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We describe a new multifractal finite-size scaling (MFSS) procedure and its application to the Anderson
localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and
the multifractal exponents. Simulations of system sizes up to L3 = 1203 and involving nearly 106 independent
wave functions have yielded unprecedented precision for the critical disorder Wc = 16.530(16.524,16.536) and
the critical exponent ν = 1.590(1.579,1.602). We find that the multifractal exponents �q exhibit a previously
predicted symmetry relation and we confirm the nonparabolic nature of their spectrum. We explain in detail the
MFSS procedure first introduced in our Letter [Phys. Rev. Lett. 105, 046403 (2010)] and, in addition, we show
how to take account of correlations in the simulation data. The MFSS procedure is applicable to any continuous
phase transition exhibiting multifractal fluctuations in the vicinity of the critical point.
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I. INTRODUCTION

One of the most fascinating aspects of the Anderson
localization-delocalization transition is the occurrence of
multifractal fluctuations of the wave function intensity at the
critical point.1–4 While, strictly speaking, the fluctuations are
truly multifractal only at the critical point, where the corre-
lation length ξ diverges, multifractal fluctuations nevertheless
persist on either side of the transition on length scales less than
the correlation length.5 The persistence of the fluctuations can
be clearly seen in Fig. 1, where the wave function intensities for
some typical critical, metallic, and localized wave functions are
plotted. In this paper we show how to exploit this persistence
by combining multifractal analysis with finite-size scaling to
arrive at a very powerful method for the quantitative analysis
of the Anderson transition or any continuous phase transition
that exhibits multifractal fluctuations: multifractal finite-size
scaling (MFSS).

Below we describe in detail the MFSS procedure and
we demonstrate its potential by employing it to make a
more comprehensive analysis of the Anderson transition in
three dimensions than given in our Letter.6 As we describe,
the MFSS procedure permits the simultaneous estimation
of the usual critical parameters, such as the location of the
critical point and the critical exponent, and the multifractal
exponents. Moreover, MFSS offers the opportunity to examine
the consistency of the estimates of the critical parameters
against the choice of multifractal exponent used in the scaling
analysis.

The organization of the paper is as follows. In Sec. II, we
describe briefly the Anderson model of a disordered systems
and the numerical simulation of the Anderson transition. In
Sec. III, we define the generalized multifractal exponents
(GMFEs) used in MFSS and derive the corresponding scaling
laws. The relation between the GMFEs and the scaling
properties of the probability density function (PDF) of wave
function intensities is discussed in Sec. IV. In Sec. V we
demonstrate the necessity of avoiding correlations in the

wave functions. In Secs. VI and VII we present results from
standard and multifractal FSS, including estimates for the
critical parameters and multifractal exponents. Finally, details
of how to account for the inevitable correlations in different
coarse-grainings of the same simulation data, as well as how
to check the stability of the scaling fits, are collected in the
Appendices.

II. THE EIGENSTATES OF THE ANDERSON MODEL

We consider the three-dimensional (3D) Anderson Hamil-
tonian in site basis,

H =
∑

i

εi |i〉〈i| +
∑
〈i,j〉

|i〉〈j |, (1)

where site i = (x,y,z) is the position of an electron in a
cubic lattice of volume L3, where L is measured in terms of
the lattice constant; 〈i,j 〉 denote nearest neighbors; periodic
boundary conditions are assumed; and εi are random on-site
energies uniformly distributed in the interval [−W/2,W/2].
The L3 × L3 Hamiltonian is diagonalized in the vicinity
of the band center E = 0 for different degrees of disor-
der W , close to the critical value Wc ∼ 16.5 where the
localization-delocalization transition occurs. The eigenstates
� = ∑

i ψi |i〉 are numerically obtained using the JADAMILU

library.7–9

We have considered only a single eigenstate per sample
(disorder realization), namely the eigenstate with energy
closest to E = 0. This is costly in terms of computing time but,
as we shall show later, absolutely essential to avoid the strong
correlations that exist between eigenstates of the same sample.
System sizes range from 203 to 1203, and disorder values
are in the interval 15 � W � 18. For each size and disorder
combination, we have taken at least 5000(3000) samples for
L � 100(>100) for a total of ∼904 000 wave functions. The
average number of states considered for each L,W pair is
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FIG. 1. (Color online) Wave functions for the 3D Anderson model near the band center (E = 0) for a system of size L3 = 1203. From
left to right, we move from the metallic phase through the transition to the insulating phase, as the degree of disorder increases: (a) W = 15,
(b) W = 16.5, and (c) W = 18. Sites contributing to 98% of the wave function’s norm (from large to small values) are shown as cubes whose
volume is proportional to |ψi |2. The color and opacity of the cubes is chosen according to the value of − logL |ψi |2. The top plot shows the
cumulative norm of the wave function as a function of the cut-off value considered for − logL |ψi |2. Vertical dashed lines mark the minimum and
maximum values of |ψi |2 occurring in the wave-function plots, which are (a) 9.4 × 10−8 � |ψi |2 � 0.0035, (b) 1.4 × 10−7 � |ψi |2 � 0.015,
and (c) 1.0 × 10−6 � |ψi |2 � 0.18. The opacity and color scales are indicated below the cumulative norm plot.

indicated in Table I. In Fig. 1 we show some wave functions
for L = 120 around the critical point.

III. SCALING LAWS FOR GENERALIZED
MULTIFRACTAL EXPONENTS AROUND

THE CRITICAL POINT

A. Multifractality at the critical point

It is known that the eigenstates of the 3D Anderson model
(1) exhibit multifractal fluctuations at the critical point.1,10,11

Here, we recapitulate briefly the basics of multifractal analysis.

TABLE I. Average number of uncorrelated wave functions 〈N 〉
considered for each disorder W for each system size L. The maximum
and minimum numbers of states for a given W are shown in brackets
for each L. A total of 17 disorder values in the interval [15,18] were
considered.

L 〈N 〉 (Nmax,Nmin)

20 5138 (5006, 5374)
30 5079 (5011, 5143)
40 5168 (5012, 5351)
50 5042 (5005, 5125)
60 5027 (5009, 5082)
70 5032 (5010, 5058)
80 5028 (5013, 5048)
90 5083 (5006, 5328)
100 5024 (5020, 5041)
110 4331 (4214, 4589)
120 3103 (3000, 3757)

To analyze the multifractal properties of wave functions in
d dimensions of a system of size L, we coarse-grain the wave
function intensity on a scale l < L. The system is partitioned
into (L/l)d boxes of volume ld . A probability

μk ≡
∑

j∈box k

|ψj |2, (2)

is defined for each box k. It is more convenient to work with a
related random variable α, defined by

α ≡ ln μ

ln λ
, (3)

rather than directly with the box probability μ. Here, λ is the
ratio of the box size l to the system size L

λ ≡ l

L
. (4)

Multifractality means that if we count the number of boxes
N (α) for which the value of the random variable α falls in a
given small interval [α,α + �α], this number scales with λ as

N (α) ∼ λ−f (α), (5)

in the limit that λ → 0, i.e., that these boxes form a fractal
with a fractal dimension f (α) that depends on α. The set of all
fractal dimensions f (α) is known as the multifractal spectrum.

Generalized inverse participation ratios (GIPR) or q mo-
ments are obtained by summing over the boxes

Rq ≡
∑

k

μ
q

k . (6)
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For later use, it is also convenient to define

Sq ≡ dRq

dq
=

∑
k

μ
q

k ln μk. (7)

As a consequence of multifractality it can be shown that at the
critical point the GIPRs obey the scaling law

〈Rq〉 ∼ λτq , (8)

in the limit λ → 0. Here, the brackets denote an ensemble
average. The mass exponents τq depend nonlinearly on q.
They are conveniently expressed in terms of anomalous scaling
exponents �q ,

τq = d(q − 1) + �q. (9)

The multifractal spectrum and the exponents τq are related via
a Legendre transformation,

αq = dτq/dq, fq = qαq − τq, (10)

which defines singularity strengths αq and a singularity
spectrum fq .

Multifractal exponents can also be defined from the scaling
law corresponding to the geometric or typical average of the
GIPRs

exp〈ln Rq〉 ∼ λτ
typ
q . (11)

The relation between the typical and ensemble averaged
multifractal exponents is now well understood,1,12 and the
multifractal properties of the 3D Anderson transition have
been thoroughly studied using this standard formalism.9,13–17

B. Multifractal behavior in the vicinity of the critical point

To extend multifractal analysis beyond the critical point we
define a generalized mass exponent

τ̃q(W,L,l) ≡ ln〈Rq〉/ ln λ. (12)

Here, the tilde is used to emphasize that this equation applies
throughout the critical region and not just at the critical
point. This generalized mass exponent becomes the usual mass
exponent τq at the critical point Wc in the limit λ → 0.

We then proceed to suggest a finite-size scaling law for the
GIPRs and from that derive a scaling law for these generalized
mass exponents. Close to the transition, we may suppose that
the GIPRs are determined by the ratios of the length scales l

and L to the localization (correlation) length in the insulating
(metallic) phase ξ . This can be justified using renormalization
group arguments18 and is the basis for the scaling theory of
localization.19,20 This leads to the following scaling law for
the GIPRs21

〈Rq〉(W,L,l) = λτqRq (L/ξ,l/ξ ) . (13)

At the critical point Wc the correlation length has a power-law
divergence

ξ ∝ |W − Wc|−ν, (14)

described by a critical exponent ν. Thus, the scaling correctly
reproduces the invariance of the GIPRs with λ exhibited by
Eq. (8) at the critical point.

The scaling law for the GIPRs can be rearranged as follows
to give a scaling law for the generalized mass exponents,

τ̃q(W,L,l) = τq + q(q − 1)

ln λ
Tq (L/ξ,l/ξ ) . (15)

The function Tq is related to the original Rq . The factor
q(q − 1) has been explicitly included so

τ̃0 = τ0 = −d, τ̃1 = τ1 = 0. (16)

The generalized anomalous scaling exponents

�̃q ≡ τ̃q − d(q − 1) (17)

will then obey

�̃q(W,L,l) = �q + q(q − 1)

ln λ
Tq (L/ξ,l/ξ ) . (18)

By exact analogy with Eq. (10) we may define generalized
singularity strengths

α̃q ≡ dτ̃q/dq = 〈Sq〉/(〈Rq〉 ln λ). (19)

The scaling law for these quantities follows immediately from
Eq. (15),

α̃q(W,L,l) = αq + 1

ln λ
Aq (L/ξ,l/ξ ) . (20)

We may also define a generalized singularity spectrum

f̃q ≡ qα̃q − τ̃q , (21)

obeying a corresponding scaling law,

f̃q(W,L,l) = fq + q

ln λ
Fq (L/ξ,l/ξ ) . (22)

The scaling law for the GIPRs can be expressed in the entirely
equivalent form

〈Rq〉(W,L,λ) = λτqRq (L/ξ,λ) . (23)

This remark applies equally well to the scaling laws for other
quantities. Writing the scaling laws in this way immediately
suggests a standard FSS analysis by fitting the disorder and
system-size dependence at fixed λ. As we show below, this is
indeed possible and works well. It does not, however, permit
the estimation of the various multifractal exponents.

A much more exciting application of the above scaling
laws (15)–(22) is to fit the variation with disorder, system
size, and box size. This allows not only the estimation of the
usual critical parameters Wc and ν but also the simultaneous
determination of a multifractal exponent for a particular q.
Moreover, the use of different moments q of the wave functions
and different averages (ensemble, typical) provides a test of the
stability of the estimates for the critical parameters, as these
should be average and q independent.

C. Averaging and the λ → 0 limit

We emphasize that the generalized multifractal exponents
(GMFEs) τ̃q ,�̃q ,̃αq are equal to the corresponding scale-
invariant multifractal exponents τq,�q,αq only at the critical
point W = Wc in the limit λ → 0.

Recalling the trivial scaling of R0 and R1, we see that
GMFEs τ̃0 = −d and τ̃1 = 0, independent of W , L, and l.
This is equivalent to �̃0 = �̃1 = 0.
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FIG. 2. (Color online) Schematic phase diagrams for the GMFEs in the limit λ → 0 for the metallic (W < Wc), critical (W = Wc), and
insulating (W > Wc) regimes. The metallic and insulating limits can also be reached as L → ∞ at fixed λ. However, the multifractal exponents
are obtained only at the critical point as λ → 0.

To understand better the behavior of the GMFEs as func-
tions of q, which is depicted schematically in Fig. 2, we discuss
the expected behaviors in the thermodynamic limit in the
metallic and insulating phases, and at the critical point. In the
metallic phase, for sufficiently large system size or sufficiently
small disorder, the states are homogeneously extended and
μk → λd . It follows that Rq → λd(q−1), τ̃q → d(q − 1) and
�̃q → 0 for all q. In the insulating phase, for sufficiently
large system sizes or large-enough disorder, the wave functions
approach an extremely localized state and μk → δk,k0 . Then,
for q > 0, Rq → 1, τ̃q → 0 and �̃q → −d(q − 1). While for
q < 0, the moments diverge, τ̃q → −∞ and �̃q → −∞. We
emphasize that the insulating limit has been confirmed by
analytical calculations for 3D exponentially localized states
(with finite localization lengths).22 We note that the metallic
and insulating limits can be reached either as λ → 0 or as
L → ∞ for any fixed λ.

At the critical point, we recover the multifractal exponents
as λ → 0. These are known to obey a symmetry relation,23

�q = �1−q (24)

or, equivalently,

αq + α1−q = 2d. (25)

This symmetry has been studied for Anderson transitions
in different systems and dimensionality16,24–29 and has also

been experimentally measured.2 The corresponding limits
for α̃q can be obtained following similar reasonings and
calculations.22

We may also define τ̃
typ

q , �̃
typ
q , α̃

typ
q , in terms of the typical

average for the moments Rq [see Eq. (11)]. The scaling laws
have the same form as for the ensemble average exponents. For
the benefit of the reader, we collect in Table II the definition
of the exponents �̃q and α̃q for both cases.

IV. SCALING FOR THE PDF OF WAVE-FUNCTION
INTENSITIES AROUND THE CRITICAL POINT

It is also possible, and, indeed, sometimes more conve-
nient, to work directly with the probability density function
(PDF) P(α; W,L,l) ≡ P(α) of α.30 At the critical point the
distribution is multifractal

P(α; W = Wc,L,l) ∝
λ→0

√
| ln λ| λd−f (α) (26)

and exhibits scale invariance, provided that λ is held fixed.
Equation (26) can be used to estimate the multifractal spectrum
directly from numerically calculated histograms of α values.30

When we broaden attention to the critical regime, we find that,
when λ is sufficiently small, we may approximate the PDF
using the generalized multifractal spectrum (21)

P(α; W,L,l) ∝
√

| ln λ| λd−f̃ (α;W,L,l). (27)

TABLE II. Definitions of GMFEs for ensemble and typical averages. For a particular (W,L,l), Rq and Sq are calculated for each wave
function and the ensemble average 〈· · · 〉 taken over samples. Formulae for error estimation are also given, where σ stands for the standard
deviation. Note that 〈Sq〉 and 〈Rq〉 are highly correlated and their covariance must be taken into account in the error estimation. Definitions of
the ensemble average exponents in terms of the PDF P(α) are also given.

GMFE Error estimation Definition using the PDF

�̃q = ln〈Rq 〉
ln λ

− d(q − 1) σ�̃q
= σ〈Rq 〉

〈Rq 〉 ln λ
�̃q = −dq + 1

ln λ
ln

∫ ∞
0 λqαP(α)dα

�̃
typ
q = 〈ln Rq 〉

ln λ
− d(q − 1) σ

�̃
typ
q

= σ〈ln Rq 〉
ln λ

α̃q = 〈Sq 〉
〈Rq 〉 ln λ

σα̃q
= 1

ln λ

√√√√ σ 2
〈Sq 〉

〈Rq 〉2 +
〈Sq 〉2σ 2

〈Rq 〉
〈Rq 〉4 − 2〈Sq 〉

〈Rq 〉3 cov(〈Sq 〉,〈Rq 〉) α̃q =
∫ ∞

0 αλqαP(α)dα∫ ∞
0 λqαP(α)dα

α̃
typ
q = 1

ln λ

〈 Sq

Rq

〉
σ

α̃
typ
q

= σ〈Sq /Rq 〉
ln λ
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FIG. 3. (Color online) Reproduced from Ref. 6. Evolution of
the wave function intensity distribution P(α; W,L,l) as a function
of disorder W across the Anderson transition at fixed λ = 0.1 for
two system sizes L. Each distribution was computed with 104 wave
functions. The data points (•) and solid lines on the bottom plane
mark the trajectories of the maximum. For clarity, distributions are
shown at W = 15, 16.6, and 18 only.

This relation could be the basis for an alternative definition of
the generalized singularity spectrum from the PDF. While there
will be quantitative differences with (21) we would expect the
results of scaling analysis to be unchanged.

The GMFEs can be obtained from the PDF. We consider α̃0

as an example. Setting q = 0 in Eq. (19) we have

α̃0 =
〈∑

k ln μk

〉
λ−d ln λ

. (28)

The result of averaging is the same for all boxes, so

α̃0 = 〈α〉 =
∫ ∞

0
αP(α)dα. (29)

Thus α̃0 corresponds to the mean value of the PDF. Expressions
for general q are given in Table II.

The scaling of P(α) with system size for fixed λ in the
vicinity of the transition is shown in Fig. 3. This figure shows
clearly that the scaling of the distribution of wave-function
intensities, or the distribution of a related quantity such
as the local density of states (LDOS), could be used to
characterize the Anderson transition.31 Indeed, in Ref. 6 the
critical parameters were successfully estimated from a scaling
analysis of the system size and disorder dependence of the
maximum of the PDF of α at fixed λ. A similar procedure
might be applied to experimental LDOS data obtained using
STM techniques3,4,32–34 or by direct imaging of ultracold atom
systems.35,36

V. REMARKS ON CORRELATIONS AMONG
WAVE FUNCTIONS

In exact diagonalization studies of disordered systems, it
is common practice to average over eigenstates located within
a small energy window. This is because the initialization and
diagonalization of very large matrices is computationally de-
manding. Time can be saved by generating several eigenstates
for the same sample. There is, however, a price to be paid.

Eigenstates of the same sample are correlated, since they are
solutions of the Schrödinger equation with the same potential.
We have found that these correlations distort the statistical
analysis. In particular, the error estimation becomes unreliable
and the precision of critical parameters is overestimated, i.e.,
the error bars are erroneously small.

To quantify the correlations among wave functions from the
same sample, we have studied the average correlation between
two eigenstates with energies E, E′, close to E = 0, such that
|E − E′| � 1. The correlation is defined as

C(q,l) = cov(μq,μ′q)

σ (μq)σ (μ′q)
. (30)

Here, μq is the q-th power of the box probability Eq. (2)
for the eigenstate with energy E, and the prime indicates the
same quantity calculated for the eigenstate with energy E′.
The covariance is calculated using (B2), where the sum is
over boxes. The covariance is normalized to the product of
the standard deviations, where again the sum is over boxes.
The correlation can, thus, be calculated for two eigenfunctions
from the sample or two eigenfunctions from a pair of samples.
A further ensemble average over 1000 samples, or pairs of
samples, as appropriate, was taken to arrive at Fig. 4. On the left
is the correlation C(q,l) obtained using pairs of eigenstates of
the same sample. On the right is the correlation obtained using
eigenstates of two different samples. A maximum correlation
(anticorrelation) corresponds to C(q,l) = 1 (−1), whereas
statistical independence implies a vanishing C(q,l). The
correlation is shown as a function of the moment q for different
degrees of coarse-graining l and for three values of the disorder
W = 15,16.5,18. [Note that, in the limit q → 0, the numerator
and the denominator in Eq. (30) both go to zero. The finite solu-
tion of this indetermination is not necessarily unity, as one may
naively expect.] Near the critical point, the correlation between
eigenstates of the same sample is high, while for eigenstates
of different samples correlation is, as expected, absent. We

〈 〉 

〈 〉

〈 〉

FIG. 4. (Color online) Averaged correlation (over 1000 samples)
between eigenstates as a function of q for L3 = 1003 and varying box
size l and disorder W . Data on the left were obtained using pairs of
eigenstates from the same sample. Data on the right are for eigenstates
of two different samples. Note the different scales for the ordinate
axis. Whenever not shown, errors are smaller than the symbol size.
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conclude that it is not safe to include in the MFSS analysis
more than one state from a given sample, as these correlations
render the subsequent statistical analysis unreliable.

On the left of Fig. 4 we observe how the correlation varies
with q. For large positive q, large wave-function amplitudes
dominate the q-th moment of the box probability, while for
large negative q small amplitudes dominate. In both cases
the correlation is reduced. We think that this occurs because
only a small number of boxes contribute significantly to
the extreme values of the distribution. We have checked
that the overall shape of the correlations in the insulating
regime agrees with calculations for 1D exponentially localized
states. Another feature is that for negative q correlations are
absent for box size l = 1 but are restored when the wave
function is coarse-grained. This may indicate that very small
wave-function amplitudes are affected by random noise, which
averages away when the wave function is coarse-grained. We
have verified that similar behavior occurs for wave functions
calculated using other numerical libraries, e.g., LAPACK.37 We
strongly recommend the use of coarse-graining to evaluate
negative moments, even for 1D models, such as power-law
random banded matrices23 and others.24

We emphasize that in this work—with the exception of the
data on the left of Fig. 4—we have used only one eigenfunction
per sample.

VI. SINGLE-PARAMETER SCALING AT FIXED λ

We study first the scaling of the GMFEs �̃q , �̃
typ
q , α̃q , α̃

typ
q

at fixed λ ≡ l/L.38 This simplifies the scaling laws (18) and
(20), which become one-parameter functions,

q(W,L) = Gq(L/ξ ), (31)

where q denotes any of the above-mentioned exponents.
Since λ is fixed, the multifractal exponents cannot be es-
timated, as they merge with the zeroth-order term in the
expansion of the scaling functions Tq and Aq [see Eqs. (18)
and (20)]. Nevertheless, the critical disorder Wc and the critical
exponent ν can be estimated. We demonstrate the consistency
of the estimates of these parameters for different q values, and
their independence on the type of average (typical or ensemble)
considered.

A. Expansion in relevant and irrelevant scaling variables

In order to fit data for the GMFEs, we follow the standard
procedure of Ref. 41 and include two kinds of corrections to
scaling, (i) nonlinearities of the W dependence of the scaling
variables, and (ii) an irrelevant scaling variable that accounts
for a shift with L of the apparent critical disorder at which the
q(W,L) curves cross. After expanding to first order in the
irrelevant scaling variable, the scaling functions take the form

Gq(�L1/ν,ηLy) = G0
q (�L1/ν) + ηLyG1

q (�L1/ν). (32)

Here, � and η are the relevant and irrelevant scaling variables,
respectively. The irrelevant component is expected to vanish

for large L, so y < 0. Both the scaling functions are Taylor-
expanded

Gk
q (�L1/ν) =

nk∑
j=0

akj�
jLj/ν, for k = 0,1. (33)

The scaling variables are expanded in terms of w ≡ (W − Wc)
up to order m� and mη, respectively,

�(w) = w +
m�∑

m=2

bmwm, η(w) = 1 +
mη∑

m=1

cmwm. (34)

The fitting function is characterized by the expansion orders
n0,n1,m�,mη. The total number of free parameters to be deter-
mined in the fit is NP = n0 + n1 + m� + mη + 4 (including
ν, y and Wc).

The localization (correlation) length, up to a constant of
proportionality, is ξ = |�(w)|−ν . After subtraction of correc-
tions to scaling

corr
q ≡ q(W,L) − ηLyG1

q (�L1/ν), (35)

and the data for the GMFEs should fall on the single-parameter
curves

corr
q = G0

q ( ± (L/ξ )1/ν). (36)

B. Numerical procedure at fixed λ

When performing FSS, the aim is to identify a stable
expansion of the scaling function that fits the numerical data.
The best fit is found by minimizing the χ2 statistic over the
parameter space. The validity of the fit is decided by the p

value or goodness-of-fit. We take p � 0.1 as the threshold
for an acceptable fit. As a rule of thumb the expansion
orders n0,n1,m�,mη are kept as low as possible while giving
acceptable and stable fits. Once a stable fit has been found,
the precision of the estimates of the critical parameters is
estimated by Monte Carlo simulation, i.e. by fitting a large set
of synthetic data sets generated by adding appropriately scaled
random normal errors to an ideal data set generated from the
best-fit model. A detailed description of the FSS procedure,
with some examples, is given in Appendix A.

We performed a detailed FSS analysis for �̃q and α̃q for
both ensemble and typical averages for 13 different values of
q ∈ [−1,2] at a fixed value of λ = 0.1, i.e., the box size is
always l = L/10. The GMFEs were obtained for system sizes
ranging between L = 20 and L = 120 and for 17 values of
the disorder W ∈ [15,18]. The average number of independent
wave functions involved in the calculation for each L, W is
indicated in Table I.

C. Results for λ = 0.1

The details of the fits are listed in Table III.42 In Fig. 5
we plot the estimates of Wc, ν, and y, along with their 95%
confidence intervals, as functions of q.

The estimates of the critical disorder, critical exponent
and irrelevant exponent, both for different values of the
power q and the type of average considered, are mutually
consistent. The values are also consistent with previous
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TABLE III. The estimates of the critical parameters, together with 95% confidence intervals, from single-parameter FSS at fixed λ = 0.1.
Results for both ensemble (ENS) and typical (TYP) averages, for different values of q ∈ [−1,2], are given. Notice that for α̃0, and also for α̃1,
the typical and ensemble averages coincide. The number of data is ND and its average percentage precision is given in parentheses. The number
of free parameters in the fit is NP , χ 2 is the value of the chi-squared statistic for the best fit, and p is the goodness of fit probability. The orders
of the expansions are specified in the last column. The system sizes used are L ∈ [20,120], and the range of disorder is W ∈ [15,18].

q Average ν Wc −y ND (prec.%) NP χ 2 p n0 n1 mρ mη

�̃q −1 ENS 1.621(1.600,1.640) 16.521(16.502,16.539) 1.75(1.63,1.87) 187 (0.31) 10 181 0.39 3 1 2 0
TYP 1.616(1.601,1.631) 16.525(16.510,16.539) 1.76(1.67,1.84) 187 (0.21) 10 177 0.49 3 1 2 0

−0.75 ENS 1.621(1.601,1.642) 16.521(16.504,16.538) 1.73(1.62,1.85) 187 (0.28) 11 181 0.38 4 1 2 0
TYP 1.613(1.597,1.630) 16.522(16.507,16.536) 1.74(1.65,1.84) 187 (0.22) 10 177 0.49 3 1 2 0

−0.5 ENS 1.620(1.600,1.642) 16.520(16.504,16.536) 1.71(1.60,1.83) 187 (0.26) 11 180 0.40 4 1 2 0
TYP 1.609(1.593,1.626) 16.521(16.507,16.535) 1.73(1.62,1.82) 187 (0.23) 10 178 0.47 3 1 2 0

−0.25 ENS 1.613(1.595,1.632) 16.517(16.500,16.533) 1.68(1.57,1.81) 187 (0.26) 11 176 0.49 3 2 2 0
TYP 1.618(1.599,1.640) 16.521(16.505,16.537) 1.70(1.58,1.81) 187 (0.25) 11 173 0.56 4 1 2 0

0.25 ENS 1.619(1.595,1.646) 16.516(16.495,16.534) 1.62(1.47,1.76) 187 (0.29) 12 168 0.63 5 1 2 0
TYP 1.617(1.592,1.644) 16.516(16.496,16.537) 1.62(1.47,1.78) 187 (0.30) 12 171 0.58 5 1 2 0

0.5 ENS 1.621(1.594,1.650) 16.513(16.489,16.534) 1.57(1.41,1.74) 187 (0.30) 12 167 0.65 5 1 2 0
TYP 1.630(1.592,1.668) 16.509(16.482,16.531) 1.56(1.38,1.76) 187 (0.32) 12 182 0.33 4 1 3 0

0.75 ENS 1.626(1.595,1.662) 16.506(16.476,16.529) 1.51(1.30,1.70) 187 (0.32) 11 174 0.53 4 1 2 0
TYP 1.622(1.590,1.658) 16.504(16.474,16.529) 1.51(1.29,1.71) 187 (0.33) 11 178 0.45 4 1 2 0

1.25 ENS 1.626(1.580,1.678) 16.492(16.446,16.531) 1.34(1.07,1.64) 187 (0.36) 11 172 0.56 4 1 2 0
TYP 1.618(1.599,1.638) 16.497(16.456,16.532) 1.40(1.13,1.69) 187 (0.33) 11 167 0.64 5 0 2 0

1.5 ENS 1.624(1.571,1.692) 16.484(16.426,16.532) 1.28(0.93,1.65) 187 (0.39) 11 175 0.51 4 1 2 0
TYP 1.625(1.598,1.653) 16.502(16.458,16.539) 1.41(1.11,1.71) 187 (0.33) 11 168 0.65 4 0 3 0

1.75 ENS 1.612(1.552,1.686) 16.482(16.403,16.536) 1.28(0.84,1.75) 187 (0.42) 11 174 0.52 4 1 2 0
TYP 1.621(1.579,1.672) 16.500(16.448,16.539) 1.36(1.05,1.69) 187 (0.32) 11 170 0.61 4 1 2 0

2 ENS 1.652(1.575,1.747) 16.486(16.404,16.546) 1.38(0.82,1.97) 187 (0.45) 12 166 0.67 4 1 3 0
TYP 1.631(1.584,1.688) 16.501(16.447,16.546) 1.35(1.04,1.68) 187 (0.30) 12 168 0.64 4 2 2 0

α̃q −1 ENS 1.640(1.607,1.672) 16.527(16.501,16.550) 1.77(1.63,1.92) 187 (0.25) 10 179 0.45 3 1 2 0
TYP 1.625(1.609,1.641) 16.529(16.515,16.543) 1.78(1.71,1.86) 187 (0.09) 10 178 0.47 3 1 2 0

−0.75 ENS 1.626(1.601,1.651) 16.522(16.500,16.541) 1.75(1.63,1.87) 187 (0.16) 10 182 0.38 3 1 2 0
TYP 1.620(1.604,1.635) 16.527(16.513,16.541) 1.77(1.70,1.85) 187 (0.08) 10 175 0.52 3 1 2 0

−0.5 ENS 1.617(1.598,1.637) 16.521(16.505,16.537) 1.74(1.64,1.86) 187 (0.11) 10 184 0.34 3 1 2 0
TYP 1.614(1.599,1.629) 16.524(16.510,16.538) 1.76(1.67,1.84) 187 (0.08) 10 176 0.50 3 1 2 0

−0.25 ENS 1.613(1.597,1.632) 16.518(16.501,16.533) 1.70(1.58,1.81) 187 (0.08) 11 179 0.43 3 2 2 0
TYP 1.608(1.592,1.625) 16.520(16.506,16.535) 1.73(1.63,1.83) 187 (0.07) 10 179 0.45 3 1 2 0

0 ENS/TYP 1.612(1.593,1.631) 16.517(16.498,16.533) 1.67(1.53,1.80) 187 (0.07) 10 175 0.53 3 1 2 0
0.25 ENS 1.628(1.592,1.667) 16.509(16.483,16.532) 1.54(1.36,1.74) 187 (0.04) 12 178 0.43 4 1 3 0

TYP 1.628(1.592,1.667) 16.507(16.479,16.530) 1.53(1.33,1.75) 187 (0.05) 12 187 0.25 4 1 3 0
0.75 ENS 1.640(1.607,1.679) 16.498(16.474,16.519) 1.52(1.37,1.67) 187 (0.06) 13 168 0.62 4 2 3 0

TYP 1.646(1.598,1.679) 16.505(16.479,16.527) 1.55(1.38,1.72) 187 (0.09) 14 168 0.59 5 2 3 0
1 ENS/TYP 1.646(1.602,1.699) 16.493(16.454,16.525) 1.39(1.17,1.63) 187 (0.15) 13 168 0.61 4 3 2 0

1.25 ENS 1.623(1.573,1.688) 16.484(16.420,16.530) 1.25(0.90,1.61) 187 (0.28) 11 176 0.48 4 1 2 0
TYP 1.624(1.583,1.673) 16.498(16.452,16.537) 1.35(1.07,1.65) 187 (0.23) 11 171 0.59 4 1 2 0

1.5 ENS 1.621(1.568,1.677) 16.500(16.441,16.542) 1.63(1.15,2.18) 187 (0.45) 11 183 0.35 5 1 1 0
TYP 1.634(1.596,1.680) 16.509(16.464,16.544) 1.58(1.25,1.94) 187 (0.28) 11 194 0.17 5 1 1 0

1.75 ENS 1.617(1.533,1.702) 16.484(16.366,16.543) 1.55(0.81,2.44) 187 (0.68) 10 175 0.54 4 1 1 0
TYP 1.615(1.565,1.670) 16.485(16.428,16.525) 1.27(0.96,1.57) 187 (0.32) 10 172 0.58 3 2 1 0

2 ENS 1.582(1.515,1.632) 16.486(16.355,16.549) 1.77(0.74,3.15) 187 (0.98) 9 169 0.68 4 0 1 0
TYP 1.630(1.585,1.682) 16.502(16.442,16.544) 1.47(1.10,1.86) 187 (0.34) 10 187 0.28 4 1 1 0

estimates obtained using transfer-matrix methods.41,43,44 The
value of the irrelevant exponent is not directly comparable
with previous transfer matrix studies since it is not clear that
the dominant irrelevant correction should be the same for wave
function intensity data.

In Fig. 5 there is a clear tendency for the error bars to
increase for q > 1. This occurs because the average precision

of the data (see the inset in Fig. 5) degrades quickly for q >

1, especially for the ensemble average. In general, for the
same number of states, the precision is better when typical
average is considered. Also, for q < 1, the precision of the
data for α̃q is significantly better than that for �̃q , although
this does not translate into smaller uncertainties for the critical
parameters.
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Δ α

Δ α

νν

Δ α

FIG. 5. (Color online) The estimates of the critical disorder Wc, critical exponent ν, and irrelevant exponent y, as functions of q, obtained
from single-parameter FSS at fixed λ = 0.1. Results for different averages and different exponents have been slightly offset in the q direction.
Error bars are 95% confidence intervals. The corresponding values are listed in Table III. The inset in the center plot shows the average data
precision versus q for the different GMFEs considered.

In Fig. 6 we show some examples of the calculated GMFEs
together with the corresponding best fits. The FSS plots can be
understood from the phase diagrams for the GMFEs discussed
in Sec. III and depicted in Fig. 2. The GMFEs for W < Wc

(W > Wc) tend toward the metallic (insulating) limit as L →
∞, which is located above or below the corresponding critical
value depending on q. We recall that, at fixed λ, the value of
the GMFE at the crossing point Wc does not correspond to the
scale-invariant multifractal exponent, which is recovered only
as λ → 0.

D. The range 0 < q � 1/2

For 0 < q � 1/2, the expected critical value of α̃q is not
located between the values of the metallic and insulating limits

(see Fig. 2). This anomalous behavior makes a reliable FSS
analysis in this interval of q very difficult.

For q = 1/2 the values in the metallic limit and at the
critical point are expected to be the same (=d), while the
value in the insulating limit is expected to be zero. As shown
in Fig. 7(a), for q = 1/2 and W < Wc the data are almost
independent of both L and W . While, for W > Wc, the
dependence on L is very strong, as the data tend to the
insulating limit. This behavior cannot be reliably described
by a power-series expansion.

For 0 < q < 1/2 the value of α̃q at the critical point is now
expected to be larger than the values in both the metallic and
insulating limits. Data for q = 0.45 are shown in Fig. 7(b).
Very close to the critical point, a standard scaling behavior
with opposite L dependence at each side of the transition

Δ

ξ

Δ
ξ

α
ξ

α ξ

FIG. 6. (Color online) Plots of several GMFEs for λ = 0.1 as functions of disorder at various system sizes L ∈ [20,120]. The error bars
are standard deviations. The lines are the best fits listed in Table III. The estimated Wc are shown by vertical dashed lines and 95% confidence
intervals by the shaded regions. The insets show the data plotted vs L/ξ with the irrelevant contribution subtracted and the scaling function
(solid line).
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α

ξ

α

ξ

FIG. 7. (Color online) Behavior of (a) α̃0.5 and (b) α̃0.45 for λ =
0.1 as functions of disorder at various system sizes. The dashed lines
are tentative fits that serve as guides to the eye only. The vertical dotted
lines indicate the position of Wc according to these tentative fits. The
horizontal dotted line in (a) indicates the metallic limit α̃0.5 = 3. The
insets display the corrected data and the scaling functions according
to the tentative fits.

is visible. However, for larger disorder, the L dependence is
again reversed to approach the value in the insulating limit. We
wish to emphasize that this is not a numerical artifact. Rather,
analytical calculations for 3D exponentially localized states
confirm the behavior.

VII. MULTIFRACTAL FSS

We now consider the scaling behavior of the GMFEs as
function not only of disorder W and system size L but also
the box size l using scaling laws (18) and (20). This permits
the simultaneous estimation of the multifractal exponents
and the critical parameters ν, Wc, and y. This is a major
advance over traditional multifractal analysis, where the
position of the critical point must be estimated in a separate
FSS analysis before the multifractal analysis.

A. Fitting of correlated data

Different coarse-grainings l for the same disorder W and
system size L use the same set of eigenstates, which induces
correlations among the estimates of GMFEs for different l and

the same W and L. These correlations must be properly taken
into account in MFSS. To do so we generalize the definition
of χ2 in the numerical minimization by including the full
covariance matrix for the GMFEs. We describe the calculation
of the covariance matrix and the χ2-minimization procedure
for correlated data in Appendices B and C.

B. Expansion of scaling functions

In MFSS, the scaling functions are functions of two
independent variables L/ξ and l/ξ . While these variables
are independent because the system size and the box size
vary independently, they involve the same scaling variable and
renormalize in the same way. In addition, we need to allow for
nonlinear dependence in W and for irrelevant scaling variables.
We have found that the most important irrelevant contribution
is due to the box size l. Therefore, we use the expansion

�̃q(�L1/ν,�l1/ν,ηly)

= �q + 1

ln(l/L)

2∑
k=0

(ηly)kT k
q (�L1/ν,�l1/ν), (37)

and similarly for α̃q . Here, � and η are the relevant and
irrelevant scaling variables, with 1/ν and y < 0 the corre-
sponding exponents. Note that we expand to second order in
the irrelevant variable. We find that this is necessary to fit the
data reliably. The functions T k

q are expanded,

T k
q (�L1/ν,�l1/ν) =

nk
L∑

i=0

nk
l∑

j=0

akij�
i+jLi/ν lj/ν, (38)

for k = 0,1,2, as are the fields as described in Eq. (34). The
expansion of the scaling function is then characterized by

TABLE IV. The estimates of the critical parameters and multifractal exponents together with 95% confidence intervals, from MFSS of �̃q

for q ∈ [−1,2] and α̃q for q = 0,1, under ensemble average. The number of data used is ND (average percentage precision in parentheses), the
number of free parameters in the fit is NP , χ 2 is the value of the χ 2 statistic for the best fit, and p is the goodness of fit probability. The last
column specifies the orders of the expansion: n0

L,n0
l ,n

1
L,n1

l ,n
2
L,n2

l ,m�,mη. The system sizes considered are L ∈ [20,120], the range of disorder
is W ∈ [15,18], and minimum box size lmin = 2 (λmin = 0.017) for q � 1/2 and lmin = 1 (λmin = 0.008) for q > 1/2. The maximum values
considered for λ change from λmax = 0.063 to λmax = 0.1 for different q.

q �q (αq for q = 0,1) ν Wc −y ND(prec.) NP χ 2 p Expansion

−1 −1.844(−1.854, − 1.832) 1.598(1.584,1.612) 16.526(16.516,16.535) 1.76(1.68,1.83) 680 (0.27) 25 667 0.36 3 2 1 1 1 1 2 0
−0.75 −1.252(−1.256, − 1.247) 1.592(1.580,1.603) 16.526(16.520,16.533) 1.77(1.72,1.82) 680 (0.23) 25 667 0.36 3 2 1 1 1 1 2 0
−0.5 −0.740(−0.742, − 0.738) 1.591(1.579,1.602) 16.528(16.522,16.534) 1.78(1.75,1.82) 493 (0.20) 25 460 0.59 3 2 1 1 1 1 2 0
−0.25 −0.318(−0.319, − 0.317) 1.594(1.583,1.606) 16.527(16.520,16.534) 1.77(1.72,1.81) 425 (0.19) 26 379 0.76 4 2 1 1 0 1 2 0
0 4.048(4.045,4.050) 1.590(1.579,1.602) 16.530(16.524,16.536) 1.81(1.79,1.84) 493 (0.05) 27 473 0.40 3 2 2 1 1 1 2 0
0.25 0.1997(0.1988,0.2005) 1.593(1.580,1.607) 16.529(16.521,16.536) 1.78(1.72,1.83) 425 (0.21) 27 429 0.14 4 2 1 1 0 1 3 0
0.5 0.2683(0.2672,0.2693) 1.595(1.579,1.612) 16.529(16.522,16.537) 1.80(1.74,1.84) 493 (0.23) 29 500 0.12 4 2 2 1 0 1 3 0
0.75 0.1993(0.1982,0.2004) 1.600(1.583,1.617) 16.524(16.514,16.535) 1.70(1.66,1.75) 544 (0.20) 27 530 0.34 4 2 1 1 0 1 3 0
1 1.958(1.953,1.963) 1.603(1.583,1.623) 16.528(16.516,16.538) 1.70(1.65,1.74) 612 (0.12) 27 597 0.35 4 2 1 1 0 1 3 0
1.25 −0.317(−0.320, − 0.313) 1.598(1.573,1.626) 16.536(16.512,16.559) 1.71(1.60,1.83) 544 (0.25) 23 515 0.57 4 1 1 1 1 1 2 0
1.5 −0.730(−0.739, − 0.719) 1.583(1.544,1.624) 16.536(16.502,16.567) 1.67(1.52,1.83) 544 (0.29) 23 531 0.37 4 1 1 1 1 1 2 0
1.75 −1.217(−1.238, − 1.197) 1.583(1.524,1.639) 16.528(16.484,16.573) 1.64(1.43,1.91) 544 (0.34) 23 549 0.20 3 1 2 1 1 1 2 0
2 −1.763(−1.792, − 1.727) 1.622(1.555,1.691) 16.529(16.468,16.582) 1.62(1.34,1.95) 544 (0.41) 19 566 0.11 3 1 1 1 0 1 2 0
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FIG. 8. (Color online) The estimates of the critical parameters ν, Wc, and y as functions of q, obtained from MFSS for �̃q and α̃q (only
q = 0,1). Error bars are 95% confidence intervals. The corresponding values are listed in Table IV. The inset in the center plot shows the
average data precision versus q for the data set used. A density plot of the histograms obtained from the Monte Carlo simulations used to
determine the uncertainty of the estimates is shown for each q. The color scale on top of each graph is for the density plot. The histograms are
normalized so their maximum value is unity.

λ λ

α

FIG. 9. (Color online) MFSS of �̃−0.75 [(a) and (c)] and α̃0 [(b) and (d)]. (Upper plots) GMFEs (•) as functions of disorder W for different
λ = l/L. The solid lines are cross sections at fixed λ of the best fit, plotted for different L. Note that all points are fitted simultaneously.
Alternating colors have been used for better visualization. (Lower plots) GMFEs with irrelevant contribution subtracted (•, ◦) and the scaling
surfaces (symbol ◦ highlights the maximum value of λ). The insets are the scaling functions at the critical point, highlighted also in the right
face of the main plot. The arrows indicate the multifractal exponents given by the extrapolation λ → 0. The shaded regions indicate the range
of λ accessed in our simulations.
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the indices n0
L,n0

l ,n
1
L,n1

l ,n
2
L,n2

l ,m�,mη. The number of free
parameters is given by

NP =
2∑

k=0

(
nk

L + 1
)(

nk
l + 1

) + m� + mη + 3. (39)

After subtraction of irrelevant corrections we have

�̃corr
q = �q + T 0

q (±(L/ξ )1/ν, ± (l/ξ )1/ν)/ ln(l/L) (40)

and the numerical data should fall on a common surface rather
than a common curve as in standard FSS.

When evaluated at fixed λ, Eq. (37) leads to the FSS
expansions given in Sec. VI. Since l = λL, when performing
FSS at fixed λ the irrelevant correction is determined by the
system size.

C. Results

We have carried out the MFSS analysis on the ensemble
averaged GMFEs �̃q for different q ∈ [−1,2] and α̃q for
q = 0,1. The estimates of the critical parameters and the
multifractal exponents, together with full details of the fits,
are included in Table IV.

We have considered different ranges of data for different
q trying to maximize the number of points that we could fit
in a stable manner, while keeping the value of λ � 0.1. The
minimum values of λ occurring in our data sets are λmin =
0.017 (lmin = 2) for q � 1/2 and λmin = 0.008 (lmin = 1) for
q > 1/2. Because of the need for coarse-graining for negative
q, as discussed in Sec. II, we exclude all l = 1 data for q � 1/2.

The best-fit estimates for Wc, y, and ν as functions of q

are shown in Fig. 8. The consistency of the estimates of the
critical parameters for different q is remarkable. Compared
with the FSS at fixed λ of Sec. VI, the estimate of the irrelevant
exponent y is more stable. As q increases, the uncertainty for
the estimates of Wc, ν, and y grow. This is partly due to
the loss of precision in the data for high q (see the inset in
Fig. 8), but this does not fully explain the large difference
in the uncertainty between sets with similar precisions, for
example, q = −1 and q = 1.5. We believe that the difference
is caused by the amplitude of the irrelevant component in
the data, which is larger for q < 1/2. [We have confirmed
this by examining the q dependence of the coefficient a100

in the expansion (37).] If the amplitude of the irrelevant shift
in the data is small, the estimation of the irrelevant exponent
becomes very ambiguous. This in turn leads to an increase in
the uncertainties of all the other parameters. The best precision
is achieved for α̃0 (0.05%). From the MFSS analysis of this
GMFE we find

Wc = 16.530 (16.524,16.536) (41)

and

ν = 1.590 (1.579,1.602), (42)

where the error limits correspond to 95% confidence intervals.

D. Scaling surfaces

In Fig. 9 we show the best fits and the corresponding scaling
surfaces for �̃−0.75 and α̃0. The upper plots display the GMFEs
and cross sections of the global fit displayed at the different

λ values occurring in the data set. The bottom plots show the
scaling functions in terms of the two variables L/ξ and λ.
(The visualization of the scaling functions is improved when
λ is chosen instead of l/ξ as the second variable.) The scale-
invariant multifractal exponents correspond to the asymptotic
value at the critical point as λ → 0. This is highlighted in
the insets of Figs. 9(c) and 9(d), where the behavior of the
scaling function at criticality—when the sheets of extended
and localized phases meet—is shown versus log(λ).

The transition can also be visualized as shown in Fig. 10
where we display a cross section at fixed box size of the data
and the fit for �̃−0.75 and α̃1. This provides an alternative way
to monitor the Anderson transition.45–47 We see the flow with
increasing L (decreasing λ) toward the metallic or insulating
limits depending on the disorder W , and at the critical point Wc ,
the convergence to the multifractal exponent. At the critical
point, the scaling law (37) reduces to

�̃q(Wc) = �q + 1

ln λ

2∑
k=0

lkyak00, (43)

λ

α λ

α

FIG. 10. (Color online) Plot of (a) �̃−0.75 and (b) α̃1 for fixed
box size l as a function of λ and increasing disorder values W ∈
[15,18] from top to bottom. The lines are cross sections at (a) l = 2
and (b) l = 1 of the global multifractal FSS fit. The thick lines (red)
correspond to the GMFE at the critical point Wc [Eq. (43)]. The insets
show the latter function for different values of l. The dashed line in
the inset displays the GMFE at criticality with vanishing irrelevant
corrections (effectively l = ∞). The circle on the inset y axis marks
the asymptotic (λ → 0) multifractal exponent.
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Δ
Δ

Δ

FIG. 11. (Color online) Multifractal exponents �q obtained from
MFSS. The numerical values are listed in Table IV. Error bars
denote 95% confidence intervals and are contained within symbol size
whenever not shown. Note that �0 = �1 = 0 by definition. The inset
shows the reduced multifractal exponents �q/q(1 − q). The horizon-
tal dotted line corresponds to Wegner’s parabolic approximation.48

From this we find that this convergence differs for different l.
This is illustrated in the insets of Fig. 10.

E. The multifractal spectrum

Previous work by some of the authors, using standard
multifractal analysis at W = 16.5 ≈ Wc, suggested that the
symmetry relation (24) for �q holds for the 3D Anderson
model.9,16,30 Our improved analysis given here confirms this
at Wc. As shown in Fig. 11, the exponents �q satisfy the
symmetry relation for the range of q values considered. The
symmetry relation (25) for αq is also satisfied by our estimates
α0 = 4.048(4.045,4.050) and α1 = 1.958(1.953,1.963). A
more careful analysis in terms of the reduced exponents
�q/q(1 − q) reveals a slight violation of the symmetry
beyond q = 1.75. We suspect that this reflects minor lim-
itations in our λ → 0 extrapolation rather than a genuine
violation of the symmetry relation. (Particulary for q <

0, where the range of λ is more restricted because of
the absence of data for l = 1.) We note that the validity
of the symmetry relation for the whole q range depends
on the absence of termination points for the ensemble average
multifractal spectrum,1 which is still an open question for the
3D Anderson transition.30

Our data in Fig. 11 (inset) clearly show that the multifractal
spectrum is not parabolic, i.e., that the reduced exponents
depend on q. This is in agreement with previous results at
the 3D Anderson transition, where nonparabolicity has been
directly observed in f (α)16 and in the non-Gaussian nature
of the PDF, P(α).30,49 A nonparabolic multifractal spectrum
implies that the distribution of wave function intensities at
the transition and, consequently, also of the LDOS, is not a
log-normal distribution, in contrast to recent claims.50

VIII. CONCLUSIONS

We have shown how to exploit the persistence of mul-
tifractal fluctuations away from the critical point on scales
below the correlation length to perform a multifractal finite-
size scaling analysis. We demonstrated the potential of

this approach by applying it to the Anderson localization-
delocalization transition in the 3D Anderson model. We
validated our proposed scaling laws for the generalized
multifractal exponents and we estimated the critical disorder at
the band center Wc = 16.530(16.524,16.536) and the critical
exponent describing the divergence of the localization length
ν = 1.590(1.579,1.602). A remarkable consistency of these
estimated critical parameters for different averages (ensemble
and typical) and different generalized multifractal exponents
(different q) was seen. We also found that the multifractal
spectrum exhibits the predicted symmetry and confirmed its
nonparabolic nature.

Recently, the value of ν for the Anderson transition has
been estimated for a variety of systems, including disordered
phonons,51 electrons in nonconventional lattices52 or with
topological disorder,53 a disordered Lenard-Jones fluid,54 and
cold-atom quantum kicked-rotors,55,56 finding agreement with
our results. The universality of the critical exponent for the
Anderson transition is, therefore, well established and a value
for ν ∼ 1.6 is widely accepted by the community.

In our approach, scaling versus system size yields the
critical exponent, while scaling versus box size yields the
multifractal exponents. Thus, these exponents do not appear
to be intrinsically related. Nevertheless, such a connection has
been suggested by Kramer57 and Janssen,10 who discussed
a lower bound for ν in terms of the multifractal exponents,
namely ν > 2/τ2. From our estimate of �2, the confidence
interval for 2/τ2 is (1.571,1.656). Hence the lower bound
agrees with our results. However, Janssen’s upper bound
ν < 1/(α0 − d) does not agree and the lower bound also fails
in 4D.58–60 A more direct connection of ν and the multifractal
exponents hence still remains elusive.

Multifractal fluctuations have been observed in the lo-
cal density of states near the metal-insulator transition in
semiconductors3,4,32 and in the intensity fluctuations of ul-
trasound near the Anderson transition in a random elastic
network.2,61 We believe that multifractal finite-size scaling as
demonstrated here has potential in the quantitative analysis of
this sort of experimental data.33–36,55,56,62
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APPENDIX A: FITTING PROCEDURE

1. Table of fits

The first step is to generate a table of fits by varying
the expansion indices of the model over a reasonable range
of values. Since the number of combinations of the indices
increases exponentially, we impose sensible restrictions. Let
us consider, for example, the single-parameter FSS of Sec. VI,
where the expansion (32) is characterized by the indices
n0, n1,m�,mη. We expect the irrelevant components to be
less important than the relevant part of the scaling function.
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Therefore, we impose the restriction n1 � n0 and mη � m�.
For the single-parameter FSS we generate tables for each q

containing usually a few hundred index combinations. For the
MFSS of Sec. VII we generate initial tables of ∼2000 index
combinations for each q and for different sets of data.

We decide whether a fit is acceptable based on the goodness-
of-fit or p value. This is the probability that for k degrees of
freedom we would observe a value of χ2 larger than the one
obtained for the best fit. To calculate this probability we use
the approximation

p = (k/2,χ2/2)

(k/2)
. (A1)

Here, (x) is the Euler  function, (a,x) is the upper
incomplete  function, and k denotes the number of degrees
of freedom in the model, i.e., the number of data minus the
number of free parameters in the fit. We use p � 0.1 as a
criterion for an acceptable fit.

After excluding unacceptable fits we order the table
according to the number of free parameters.

2. Stability of fits

A good fit must not only give an acceptable p value, it must
also be stable. By stable we mean that the estimates of the fit
parameters, and especially of the critical parameters, must not
change significantly when the expansion orders are increased.
In order to check the stability of a particular expansion, for
example, n0, n1, m�, and mη in fixed-λ FSS, we consider
all expansions where each index is separately increased by
1 and the case where all indices are increased by 1 at the
same time. If the critical parameters from all these fits lie
within the uncertainty interval obtained for the estimates of
the initial expansion, then we regard that fit as stable. The
search for a stable fit proceeds by considering acceptable fits
from the initial table in increasing order with the number of
free parameters. As a general rule we try to find the simplest
stable fit. We give examples of this procedure in Tables V
and VI. While the criterion for a stable fit can certainly be
debated, we think that our criterion is sensible and helps avoid
the ambiguity that may arise from an arbitrary choice of a
particular fit with an acceptable p value.

3. Uncertainties for fitting parameters

To determine the uncertainties (confidence intervals) of the
estimates of the fit parameters we use a Monte Carlo method.

Given a candidate expansion for a stable fit, we generate a
perfect data set from that fit. We then generate at least 1000
synthetic data sets by sampling randomly from an appropriate
(see below) multivariate normal distribution centered on
the perfect data set. We then fit these data sets, using the same
expansion of the scaling functions, and build histograms of the
estimates for the critical parameters. From these histograms,
the corresponding, possibly asymmetric, 95% confidence
interval is obtained by removing 2.5% of the events at each
end of the distribution.

For single-parameter FSS at fixed λ, the simulation data are
uncorrelated and it is sufficient to use a product of independent
normal distributions centered on the perfect data set with the
same standard deviations as the simulation data to generate the

TABLE V. Table of fits for FSS of �̃
typ
−0.5 at fixed λ = 0.1. Our

choice of fit is highlighted in bold. In subsequent rows the expansion
indices are progressively increased. Dashes indicate the expansions
used to check if our chosen fit is stable. The stability of our choice is
shown in Fig. 12.

n0 n1 mρ mη NP χ 2 p Wc y ν

3 1 2 0 10 178 0.47 16.521 1.726 1.610
3 1 2 1— 11 172 0.58 16.512 1.701 1.602
3 1 3 0— 11 174 0.53 16.521 1.718 1.609
3 1 3 1 12 171 0.57 16.516 1.691 1.600
3 2 2 0— 11 172 0.58 16.520 1.712 1.613
3 2 2 1 12 172 0.56 16.519 1.702 1.603
3 2 3 0 12 171 0.57 16.517 1.704 1.618
3 2 3 1 13 171 0.55 16.516 1.697 1.610
4 1 2 0— 11 173 0.55 16.523 1.723 1.619
4 1 2 1 12 172 0.56 16.519 1.704 1.604
4 1 3 0 12 173 0.53 16.523 1.722 1.618
4 1 3 1 13 171 0.55 16.517 1.696 1.605
4 2 2 0 12 172 0.56 16.521 1.714 1.615
4 2 2 1 13 172 0.54 16.521 1.716 1.618
4 2 3 0 13 170 0.56 16.519 1.709 1.624
4 2 3 1— 14 170 0.54 16.518 1.704 1.619

synthetic data sets. In Fig. 12 we show the resulting histograms
for the fit of �̃

typ
−0.5 at fixed λ = 0.1.

For MFSS the simulation data are correlated and these
correlations must be taken into account when generating the
synthetic data sets. In this case, the appropriate distribution
is a multivariate normal distribution centered on the perfect
data set and with the covariance matrix estimated from the
simulation data as described in Appendix B. A simple way to
generate the necessary correlated data is to use the Cholesky
decomposition of the covariance matrix to define an auxiliary
set of independent normally distributed random variables with
unit variance (see Appendix C). In Fig. 13 we show the his-
tograms for critical parameters obtained from the MFSS of α̃0.

APPENDIX B: CALCULATION OF THE COVARIANCE
MATRIX FOR CORRELATED DATA

In this section only we distinguish between the expectation
value or population mean indicated by angular brackets and the

TABLE VI. Table of fits for MFSS of α̃0. Our choice of fit is
highlighted in bold. The stability of our choice is shown in Fig. 13.

Expansion NP χ 2 p Wc y α0 ν

3 2 2 1 1 1 2 0 27 473 0.40 16.530 1.811 4.048 1.590
4 2 2 1 1 1 2 0 30 466 0.46 16.531 1.811 4.048 1.593
3 3 2 1 1 1 2 0 31 467 0.43 16.530 1.810 4.048 1.592
3 2 3 1 1 1 2 0 29 466 0.46 16.531 1.813 4.048 1.593
3 2 2 2 1 1 2 0 30 466 0.46 16.532 1.813 4.048 1.591
3 2 2 1 2 1 2 0 29 472 0.39 16.530 1.806 4.047 1.591
3 2 2 1 1 2 2 0 29 469 0.42 16.530 1.813 4.048 1.590
3 2 2 1 1 1 3 0 28 471 0.42 16.531 1.812 4.048 1.589
3 2 2 1 1 1 2 1 28 467 0.46 16.530 1.809 4.047 1.581
4 3 3 2 2 2 3 1 48 435 0.62 16.528 1.795 4.046 1.597
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ν

FIG. 12. (Color online) Histograms of the critical parameters for
expansion (3 1 2 0) for FSS at fixed λ = 0.1 of �̃

typ
−0.5. The histograms

are obtained from fits of 2000 synthetic data sets. The y axis indicates
the number of events. The vertical dashed lines denote the 95%
confidence interval. The circles on the x axis mark the position of
the values obtained from the stability analysis shown in Table V. The
color scale is the same as that used for the histogram density plots in
Fig. 8.

sample mean indicated by an overline. To avoid a cumbersome
notation we do not make this distinction elsewhere in the
paper. In practical calculations, the population mean is always
estimated using the sample mean.

The correlation between two random variables X and Y can
be characterized in terms of the covariance, defined as

cov(X,Y ) ≡ 〈XY 〉 − 〈X〉〈Y 〉. (B1)

Note that cov(X,X) = var(X) ≡ σ 2
X, gives the variance for the

variable X. From n samples (X1,Y1), . . . ,(Xn,Yn), of the pair

α ν

FIG. 13. (Color online) Histograms of the critical parameters
obtained for expansion (3 2 2 1 1 1 2 0) for MFSS of α̃0. The
histograms are obtained from fits of 1000 synthetic data sets. The y

axis shows the number of events. The vertical dashed lines indicate the
95% confidence interval. The circles on the x axis mark the position
of the values obtained from the stability analysis shown in Table VI.
The color scale is the same as that used for the histogram density
shown in Fig. 8.

of random variables, the covariance can be estimated as,63

cov(X,Y ) = 1

n − 1

n∑
i=1

(Xi − X)(Yi − Y ). (B2)

Here, the overline indicates the sample mean

X ≡ 1

n

n∑
i=1

Xi (B3)

and similarly for Y . We also need the covariance of the sample
means. This follows from (B1)

cov(X,Y ) = 1

n
cov(X,Y ). (B4)

Furthermore, we need to consider random variables
Y (1), . . . ,Y (s) that are, in turn, functions of random variables
X(1), . . . ,X(r) such that

Y (i) = Y (i)(X(1), . . . ,X(r)), (B5)

where i = 1, . . . ,s. Assuming that it is reasonable to linearize
the functions in the range of interest, the covariance matrix C

of the random variables X(1), . . . ,X(r),

Cij = cov(X(i),X(j )), (B6)

is related to the covariance matrix C ′ of the variables
Y (1), . . . ,Y (s) by

C ′ = J T CJ. (B7)

Here, J is the matrix of derivatives

Jij ≡ ∂Y (j )

∂X(i)
, (B8)

evaluated at 〈X(1)〉, . . . ,〈X(r)〉.
We now consider the application of the formulas above

to the determination of the uncertainties of the GMFE
�̃q . Correlations arise only among values of this exponent
calculated for different coarse-grainings of the same set of
samples. Therefore, the covariance matrix for this quantity is
block diagonal in disorder W and system size L. Consider
two different coarse-grainings, li and lj , and corresponding
estimates, �̃(i)

q and �̃
(j )
q , of the values of this GMFE for these

coarse-grainings. Application of the formulas above is then
straightforward because �̃q is a function of Rq only (see
Table II). The result is

cov
(
�̃(i)

q ,�̃(j )
q

) = cov
(
R

(i)
q ,R

(j )
q

)〈
R

(i)
q

〉 〈
R

(j )
q

〉
ln λ(i) ln λ(j )

. (B9)

Application of the formulas above to the determination of
the uncertainties of the GMFE α̃q is more complicated because
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it is a function of Rq and Sq . The result is

cov
(̃
α(i)

q ,̃α(j )
q

)
=

⎡⎣ 〈
S(i)

q

〉〈
S

(j )
q

〉〈
R

(i)
q

〉2〈
R

(j )
q

〉2 cov
(
R

(i)
q ,R

(j )
q

)

−
〈
S

(j )
q

〉
cov

(
S

(i)
q ,R

(j )
q

)〈
R

(i)
q

〉〈
R

(j )
q

〉2 −
〈
S(i)

q

〉
cov

(
S

(j )
q ,R

(i)
q

)〈
R

(i)
q

〉2〈
R

(j )
q

〉
+ cov

(
S

(j )
q ,S

(i)
q

)〈
R

(i)
q

〉〈
R

(j )
q

〉
⎤⎦/

(ln λ(i) ln λ(j )). (B10)

For q = 0,1 the formulas are considerably simpler,

cov
(̃
α

(i)
0 ,̃α

(j )
0

) = [λ(i)λ(j )]dcov
(
S

(i)
0 ,S

(j )
0

)
ln λ(i) ln λ(j )

, (B11)

cov
(̃
α

(i)
1 ,̃α

(j )
1

) = cov
(
S

(i)
1 ,S

(j )
1

)
ln λ(i) ln λ(j )

. (B12)

APPENDIX C: χ 2 MINIMIZATION FOR
CORRELATED DATA

Let Yi be the result of the i-th simulation performed for
simulation parameters Xi . The uncertainties and correlations
among the simulation data are described by a covariance
matrix C ≡ {cov(Yi,Yj )}. We fit a model Fi ≡ F (Xi,{a}) to
the simulation data by varying the parameters {a} of the model
to minimize the χ2 statistic

χ2 =
∑
ij

(Yi − Fi)(C
−1)ij (Yj − Fj ). (C1)

In practice it is convenient to perform a Cholesky factorization,
C−1 = RT R, where R is an upper triangular matrix, so
χ2 can be expressed as the square norm of a vector
χ2 = ||R(Y − F )||2.

In MFSS, Yi are the values of the GMFE under considera-
tion and Xi = {Wi,Li,li}. The covariance matrix is calculated
as described in Appendix B.
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