temperature, reflecting a higher potential energy

in the band than in the still surrounding. In a similar spirit,
Manning, Langer, and collaborators7 proposed an enriched
version of the STZ theory able to capture strain localization.
The introduction of a relaxation-diffusion equation of the
effective structural temperature was in particular shown to
induce shear banding in aged structure (low effective structural
temperature) and/or high shear-rate conditions.

Independently, starting from the trap model developed
by Bouchaud8 for the glass transition, Sollich, Cates, and
Lequeux9 developed a soft glassy rheology (SGR) model to
capture the rheology of complex fluids. In the trap model a
landscape of traps of depth E drawn from an exponential dis-
tribution exp(−E/E0) is assumed. A breakdown of ergodicity
naturally emerges at T0 = E0/k. From this simplified view
of the glass transition, Sollich et al. introduce the mechanical
stress as a bias to the energy landscape. It is important to note
that the temperature in their model is not associated to a real
thermal bath but is assumed to emerge from some mechanical
noise a priori related to elastic interactions induced by local
reorganizations.

While STZ and SGR models capture part of the rich
phenomenology of amorphous visco-plasticity, their mean-
field character does not allow them to account for localization
unless an additional ingredient is introduced. The latter can be
the relaxation/diffusion of a state variable as discussed above
and/or the inclusion of anisotropic elastic effect of local plastic
events (Eshelby inclusion)10 in the modeling.

Building on the latter grounds several authors have de-
veloped “Eshelby” mesoscopic models to study plasticity
of amorphous materials.11–17 Except in the case of Ref. 15
where a state variable is implemented or of Ref. 13 where
the presence of walls traps plastic deformation, in such
models, localization appears to be only transient and complex
spatiotemporal correlations very similar to those observed in
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atomistic simulations emerge from the competition between
diffusion and localization.17,18

Recently Fielding and collaborators19,20 investigated an
age-dependent transient shear banding behavior in different
models where the shear banding was not triggered by an elastic
or viscous softening constitutive law, but rather through an
aging/rejuvenation behavior where the diffusive character of
an internal variable would dictate the widening and progressive
vanishing of an initial shear band. The introduction of such a
mechanism in a variant of the SGR model results in a very
slow (“glassy”) spreading of such shear bands.

This age dependence of shear banding and its fast or
glassy relaxation motivates us to reassess the question of
the connection to be made between the glass theory inspired
SGR model and the STZ model built from the identification
of the microscopic mechanism of plasticity in amorphous
materials. In particular, it has remained so far difficult to
give a microscopic justification to the effective mechanical
temperature defined in the SGR model.4,21

In the following we present results about aging and
localization obtained with the original mesoscopic model
of plasticity presented in details in Ref. 17. We discuss in
particular the effect of two parameters of the model, which
will appear to respectively mimic the age of the system before
shearing and a mechanical effective temperature.

II. DEFINITION OF THE MODEL

Let us briefly recall the definition of the model (see Ref. 17
for more details). The mechanical fields are discretized on a
square lattice with a mesh size significantly larger than the
typical scale of a plastic reorganization. Periodic boundary
conditions are considered. The material is assumed to be
elastically homogeneous, so that stresses and elastic moduli are
scaled so that the steady-state local yield stress is unity. A local
criterion of plasticity is considered. The initial distribution of
local yield stress is denoted Pi(σc). Every time a local plastic
criterion is satisfied at point x0, a local slip �εp occurs (we
assume here that local plastic strains obey the same symmetry
as the external loading, pure shear in the present case, so
that a simple scalar yield criterion can be chosen) with a
random amplitude d drawn from a statistical distribution Q(d),
�εp(x) = dδD(x − x0) where δD is the Dirac distribution.
Note that d is the product of the mean plastic strain by the
“volume” of the transformation zone. This local slip d induces
a long-range redistribution of elastic stress with a quadrupolar
symmetry (see Refs. 17 and 22 for analytical and numerical
details about this elastic propagator) �σel(x) = dG(x − x0)
with G(r,θ ) ≈ Ad cos 4θ/r2 where A is the dimensionless
elastic constant, r and θ the polar coordinates. The slip ampli-
tude d is drawn from a uniform distribution in the range [0; d0].

After slip, the microstructure of the flipping zone has
changed and a new value of the local yield stress is drawn from
a distribution PS(σc). The system is driven with an extremal
dynamics so that only one site at a time is experiencing
slip. The originality of the present depinning models relies
in the anisotropic elastic interaction. Within this framework of
dynamic phase transition, the choice of extremal dynamics
ensures to drive the system at the verge of criticality: the
macroscopic yield stress is given by the critical threshold.

The above model may be seen as a depinning model
for amorphous plasticity with a peculiar (anisotropic) elastic
interaction. While the richness of the physics of the depinning
models mainly relies on the competition between elasticity
and disorder, we see here that the anisotropic character and
the abundance of soft modes in the elastic interaction, which
characterize the present model of amorphous plasticity, nat-
urally induce an additional competition between localization
and disorder.

An implicit assumption used in our model is that the
statistical distribution PS(σc) used to renew the local plastic
threshold under shear (i.e., after local slip) is the very same as
the distribution of plastic thresholds in the initial configuration
Pi(σc). This hypothesis may be questioned. Indeed, various
experimental and numerical results obtained in friction or
in shearing granular material or complex fluids4,23,24 seem
to indicate an effect of the preparation of the material upon
its behavior under shear. One may think, for instance, of the
effect of density of granular material: a loose (dense) packing
tends to exhibit hardening (softening) while under shear the
density progressively evolves toward a so-called “critical”
value.

In order to test the effect of our hypothesis we give in the
following a bias to the initial threshold’s distribution and try
to test its consequences. Practically speaking, the yield stress
distributions Pi(σc) (initial state) and PS(σc) (under shear)
are chosen as uniform in the ranges [δ; 1 + δ] and [0; 1],
respectively. A positive (negative) value of δ is expected to
induce some softening (hardening) behavior since all threshold
values above unity (below zero) should eventually be replaced
by thresholds within the interval [0,1].

We focus in the following discussion on the effect of these
two parameters, d0 and δ. In the view developed by Sollich
et al.,9 the parameter d0, which gives the amplitude of the
mechanical noise induced by the elastic interactions, may be
thought of as analogous to the effective mechanical tempera-
ture x in the SGR model. However, it is to be emphasized that
this mechanical “noise” is strongly inhomogeneous in space
and displays strong temporal and spatial correlations, absent
from the SGR model. The second parameter δ measures the
shift between the initial yield stress distribution, that uniform
in [δ; 1 + δ], and the distribution of new local yield stress under
shear, uniform in the range [0; 1] may be related to the initial
state of the system prior to shearing. Indeed it is expected
that the older the glassy system, the more stable and the more
difficult it is to shear. This effect is described here through a
mere penalty in the initial yield stress. High mean values of
the plastic thresholds should thus be associated with aged con-
figurations of the glass. As discussed in Ref. 25, a logarithmic
increase of the yield stress with the age of the system is often
observed in glassy materials: δ ≈ s0(T )ln(tw/t0) where t0 is a
microscopic time scale. According to this perspective, the age
of the system would simply be related to the bias δ through
an exponential dependence. Yet another interpretation would
consist of relating the parameter δ to a structural temperature as
discussed in Refs. 4,7, and 26. The two quantities are expected
to vary in opposite ways when the structure relaxes. The more
relaxed the glass, the higher the δ and the lower the structural
temperature. We now test these simple ideas against numerical
simulations.
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FIG. 1. Maps of plastic strain obtained from left to right at 〈εp〉 = 1/16, 1/4, 1, 4, and 16 and from top to bottom with a bias value δ = 0,
0.5, and 0.7 with a slip increment d = 0.3.

III. MAPS OF PLASTIC ACTIVITY

In Figs. 1 and 2 the evolution of the spatial distribution
of plastic strain under shear is shown for different values of
the agelike parameter δ (Fig. 1) and of the temperaturelike
parameter d0. We show snapshots of the plastic strain field
taken at 〈εp〉 = 1/16, 1/4, 1, 4, 16. The value of the local
strain is represented with a gray scale (the darker, the larger
the plastic strain).

In Fig. 1, the values d0 = 0.3 of the slip increment has been
used. The first row corresponds to the value δ = 0. When
using this unaged initial configuration, we see that plastic
strain first self-organizes along shear bands at ±π/4, i.e.,
according to the maximum shear directions. This localization
is, however, not persistent and after a transient, these shear
bands diffuse throughout the system. The evolution obtained
with a bias value δ = 0.5 (second row) is markedly different.
Again plastic deformation first tends to form shear bands
according to directions at ±π/4, but remains essentially
trapped in a strongly localized state. The formed shear band
only slowly widens with “time” (mean plastic strain). The
evolution obtained with a bias value δ = 0.7 (third row) is
very similar: formation of a persistent shear band before an
apparent diffusive widening of the band. Localization appears
to be more intense and widening slower with this higher value
of the agelike parameter δ.

Let us only note here that the way the plastic activity
gets localized along a band is somewhat reminiscent of the
behavior of an earlier model proposed by Torok and Roux.27

In this study, the authors made evidence for a weak breaking
of ergodicity, which they relate to the progressive building in

the threshold’s landscape of a valley (along the shear band)
surrounded by ridges elevating significantly above the base
level. Plastic activity thus tends to be confined in the valley
and can no longer fully explore the disordered landscape.

In Fig. 2, the values δ = 0.5 of the agelike parameter
has been used. From top to left, the evolution of the plastic
strain field is shown for values of the slip increment d0 =
0.03, 0.1, 0.3. A similar behavior as above is obtained. We
see that the higher the value of the temperaturelike parameter
d0, the less intense the localization and the faster the subse-
quent widening process. Age and mechanical temperaturelike
parameters δ and d0 thus seem to behave as could be expected,
at least phenomenologically.

IV. SLOW RELAXATION OF SHEAR BANDING

The residual stress field is the self-balanced stress field,
which results from the local slip events taking place from the
initial (stress free) state. The latter has a zero volume average.
It allows one (in conjunction with the local random yield
threshold) to characterize the propensity of a site to undergo a
plastic slip. This motivates the recourse to standard tools used
for aging behavior characterization. Two-point correlation
functions based on the residual stress field are proposed:

Cσ (εw,εp)

= 〈σres(εw,x)σres(εp,x)〉x
[〈σres(εw,x)σres(εw,x)〉x〈σres(εp,x)σres(εp,x)〉x]1/2

(1)
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FIG. 2. Maps of plastic strain obtained from left to right at 〈εp〉 = 1/16, 1/4, 1, 4, and 16 with a bias value δ = 0.5, and from top to bottom
with a slip increment d0 = 0.3, 0.1, and 0.03.

where the symbol 〈· · ·〉x designates a spatial average over x.
Note that the model does not depend on time as such; the
global plastic strain plays the role of an evolution parameter.

Such two-point correlation functions can be used to
follow the formation and the subsequent relaxation of shear
banding.28 In the following we only discuss the relaxation
stage after the initial transient and full formation of the
shear band. In Fig. 3 we present the dependence of the
stress correlation for εw = 1; at this deformation level, which
corresponds to the typical amplitude of the local plastic
threshold, localization (if any) is fully set.

The left panel of Fig. 3 shows the effect of the “age”
parameter, with δ = 0, 0.2, 0.4, 0.6, 0.8, and d0 = 0.2. In
the unaged configuration (δ = 0), the system decorrelates

after a typical plastic strain εp = d0.5
0 . This reflects the

nonpersistence of localization in the standard unaged case. In
the case of an aged initial configuration we obtain significantly
different results. The systems appears to decorrelate only
after a plastic deformation growing exponentially with the
parameter δ. Moreover, when fitting data with a simple
stretched exponential, the exponent can be shown to transit
from values slightly below unity in the unaged case to values
close to or below 1/2 in the more aged configurations. The
shear banding persistence thus seems to directly depend on
the age.

Pursuing the above discussed analogy we now show in the
center panel of Fig. 3 the correlation functions obtained with
a fixed age parameter δ = 0.6 for values of the slip increment
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FIG. 3. (Color online) Effect of the agelike parameter δ (left) and of the mechanical noise amplitude d0 (center) on the two-point stress
correlation function with εw = 1. Right: Dependence on δ and d0 of the typical plastic deformation ε∗ needed to relax shear banding. After
rescaling data can be reasonably collapsed onto a single master curve; the dashed line indicates an exponential behavior accounting for the
glassiness of shear banding at high δ–low d0.
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parameter varying from d0 = 0.02 to d0 = 1 (computations
were performed on lattices of size 64 × 64 with 20–200
realizations). As could be anticipated from the above displayed
maps of plastic deformation, the shear banding persistence
tends to increase inversely with the slip increment parameter,
the lower the d0 the higher the decorrelation time. The slip
increment parameter d0 thus seems reasonably to act as the
amplitude of a mechanical noise allowing the system to escape
its trapped state. In other words, d0, which stands here for the
product of the volume of a flipping zone times its typical plastic
strain, seems to be a good candidate for the elusive effective
mechanical temperature discussed in the SGR model.9

We try to rationalize in the right panel of Fig. 3 the age and
mechanical noise dependence of the shear banding persistence.
Exploring the two-dimensional space of parameters δ and d0,
using a simple stretched exponential fitting procedure, we
extracted the typical plastic strain ε∗ associated with stress
decorrelation after shear banding formation (εw = 1 in the
above notations). This allows us to propose a reasonable
scaling dependence:

ε∗ = da
0 ϕ

(
δ

db
0

)
, (2)

where

ϕ(x → 0) ≈ A and ϕ(x → ∞) ≈ CeBx.

The choice a = 0.5 and b = 0.2 allowed us to obtain a
reasonable collapse of the data collected for d0 ∈ [0.02,0.03,

0.05,0.1,0.2,0.5,1] and δ ∈ [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,

0.8,0.9]. In Fig. 3 an indicative exponential curve is shown
to account for the high age and/or low mechanical noise shear
banding slow relaxation behavior.

V. CONCLUSION

To summarize, we showed that our simple Eshelby-like
mesoscopic model of amorphous plasticity exhibits a striking
dependence on initial conditions. The introduction of a simple

bias to shift the initial distribution of local yield stress values
from its counterpart used to renew the yield stress after local
reorganization has a remarkable consequence: the system self-
traps in a localized state to form a shear band and remains so
for a longer and longer “time” when the bias value increases.
This bias can thus be interpreted as an estimator of the age
of the system before shearing or be related to some effective
structural temperature.26

Moreover, we show that the ratio of the typical slip
increment (more rigorously in the formalism of the Eshelby
inclusion, the volume of a reorganizing zone times its typical
plastic strain) on the typical plastic yield stress acts as an
effective mechanical temperature in the sense proposed in the
SGR model of Sollich et al.9 This parameter indeed gives
the amplitude of the mechanical noise induced by successive
reorganizations. The lower this amplitude, the longer the
systems gets trapped and the slower the widening of the shear
bands.

In conclusion, the present depinning model of amorphous
plasticity appears to reproduce shear banding, a crucial feature
of the phenomenology of metallic glasses. The nucleation
step of the shear band is followed by a slow broadening step
of the band. The latter is quantitatively characterized by a
slow relaxation of the stress-stress correlation. Note that this
slow dynamics spontaneously emerges in the absence of any
prescribed internal relaxation time scale.

The behavior of the model is controlled by two parameters
that can be associated to a structural effective temperature26

and a mechanical effective temperature,9 respectively. This
model may thus contribute to clarify the respective effects
of structural relaxation and mechanical noise induced by
local reorganizations in the plastic behavior of amorphous
materials.
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17M. Talamali, V. Petäjä, D. Vandembroucq, and S. Roux, e-print
arXiv:1005.2463 (to be published); Phys. Rev. E 84, 016115 (2011).

18C. E. Maloney and M. O. Robbins, J. Phys.: Condens. Matter 20,
244128 (2008); Phys. Rev. Lett. 102, 225502 (2009).

19S. M. Fielding, M. E. Cates, and P. Sollich, Soft Matter 5, 2378
(2009).

134210-5

http://dx.doi.org/10.1016/j.actamat.2007.01.052
http://dx.doi.org/10.1016/j.actamat.2007.01.052
http://arXiv.org/abs/arXiv:1107.2022
http://dx.doi.org/10.1038/nmat1536
http://dx.doi.org/10.1103/PhysRevLett.95.095502
http://dx.doi.org/10.1103/PhysRevB.73.214201
http://dx.doi.org/10.1103/PhysRevLett.98.185505
http://dx.doi.org/10.1103/PhysRevLett.98.185505
http://dx.doi.org/10.1103/PhysRevE.57.7192
http://dx.doi.org/10.1016/0001-6160(79)90055-5
http://dx.doi.org/10.1103/PhysRevE.76.056106
http://dx.doi.org/10.1103/PhysRevE.79.016110
http://dx.doi.org/10.1051/jp1:1992238
http://dx.doi.org/10.1103/PhysRevLett.78.2020
http://dx.doi.org/10.1103/PhysRevLett.78.2020
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1088/0965-0393/2/2/001
http://dx.doi.org/10.1088/0965-0393/2/2/001
http://dx.doi.org/10.1088/0965-0393/2/2/002
http://dx.doi.org/10.1088/0965-0393/2/2/003
http://dx.doi.org/10.1103/PhysRevLett.89.195506
http://dx.doi.org/10.1103/PhysRevLett.89.195506
http://dx.doi.org/10.1103/PhysRevE.66.051501
http://dx.doi.org/10.1103/PhysRevE.66.051501
http://dx.doi.org/10.1103/PhysRevE.71.010501
http://dx.doi.org/10.1103/PhysRevE.71.010501
http://dx.doi.org/10.1103/PhysRevE.76.046119
http://dx.doi.org/10.1016/j.actamat.2009.02.035
http://dx.doi.org/10.1103/PhysRevB.81.064204
http://dx.doi.org/10.1103/PhysRevB.81.064204
http://arXiv.org/abs/arXiv:1005.2463
http://dx.doi.org/10.1103/PhysRevE.84.016115
http://dx.doi.org/10.1088/0953-8984/20/24/244128
http://dx.doi.org/10.1088/0953-8984/20/24/244128
http://dx.doi.org/10.1103/PhysRevLett.102.225502
http://dx.doi.org/10.1039/b812394m
http://dx.doi.org/10.1039/b812394m
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