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Electrical, magnetic, and thermal properties of the single-grain Ag42In42Yb16 icosahedral
quasicrystal: Experiment and modeling
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We have investigated the anisotropy of physical properties (the magnetic susceptibility, the electrical resistivity,
the thermoelectric power, the Hall coefficient, and the thermal conductivity) of single-grain icosahedral
i-Ag42In42Yb16 quasicrystal along the two-, three-, and fivefold symmetry directions of the crystallographic
structure. The specific heat, being a scalar quantity, was determined as well. The symmetry analysis predicts
that the tensorial physical properties reduce to scalars for the ideal icosahedral symmetry. The experiments have
shown that the anisotropy of the electronic transport coefficients of i-Ag42In42Yb16 is either small enough to be
considered within the range of the experimental uncertainty (the electrical resistivity and the thermal conductivity)
or negligible (the Seebeck and the Hall coefficients). The anisotropy of the magnetization and magnetic
susceptibility was also found small, originating from different Yb3+ magnetic fractions (of the order 10−3 of all
Yb atoms) determined along the three symmetry directions. Our experimental results support the consideration
that perfect icosahedral quasicrystals should be isotropic solids regarding their physical properties, unlike
decagonal quasicrystals that are strongly anisotropic. Theoretical reproduction of the temperature-dependent
electron transport coefficients of i-Ag42In42Yb16 by a spectral conductivity model was another aim of this paper.
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I. INTRODUCTION

The anisotropic crystallographic structures of quasicrystals
(QCs) generally result in anisotropic magnetic, electrical, and
thermal transport properties, when measured along differ-
ent crystallographic directions. The anisotropy of tensorial
physical properties (the magnetic susceptibility, the electrical
resistivity, the thermoelectric power, the Hall coefficient, and
the thermal conductivity) of decagonal (d) QCs1–9 and the
decagonal approximant phases10–16 is by now well established,
both experimentally and theoretically. Depending on the
crystallographic direction, the same crystal can exhibit either
positive or negative thermoelectric power and Hall coefficient,
or these parameters can change sign with the temperature.14,15

The electrical resistivity along one crystallographic direction
can be metal-like with a positive temperature coefficient
(PTC), while it is insulator-like with a negative temperature
coefficient (NTC) along another direction.10 Likewise, the
application of the magnetic field along one crystallographic
direction can yield negative diamagnetic susceptibility, while
it is positive paramagnetic along another direction.12 The
crystallographic structures of the d-QCs and their approxi-
mants can be conveniently described as a periodic stacking
of atomic planes with either quasiperiodic in-plane atomic
order in the case of d-QCs or translationally periodic order
in the case of the approximants, where the stacking direction
corresponds to the periodic 10-fold direction in the d-QCs or
the pseudo-10-fold direction in the approximants. Common
to all the investigated d-QCs1–9 (d-Al-Ni-Co, d-Al-Cu-Co,
and d-Al-Si-Cu-Co) and the decagonal approximant phases
[Y-phase Al-Ni-Co,12,13 Al4(Cr,Fe),10,11 Al13Co4,14 Al13Fe4,

and Al13(Fe,Ni)4,15 and the Taylor phase Al3(Mn,Fe)16 is
the fact that the stacking direction was found the most
conducting one for both the electricity and the heat. The
stacking direction is also special to the magnetic properties
of these compounds, as the application of the magnetic
field along the stacking direction always results in weaker
magnetism than for the in-plane application. The origin of the
anisotropic electron transport coefficients of the d-QCs and
their approximants is the anisotropic Fermi surface,13–15 the
anisotropy of which originates from the specific stacked-layer
crystal structure and the chemical decoration of the lattice. The
Fermi surface is composed of many branches (eleven in the
Y-phase Al-Ni-Co13 and eight in the orthorhombic Al13Co4

approximant14), containing pockets of electrons and holes,
which are at the origin of the sign reversal of the thermopower
and the Hall coefficient along different crystallographic
directions.

The anisotropy of the physical properties of icosahedral
(i) QCs has been investigated to a lesser extent. A perfect
icosahedron has the largest finite group of symmetries in three
dimensions (60 rotational symmetry elements about twofold,
threefold, and fivefold rotation axes, and a symmetry order
of 120, including transformations that combine a reflection
and a rotation). In real i-QCs, inherent structural disorder
locally corrupts the ideal icosahedral symmetry so that it is
a question whether the structural anisotropy is large enough
to produce anisotropy of the physical properties. The above
issues were investigated on an icosahedral i-Ag-In-Yb single-
grain quasicrystal by determining the magnetic susceptibility,
the electrical resistivity, the thermoelectric power, the Hall
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coefficient, and the thermal conductivity along the two-, three-,
and fivefold symmetry directions of the structure. Theoretical
reproduction of the temperature-dependent electron transport
coefficients is another aim of this work. Here, we note
that some physical properties of the polygrain i-Ag-In-Yb
quasicrystal (the electrical resistivity, the thermopower, and
the thermal conductivity) were already reported before.17

II. STRUCTURAL CONSIDERATIONS
AND SAMPLE PREPARATION

The i-Cd5.7Yb is the first ever thermally stable binary icosa-
hedral quasicrystal.18,19 The i-Cd5.7Yb phase can be obtained
as high-quality single grains; the binary phase exhibits good
x-ray contrast between the Cd and Yb atoms; and the periodic
approximant phases [the 1/1 Cd6Yb (Refs. 20 and 21) and
the 2/1 Cd5.8Yb (Refs. 21 and 22) cubic approximants] with
almost the same chemical composition and known structures
exist. These favorable conditions resulted in the most detailed
structure solution of an i-QC achieved up to date.23 Both the
i-Cd5.7Yb QC and the approximant structures can be described
as packing of interpenetrating large rhombic triacontahedral
(RTH) clusters built up of five successive atomic shells [the
outer-most RTH shell composed of 92 Cd atoms, a 30-atom
Cd icosidodecahedron, a smaller Yb icosahedron (12 atoms),
an even smaller Cd dodecahedron (20 atoms), and an inner
Cd tetrahedron (4 atoms)]. In addition to the RTH clusters that
comprise 93.8% of all the atoms of the structure, two additional
basic building units, an acute and an obtuse rhombohedron, fill
the remaining space in between the RTH clusters.

The i-Cd5.7Yb material is, however, not convenient for most
experimental studies due to easy oxidation in air as well as
high vapor pressure and toxicity of Cd. Instead, the Ag-In-
Yb system is considered a better candidate for studying bulk
single-grain i-QC properties, as it is stable in air and does
not contain elements of high vapor pressure and toxicity.24–27

The Ag-In-Yb phase diagram comprises an i-QC phase at
the composition Ag42In42Yb16 that is isostructural with the i-
Cd5.7Yb. In the i-Ag42In42Yb16 phase, the Ag and In substitute
in equal proportion the Cd atoms of the i-Cd5.7Yb phase. Since
Ag and In have an atomic number one less and one more than
Cd, respectively, the two phases are also isoelectronic. Two
approximant phases, closely related to the i-QC in both the
chemical composition and the local atomic structure [the 1/1
Ag40In46Yb14 (Ref. 28) and the 2/1 Ag41In44Yb15 (Ref. 29)],
exist as stable phases in the Ag-In-Yb phase diagram as well.

Our centimeter-size single grain of i-Al42In42Yb16 was
grown by the Bridgman method. The natural growth direction
of the grain was close to a twofold direction. Details of the
material preparation and structural characterization can be
found elsewhere.27 We have cut from the parent grain three
bar-shaped samples of approximate dimensions 1.3 × 1.3 ×
5 mm3 with their long axes along the two-, three-, and fivefold
crystallographic directions. The brittleness of the material has
caused some irregularities in the rectangular prism geometry
of the samples, leading to a 10% geometrical error in the
electrical resistivity determination. The samples were cut from
a plane perpendicular to the twofold axis (the twofold plane),
so that the orientation of one twofold axis perpendicular to
the long axis of each sample was known as well. The samples

prepared in that way enabled us to determine the physical
properties along the three symmetry directions (two-, three-,
and fivefold) of the icosahedral structure.

III. SYMMETRY ANALYSIS OF THE
PHYSICAL PROPERTIES

In an anisotropic crystal, physical properties like the mag-
netic susceptibility χ , the electrical conductivity σ , the thermo-
electric power S, and the thermal conductivity κ are symmetric
(and diagonalizable) second-rank tensors. For example, the

electrical conductivity tensor σij relates the current density
⇀

j

to the electric field
⇀

E via the relation ji = ∑
j σijEj , where i,

j = x, y, z denote crystalographic directions in a Cartesian
coordinate system. The Hall coefficient R

ijk

H = Ej/jiBk is
a third-rank tensor, with i, j, k denoting crystalographic
directions of the current ji , the Hall electric field Ej and
the magnetic field Bk . The tensorial ellipsoids exhibit the
same symmetry axes as the crystallographic structure. The
invariance of the tensors on the symmetry operations of a
given point group determines the form of the tensors. Using the
icosahedral point group symmetry, we determine the general
form of a second-rank tensor of an i-QC.

The icosahedron is a regular polyhedron with 20 identical
equilateral triangular faces, 30 edges, and 12 vertices. In a
Cartesian coordinate system, the vertices of an icosahedron
with edge length 2, centered at the origin, are located at
positions (0, ±1, ±τ ), (±1, ±τ , 0), and (±τ , 0, ±1), where
τ = (1 + √

5)/2 is the golden ratio. The 12 fivefold (C5) axes
pass from the origin through the vertices, the 20 threefold
(C3) axes pass through the centers of the triangles, and the
15 twofold (C2) axes bisect the edges. The vertices form five
sets of three concentric, mutually orthogonal golden rectangles
(one set is shown in Fig. 1). Each of these rectangles defines

FIG. 1. (Color online) An icosahedron in a Cartesian coordinate
system, with the x, y, z axes directed along three orthogonal C2 axes.
One set of three concentric, mutually orthogonal golden rectangles
is shown as well. Each of these rectangles defines a twofold plane,
where one C2 axis is perpendicular to the plane, whereas two C2 axes
lie in plane. The C5 and C3 axes lie within the twofold planes at the
angles φ23 = 20.9◦, φ25 = 31.7◦, and φ35 = 37.4◦.
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a twofold plane, where one C2 axis is perpendicular to the
plane, whereas two C2 axes lie in plane. Since the three C2

axes are mutually perpendicular, they represent a convenient
choice for the axes of a Cartesian x, y, z coordinate system.
The C5 and C3 axes lie within the twofold planes at the
angles φ23 = 20.9◦, φ25 = 31.7◦, and φ35 = 37.4◦ (Fig. 1).
Due to the existence of C2 axes in the x, y, and z directions,
the off-diagonal elements of a symmetric second-rank tensor
are zero by symmetry so that the tensor is diagonal in the
above-defined coordinate system. Since the three orthogonal
twofold planes are related by C3 symmetry operations, the
three diagonal elements of the tensor are equal, and the
tensor becomes a scalar. A generalization of this result to
the third-rank tensor (the Hall coefficient) is straightforward.
Therefore, materials with ideal icosahedral symmetry should
be isotropic regarding the physical properties. Any corruption
of the perfect icosahedral symmetry in real materials may,
however, introduce some anisotropy of the tensorial physical
properties.

IV. EXPERIMENTAL RESULTS

Magnetic measurements were conducted by a Quantum
Design MPMS XL-5 SQUID magnetometer equipped with a
50-kOe magnet, operating in the temperature range 1.9–400 K.
The measurements of the electrical resistivity, the thermoelec-
tric power, the Hall coefficient, the thermal conductivity, and
the specific heat were conducted by a quantum design physical
property measurement system (PPMS 9T) equipped with a
90-kOe magnet and operating in the temperature range 2–
400 K. Electrical resistivity was measured by a standard four-
terminal technique. The thermoelectric power and the thermal
conductivity were measured simultaneously by monitoring
both the temperature and voltage drop across the sample after
a heat pulse is applied to its end by means of square waves.
The Hall coefficient measurements were performed by the
five-point method using standard ac technique in magnetic
fields up to 10 kOe. The specific heat was measured by a
thermal-relaxation calorimeter.

A. Magnetization and magnetic susceptibility

In the first set of measurements, the magnetic susceptibility
χ = M/H was determined in the temperature range 1.9–300 K
in magnetic fields H = 1 and 10 kOe applied along the two-,
three-, and fivefold crystallographic directions (denoted as χ2,
χ3, and χ5). Since no field dependence of the susceptibility
was found, we display and analyze in the following only
the 1-kOe data [Fig. 2(a)]. The susceptibilities in all three
directions exhibit a 1/T Curie-type paramagnetic temperature
dependence, where χ2 and χ5 are almost equal in magnitude,
and χ3 is slightly larger. At T > 70 K, χ2 and χ5 become
negative diamagnetic, whereas χ3 remains slightly positive
paramagnetic up to the highest investigated temperature of
300 K.

The temperature-dependent susceptibilities were analyzed
by the Curie–Weiss law

χ = χ0 + C

T − θ
, (1a)

(a)

(b)

FIG. 2. (Color online) (a) Temperature-dependent magnetic sus-
ceptibility χ = M/H of i-Ag42In42Yb16 in the field H = 1 kOe applied
along the two-, three-, and fivefold symmetry directions. The inset
shows the susceptibility on an expanded vertical scale. Solid curves
are fits with Eq. (1a), and the fit parameters are given in Table I. (b)
Magnetization vs the magnetic field, M(H), determined at T = 5 K
for the field applied along the two-, three-, and fivefold directions.
Solid curves are fits with Eq. (1b) and the fit parameters are given in
Table I.

where χ0 is the temperature-independent part of the sus-
ceptibility, C the Curie–Weiss constant and θ the Curie–
Weiss temperature. The constant C gives information on the
magnitude of the Yb moments, whereas the type and strength
of the coupling between the moments can be estimated from
the magnitude and sign of θ . Theoretical fits with Eq. (1a) are
shown as solid curves in Fig. 2(a), whereas the fit parameters
are given in Table I. The temperature-independent part for
the three directions is in the range χ0 = (−15, −4.2) ×
10−6 emu/mol. The Larmor diamagnetic susceptibility of
closed atomic shells for the Ag42In42Yb16 composition was
calculated from literature tables30 to amount χdia = −21 ×
10−6 emu/mol, which is close to the value of χ0, showing
that χdia gives the dominant contribution to χ0. The θ values
were found very small and equal for all three directions, θ =
−0.8 K. The small θ should be considered as an additional
fit parameter only, which slightly improves the fits. No other
experimental results suggest any antiferromagnetic interaction
between the magnetic moments.

The mean effective Bohr magneton number p̄eff per Yb
atom was calculated from the Curie−Weiss constant C using
the formula31 p̄eff = 2.83

√
C, where C is recalculated in unit

per mol of Yb. We obtained the values p̄eff,2 = 0.27, p̄eff,3 =
0.41, and p̄eff,5 = 0.22, which are strongly reduced with respect
to the Bohr magneton number of a free Yb3+ ion (p = 4.5).
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TABLE I. The temperature-independent term χ0 of the susceptibility, the Curie–Weiss temperature θ , the Curie–Weiss constant C, the mean
effective Bohr magneton number p̄eff per Yb atom, the Yb3+ magnetic fraction f calculated from p̄eff, the saturated magnetization M0 and the
Yb3+ magnetic fraction f calculated from M0. The parameter values were determined from the χ (T) and M(H) fits shown in Fig. 2. All figures
in units per mol are given per mol of Ag0.42In0.42Yb0.16 molecules with the molar mass 121.21 g/mol.

Direction χ0 (emu/mol) θ (K) C (emu K/mol) p̄eff f (from p̄eff ) k (emu/mol) M0 (emu/mol) f (from M0)

Twofold −15.6 × 10−6 −0.8 14.8 × 10−4 0.27 3.7 × 10−3 −15.1 × 10−6 11.0 3.1 × 10−3

Threefold −4.2 × 10−6 −0.8 33.3 × 10−4 0.41 8.3 × 10−3 −3.6 × 10−6 24.7 6.9 × 10−3

Fivefold −11.5 × 10−6 −0.8 9.6 × 10−4 0.22 2.4 × 10−3 −21.1 × 10−6 7.3 2.0 × 10−3

Assuming that only a fraction f = (p̄eff/4.5)2 of all Yb atoms
are in a magnetic Yb3+ state and carry the full magnetic
moment, the rest of Yb being nonmagnetic Yb2+, we obtained
the magnetic Yb3+ fractions along the three crystallographic
directions as f2 = 3.7 × 10−3, f3 = 8.3 × 10−3, and f5 =
2.4 × 10−3. These values indicate that the magnetic Yb3+
moments are diluted in the sea of nonmagnetic Yb2+. The
almost zero Curie–Weiss temperatures θ indicate that the Yb3+
moments are uncoupled. Our i-Ag42In42Yb16 QC samples can
thus be classified as weak Curie paramagnets down to the
lowest investigated temperature of 2 K, where a fraction of
the order 10−3 of all Yb atoms are in a magnetic Yb3+ state,
the rest being nonmagnetic Yb2+. The magnetic Yb3+ fraction
may either originate from a small number of Yb sites in the
icosahedral lattice with different chemical bonding than the
majority nonmagnetic Yb2+ sites, or the magnetic sites can
be associated with defects in the lattice, i.e. Yb atoms in
the vicinity of structural vacancies. The second option was
investigated in detail in the icosahedral i-Al-Pd-Mn QCs, both
experimentally and theoretically,32 where it was shown that an
increased concentration of defects results in an increased Mn
magnetization.

In the second set of measurements, the magnetization vs
the magnetic field curves M(H) were determined at T =
5 K for the magnetic field applied along the two-, three-,
and fivefold directions [Fig. 2(b)]. The magnetization curves
show slight anisotropy, where M2 and M5 are almost equal
in magnitude and M3 is slightly larger, in agreement with the
anisotropy order of the susceptibility. All three M(H) curves
show curvature typical of Curie-type paramagnets and were
analyzed by the function

M = M0BJ (μH/kBT ) + kH. (1b)

Here, M0 is the saturated magnetization, BJ is the Brillouin
function for the angular momentum J, and μ = JgμB is the
magnetic moment, where μB is the Bohr magneton and g
is the Landé factor [amounting to g = 1.14 for the Yb3+
(J = 7/2) state]. The parameter k represents terms in the
susceptibility χ = M/H that are linear in the magnetic
field (the Larmor core diamagnetic susceptibility and the
susceptibility of the conduction electrons—the Pauli spin
paramagnetic contribution and the Landau orbital diamagnetic
contribution). The theoretical curves are shown as solid curves
in Fig. 2(b), whereas the fit parameters are given in Table I.
The values of the parameter k are, within the experimental
precision, practically the same as the values of the temperature-
independent susceptibility contribution χ0 and about the same
as χdia, showing that χdia gives the dominant contribution to

k. The saturated magnetization M0 allows for an independent
determination of the Yb3+ magnetic fraction f. Were all the Yb
ions in a Yb3+ state, the total saturated magnetization would
amount to M tot

0 = JgμB = 4.0 μB/Yb3+ = 3600 emu/mol.
The Yb3+ magnetic fraction is then obtained as f = M0/M

tot
0 ,

yielding practically identical f values of the order 10−3 (last
column in Table I) as when determined from the Curie–Weiss
constant. The M(H) analysis confirms the simple Curie-
paramagnetic nature of noninteracting diluted Yb3+ moments
in the investigated i-Ag42In42Yb16 samples.

Regarding the experimentally observed weak anisotropy of
the χ (T) and M(H) curves along the two-, three-, and fivefold
directions, its main origin is the different Yb3+ magnetic
fractions f determined along the three symmetry directions.

B. Electrical resistivity

The electrical resistivity ρ(T) data, measured between 300
and 2 K along the three symmetry directions are displayed in
Fig. 3(a). All resistivities exhibit NTC with a tendency to level
off to a constant value upon T → 0. The weak anisotropy of
the resistivity appears in the order ρ3 > ρ2 > ρ5. At room
temperature (RT), ρ300K

3 = 201 μ
cm, and the resistivity
increase to 2 K is by a factor R3 = (ρ2K

3 − ρ300K
3 )/ρ300K

3 =
10%. For the other two directions, we have ρ300K

2 = 188
μ
cm and R2 = 10%, whereas ρ300K

5 = 181 μ
cm and R5 =
6%. The RT resistivity ratios amount to ρ300K

3 /ρ300K
2 = 1.07,

ρ300K
3 /ρ300K

5 = 1.11, and ρ300K
2 /ρ300K

5 = 1.04 so that the
RT anisotropy is up to 11%. The experimental error in
the absolute values of the resistivity due to uncertainty in
the determination of the samples’ geometrical parameters (the
length and the cross section) is estimated to 10%, so
that the above differences between ρ2, ρ3, and ρ5 are of
the same order as the experimental error. In the case that the
experimentally observed anisotropies would originate solely
from the error in the geometrical parameters, ρ2, ρ3, and ρ5

should differ just by constant scaling factors, having otherwise
identical temperature dependence. The normalized resistivities
ρ(T)/ρ300K along the three crystallographic directions are
shown in Fig. 3(b). While the normalized ρ2 and ρ3 collapse
perfectly onto a single curve in the entire temperature range,
ρ5 matches this curve from RT down to about 150 K, whereas
at lower temperatures, it deviates slightly from a common
curve, but the difference remains small. This deviation
suggests that the geometrical error may not be the only
source of the experimentally observed anisotropy, but another
effect is present. Different concentration of defects along
the investigated crystallographic directions seems a plausible
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(a)

(b)

FIG. 3. (Color online) (a) Temperature-dependent electrical resis-
tivity of i-Ag42In42Yb16 along the two-, three-, and fivefold symmetry
directions. (b) The normalized resistivities ρ(T)/ρ300K along the three
symmetry directions. Solid curve is the fit with Eq. (3) using the
spectral conductivity function σ (ε) shown in Fig. 8.

explanation. According to the above results, no anisotropy
of the resistivity beyond the experimental uncertainty can be
claimed on the basis of our ρ(T) experiments.

C. Thermoelectric power

The thermoelectric power data (the Seebeck coefficient S)
of i-Ag42In42Yb16, measured between 300 and 2 K along the
two-, three-, and fivefold symmetry directions are displayed
in Fig. 4. The thermopower is linearly positive for all three
directions, and there is no anisotropy between the three
directions, S2 = S3 = S5. The RT value amounts to S300K =
14 μV/K, whereas upon T → 0, S extrapolates approximately
linearly to zero, a feature that is usually associated with
metallic diffusion thermopower. The thermopower data show
a tiny nonlinearity in the low-temperature range T < 30 K, a
feature that is often associated with electron-phonon effects,12

which typically reach their maximum value at a temperature
that is some fraction of the Debye temperature θD . The linear
positive thermopower is in agreement with the results obtained
on the polygrain i-Ag42In42Yb16 QC, where considerably
stronger low-temperature nonlinearity was reported.17

D. Hall coefficient

The temperature-dependent Hall coefficient RH = Ey/jxBz

was determined between 300 and 2 K. Three sets of experi-
mental data were collected by directing the current jx along

FIG. 4. (Color online) Temperature-dependent thermoelectric
power (the Seebeck coefficient S) of i-Ag42In42Yb16 along the two-,
three-, and fivefold symmetry directions. Solid curve is the fit with
Eq. (4) using the spectral conductivity function σ (ε) shown in Fig. 8.

the two-, three-, and fivefold symmetry directions, whereas
the magnetic field Bz was always directed along the twofold
direction perpendicular to the long axis of each sample. The
three RH data sets do not show any anisotropy beyond the
experimental precision of ±0.1 × 10−10 m3C−1 (Fig. 5). Here,
RH is small and practically temperature independent within
the investigated temperature range; its average value amounts
to RH ≈ −0.2 × 10−10 m3C−1.

E. Thermal conductivity

The thermal conductivity κ along the two-, three-, and
fivefold symmetry directions is displayed in Fig. 6. The RT
values are small, in the range κ300K = 6–7 W/mK. These
low values are of the same order as those of i-Al-Pd-Mn
QCs,33,34 where they are considered to be a consequence of low
electrical conductivity and the nonperiodicity of the lattice,
strongly reducing both electronic and lattice contributions
to heat transport. The anisotropy of κ along the three
investigated crystalline directions is small and comparable to
the experimental uncertainty. While no anisotropy was found
between the twofold and fivefold directions, κ2 = κ5, small

FIG. 5. (Color online) Temperature-dependent Hall coefficient
RH = Ey/jxBz of i-Ag42In42Yb16 for the current jx along the two-,
three-, and fivefold symmetry directions, whereas the magnetic field
Bz was applied along the twofold direction perpendicular to the long
axis of each sample.
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FIG. 6. (Color online) Thermal conductivity κ of i-Ag42In42Yb16

along the two-, three-, and fivefold symmetry directions. Solid curve
is the theoretical electronic contribution κel , calculated from Eq. (8)
using the spectral conductivity function σ (ε) shown in Fig. 8.

anisotropy was found to the threefold direction, where at RT,
κ3/κ2,5 = 1.17.

F. Specific heat and the electronic density of states at εF

Though specific heat is a scalar quantity and hence does not
give information on the anisotropic physical properties of i-Ag-
In-Yb, the low-temperature specific heat C(T) is a convenient
quantity to estimate the value of the electronic density of states
(DOS) at the Fermi energy εF and the Debye temperature
θD . Neglecting the weak paramagnetism of the i-Ag-In-Yb,
the total specific heat is a sum of the electronic and lattice
specific heats. The electronic specific heat depends linearly on
temperature, Cel(T) = γ T, where γ = (π2/3)k2

Bg(εF ) is the
electronic specific heat coefficient and g(εF ) is the DOS at εF .
At low temperatures below about 10 K, the lattice specific heat
can usually be well approximated by the Debye model and is
expressed as a function of temperature in the form Clatt(T) =
αT 3. The lattice specific heat coefficient α is related to the
Debye temperature via the relation θD = (12π4R/5α)1/3,
where R is the gas constant. The total specific heat at low
temperatures can then be written as

C(T ) = γ T + αT 3. (2)

The specific heat measurements were performed in the
temperature range between 2 and 300 K. The low-temperature
molar specific heat of i-Al42In42Yb16 is displayed in Fig. 7
in a C/T vs T 2 plot, whereas the specific heat is displayed
in the inset for the whole investigated temperature range.
The analysis yielded the values γ = 1.27 mJ/mol·K2 and
θD = 208 K. It is instructive to compare the experimentally
derived electronic specific heat coefficient γ to the corre-
sponding free-electron value γF , calculated from35 γF =
0.136(A/d)2/3(e/a)1/3 mJ/mol·K2, where A is the molar mass
in g, d the density in g/cm3, and e/a the number of valence
electrons per atom. For the i-Al42In42Yb16, we take A = 121.21
g, d ≈ 8.88 g/cm3 (Ref. 23), and e/a = 2 (corresponding to the
ionization states Ag1+, In3+, and Yb2+), wherefrom we obtain
γF = 0.98 mJ/mol·K2. This yields the ratio γ /γF = 1.30, so
that the experimental γ is 30% larger than the free-electron
value. The deviations of γ in this range (10–40% higher than

FIG. 7. (Color online) Low-temperature molar specific heat of
i-Al42In42Yb16 in a C/T vs T 2 plot. Solid line is the fit with Eq. (2). The
specific heat in the entire investigated temperature range (2–300 K)
is displayed in the inset.

γF ) are typically found even for free-electron-like metals like
Na or Cu, where the increased γ is a consequence of the band
structure and the many-body effects including electron-phonon
and electron-electron interactions. Our result shows that the
electronic specific heat coefficient γ of i-Al42In42Yb16 is
metallic-like and deviates from the free-electron value by a
similar amount as it does in free-electron-like metals. The
coefficient γ can be used to calculate the DOS value g(εF ),
wherefrom we get g(εF ) = 0.586 states/eV·atom, a value which
is in agreement with the theoretical calculation for the 1/1
cubic approximant28 of the i-Ag-In-Yb.

V. MODELING THE TEMPERATURE-DEPENDENT
ELECTRON TRANSPORT COEFFICIENTS

The above-presented experimental results show that the
anisotropy of the electronic transport coefficients of i-Ag-In-
Yb is either small enough to be considered within the range of
the experimental uncertainty (the electrical resistivity and the
thermal conductivity) or negligible (the Seebeck and the Hall
coefficients). In the following, we shall assume that all four
transport coefficients are spatially isotropic (as also supported
by the symmetry analysis) and perform the analysis of their
temperature dependence using the spectral-conductivity model
of Landauro and Solbrig.36–38 Within this model, ρ(T), S(T),
and κel(T) are derived from a single energy-dependent spectral
conductivity function σ (ε), whereas RH (T) is derived from
a spectral transverse conductivity in a magnetic field σH (ε).
Using the Kubo–Greenwood formalism, the temperature-
dependent electrical conductivity is calculated from

σ (T ) =
∫

dεσ (ε)

(
−∂f

∂ε

)
, (3)

whereas the Seebeck coefficient is obtained from

S(T ) = 1

eT σ (T )

∫
dεσ (ε)(ε − μ)

(
−∂f

∂ε

)
. (4)

Here, e is the electric charge of the charge carriers
(distinguishing between electrons and holes by its sign),
f = {exp[(ε − μ)/kBT ] + 1}−1 is the Fermi–Dirac function
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and μ is the chemical potential, which is written in the
low-temperature representation as39

μ(T ) ≈ εF − (kBT )2 π2

6

[
d ln g(ε)

dε

]
εF

= εF − ξT 2. (5)

The electronic DOS g(ε) is related to the spectral conduc-
tivity via the Einstein relation σ (ε) = (e2/V)g(ε)D(ε) with
D(ε) being the electronic spectral diffusivity. The parameter
ξ (or at least its starting value in the fit procedure) can be
determined by recognizing that, in the case when the spectral
variation of the electronic diffusivity can be neglected, one can
replace g(ε) by σ (ε) in Eq. (5). Here, ξ can then be related to
the thermopower using the Mott formula

SMott(T ) = π2

3

k2
B

e

[
d ln σ (ε)

dε

]
εF

T , (6)

yielding

ξ = e

2

SMott(T )

T
. (7)

The only material-dependent quantity in Eqs. (3) and (4) is
σ (ε) so that a proper model of the spectral conductivity should
reproduce σ (T) and S(T) at the same time.

The electronic thermal conductivity κel is obtained as

κel(T ) = L22(T )

e2T
− T σ (T )S2(T ), (8)

where

L22(T ) =
∫

dεσ (ε)(ε − μ)2

(
−∂f

∂ε

)
, (9)

and σ (T) and S(T) are given by Eqs. (3) and (4). Since
κel(T) is not explicitly obtained in the experiment (only the
total thermal conductivity κ(T) is measured), κel(T) is then
calculated theoretically by employing the spectral conductivity
function σ (ε) determined before from the simultaneous σ (T)
and S(T) fits.

The magneto-transport is less clearly understood. As yet,
even the question whether it can be explained as an on-
the-energy-shell transport is not conclusively answered.40 A
widely used expression for the Hall coefficient is41

RH (T ) = 1

σ 2(T )

∫
dεσH (ε)

(
−∂f

∂ε

)
. (10)

However, the spectral transverse conductivity in the mag-
netic field, σH (ε), is cumbersome to handle.40 In a weak
magnetic field B applied along the z direction, whereas the
external and the Hall electric fields are in the x and the negative
y directions, respectively, the spectral transverse conductivity
is written as σH (ε) = σxy(B, ε)/B. Bush et al.42 have suggested
to relate σH (ε) to the DOS derivative −dg/dε. The assumption
of an energy-independent electronic spectral diffusivity in the
Einstein relation then allows transition to −dσ (ε)/dε just like
in Eqs. (5) and (6), yielding

σH (ε) = Q(−dσ/dε) (11)

with a positive constant Q. The sign of the Hall coefficient
is then determined by the sign of the (negative) derivative
of the spectral conductivity −dσ/dε. This has proved to be

successful for the i-Al-Cu-Fe and i-Al-Cu-Ru(Si) QCs, where
the DOS in the vicinity of the Fermi level forms a pseudogap.43

Houari et al.44 have reexamined this problem numerically. For
substitutional disorder and weak scattering they confirmed that
the sign of RH is related to −dg/dε. For topological disorder
and strong scattering, however, the relation was not confirmed.
Our purpose is to check whether the relation of Eq. (11) is
fulfilled for the i-Ag-In-Yb QC.

Proper modeling of the spectral conductivity σ (ε), pertinent
to the i-Ag-In-Yb QC, is a crucial step to reproduce the
temperature-dependent transport coefficients in the frame of
the above theory. We first note that the experimentally ob-
servable part of σ (ε) is determined by the thermal observation
window −∂f/∂ε that is a bell-shaped function centered at the
chemical potential μ with a temperature-dependent full width
at half maximum (FWHM) �f = 3.5kBT . At T = 300 K, �f

amounts to 90 meV, whereas it becomes as small as 3 meV
at 10 K. Upon T → 0, −∂f/∂ε becomes a delta function
δ(ε − εF ), and Eq. (3) yields the zero-temperature electri-
cal resistivity ρT →0 = 1/σ (εF ). The temperature-dependent
chemical potential μ(T) = εF − ξT 2 is shifting the thermal
observation window on the energy axis, so that different parts
of σ (ε) contribute to the integrals in Eqs. (3), (4), (9), and
(10) at different temperatures. However, an estimate of ξ from
Eq. (7), by using the thermopower data from Fig. 4 where
S300K = 14 μV/K, yields ξ = −0.023 μeV/K2 so that the
shift of the chemical potential from the Fermi energy at our
highest measurement temperature of 300 K is very small,
μ300K − εF ≈ 2 meV. The shift of the chemical potential
is thus almost negligible on the energy scale of the thermal
observation window. In modeling the σ (ε), only its portion in
the interval of a few 100 meV around εF is experimentally
relevant for the electronic transport coefficients.

Recent electronic structure calculations for the 1/1 Ag-In-
Yb approximant of composition Ag39In47Yb14 have revealed28

that hybridization of the Yb 5d band with the Ag/In 5p
band leads to a dip/pseudogap slightly above the Fermi level,
with the Fermi level pinned to the negative-slope side of
the pseudogap. An identical situation was found also for the
Cd6Yb approximant.45,46 Since the experimentally observable
part of σ (ε) is determined by the thermal observation win-
dow, modelling the relevant part of σ (ε) should employ a
negative-sloping function with (dσ/dε)εF

〉0. Assuming that
the electrons are the majority charge carriers (e < 0), the
Mott formula of Eq. (6) then already qualitatively reproduces
the linear and positive thermopower coefficient for such a
functional form.

The modeling of σ (ε) can be realized via many different
mathematical functions. Here, we apply the functional form
introduced by Landauro and Solbrig,36–38 who modeled the
spectral resistivity ρ(ε) = 1/σ (ε) of i-Al-Cu-Fe by a superpo-
sition of two Lorentzians

ρ(ε) = A

{[
1

π

γ1

(ε − δ1)2 + γ 2
1

]
+ α

[
1

π

γ2

(ε − δ2)2 + γ 2
2

]}
,

(12)

where 1/πγi is the height of a Lorentzian, 2γi its FWHM, δi

its position with respect to the Fermi energy (taken to be at
the origin of the energy scale; εF = 0) and α is the relative
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TABLE II. Parameters of the spectral resistivity ρ(ε) of Eq. (13),
obtained from the simultaneous fits of ρ(T) and S(T).

A μ
cm eV δ1 meV γ1 meV α δ2 meV γ2 meV

11.74 5.9 58 53.3 682.9 546

weight of the Lorentzians. The set of parameters (A, α, δ1, δ2,
γ1, and γ2) pertinent to ρ(ε) was adjusted from simultaneous
fits of the ρ(T) and S(T) data from Figs. 3 and 4 using Eqs. (3)
and (4). The parameters are given in Table II, whereas the
graph of σ (ε) is shown in Fig. 8. In order to obtain converged
results, we needed to integrate over an energy interval ±10
kBT around εF , amounting to ±0.26 eV at T = 300 K. On this
scale, σ (ε) is a negative-sloping function with a small dip at
the Fermi level, where εF is pinned to the negative slope of
the dip. The spectral conductivity at εF amounts to σ (εF ) =
4855 
−1cm−1, yielding the zero-temperature resistivity
ρT →0 = 1/σ (εF ) = 206 μ
cm, in agreement with the
experimental value averaged over the three investigated crys-
tallographic directions. In Fig. 8, the thermal observation
window −∂f/∂ε at 300 and 40 K is shown as well. The pa-
rameter ξ value entering the temperature-dependent chemical
potential was determined from the fits as ξ = −0.028 μeV/K2,
which is almost identical to the starting value estimated from
the Mott formula of Eq. (7).

Using the spectral conductivity from Fig. 8, the theoretical
resistivity ρ(T)/ρ300K with ρ300K = 188 μ
cm and the
thermopower S(T) are shown as solid curves in Figs. 3(b) and
4, respectively. The fits reproduce quantitatively both the NTC
resistivity and the PTC thermopower by assuming the electrons
being the majority charge carriers. The positive thermopower
is thus a consequence of the negative derivative dσ/dε < 0
in the close vicinity of εF of an electronic (n type) conductor
and not due to positive charge of p-type carriers (holes), as it
might seem at first glance. The calculated electronic thermal
conductivity κel(T) using Eq. (8) is presented as solid curve in
Fig. 6, suggesting that, at RT, the electrons transport about 70%
of the heat, the rest being carried by the lattice. Since κel(T)
was not measured experimentally, we are not able to verify
this prediction by comparing to the experiment. However, in
view of the quite large electrical resistivity of i-Ag-In-Yb, the
theoretical electronic contribution may be overestimated, and
for that reason, we do not use it to extract the phononic part
κph = κ − κel from the total thermal conductivity.

The analysis of the temperature-dependent Hall coefficient
RH (T) using Eq. (10), by considering the spectral transverse
conductivity σH (ε) to be described by Eq. (11), did not yield
the correct sign of the Hall coefficient. Equation (11) predicts
that the sign of RH equals the sign of the negative derivative
of the spectral conductivity −dσ/dε, which is positive for the
spectral conductivity σ (ε) of Fig. 8, whereas the experimental
RH of Fig. 5 is slightly negative. The relation of Eq. (11)
is thus not confirmed for the i-Ag-In-Yb QC. Apart from
failing to reproduce the sign of RH , it is interesting to note that
Eqs. (10) and (11) reproduce correctly the type of temperature
dependence of RH (T) from Fig. 5 for the σ (ε) of Fig. 8, where
the almost temperature-independent RH (T) is a consequence

FIG. 8. (Color online) Spectral conductivity σ (ε) = 1/ρ(ε) of
Eq. (12) for the set of parameters from Table II, determined from the
simultaneous fits of the electrical resistivity ρ(T) and the thermopower
S(T). Dashed vertical lines denote the experimentally observable part
of σ (ε) at T = 300 K (±10 kBT around εF ), determined by the thermal
observation window −∂f/∂ε. The bell-shaped −∂f/∂ε at 300 and
40 K (online colored pink and green, respectively) is shown by dotted
curves as well (its vertical scale does not conform to the σ (ε) scale).

of the fact that the derivative −dσ/dε is not changing much
within the thermal observation window.

VI. CONCLUSIONS

In order to investigate the anisotropy of physical properties
of i-QCs, we determined the tensorial magnetic and transport
properties (the magnetic susceptibility, the electrical resistiv-
ity, the thermoelectric power, the Hall coefficient, and the ther-
mal conductivity) of a single-grain icosahedral i-Ag42In42Yb16

quasicrystal along the two-, three-, and fivefold symmetry
directions of the crystallographic structure. The specific heat,
being a scalar quantity, was determined as well. The symmetry
analysis has revealed that the tensors reduce to scalars for the
icosahedral symmetry so that perfect i-QCs should be isotropic
solids regarding their physical properties. Any corruption
of the perfect icosahedral symmetry in real samples may,
however, introduce some anisotropy of the tensorial physical
properties. Our experimental results support these considera-
tions, as the anisotropy of the electronic transport coefficients
was found either small enough to be considered within the
range of the experimental uncertainty (the electrical resistivity
and the thermal conductivity) or negligible (the Seebeck and
the Hall coefficients). The anisotropy of the magnetization
and magnetic susceptibility was also found small, originating
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from the different Yb3+ magnetic fractions (of the order
10−3 of all Yb atoms) determined along the three symmetry
directions. The origin of the diluted Yb3+ moments in the sea
of nonmagnetic Yb2+ may either be a small number of Yb sites
in the icosahedral lattice with different chemical bonding than
the majority nonmagnetic Yb2+ sites, or the magnetic sites can
be associated with defects in the lattice, i.e. Yb atoms in the
vicinity of structural vacancies. In the latter scenario, the weak
anisotropy of magnetic properties could be associated with
disorder-induced local corruption of the icosahedral symmetry,
hence of extrinsic origin to the i-Ag-In-Yb phase. Due to the
random character of the disorder, the slightly stronger disorder
along the threefold direction could be accidental.

Theoretical reproduction of the temperature-dependent
electron transport coefficients by a spectral conductiv-
ity model is another achievement of this work. Based
on the literature-reported electronic structure calculations for
the 1/1 Ag-In-Yb and the Cd6Yb approximants, where the
electronic DOS forms a dip/pseudogap slightly above the

Fermi level with the Fermi level pinned to the negative-
slope side of the pseudogap, we have modeled the spectral
conductivity within the thermal observation window with a
negative-sloping function. The model function has reproduced
well the temperature-dependent electrical resistivity and the
thermopower of i-Ag42In42Yb16 in a simultaneous fit. The pos-
itive thermopower is a consequence of the negative derivative
of the spectral conductivity in the close vicinity of εF of an
electronic (n type) conductor. The theoretical consideration
that the sign of the Hall coefficient should equal the sign of
the negative derivative of the spectral conductivity was not
confirmed.

ACKNOWLEDGMENTS

We thank Peter Gille for cutting the i-Ag-In-Yb samples
along the crystallographic symmetry directions. CC acknowl-
edges the support of Zhejiang Provincial Natural Science
Foundation of China (Grant No. Y4100310).

*jani.dolinsek@ijs.si
1T. Shibuya, T. Hashimoto, and S. Takeuchi, J. Phys. Soc. Jpn. 59,
1917 (1990).

2S. Martin, A. F. Hebard, A. R. Kortan, and F. A. Thiel, Phys. Rev.
Lett. 67, 719 (1991).

3Y. P. Wang and D. L. Zhang, Phys. Rev. B 49, 13204 (1994).
4S. Y. Lin, X. M. Wang, L. Lu, D. L. Zhang, L. X. He, and K. X.
Kuo, Phys. Rev. B 41, 9625 (1990).

5D. L. Zhang, L. Lu, X. M. Wang, S. Y. Lin, L. X. He, and K. H.
Kuo, Phys. Rev. B 41, 8557 (1990).

6Y. P. Wang, D. L. Zhang, and L. F. Chen, Phys. Rev. B 48, 10542
(1993).

7D. L. Zhang, S. C. Cao, Y. P. Wang, L. Lu, X. M. Wang, X. L. Ma,
and K. H. Kuo, Phys. Rev. Lett. 66, 2778 (1991).

8K. Edagawa, M. A. Chernikov, A. D. Bianchi, E. Felder, U. Gubler,
and H. R. Ott, Phys. Rev. Lett. 77, 1071 (1996).

9D. N. Basov, T. Timusk, F. Barakat, J. Greedan, and B. Grushko,
Phys. Rev. Lett. 72, 1937 (1994).
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B 81, 184203 (2010).

16M. Heggen, M. Feuerbacher, J. Ivkov, P. Popčević, I. Batistić,
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29M. R. Li, S. Hovmöller, J. L. Sun, X. D. Zou, and K. H. Kuo, J.
Alloys Compd. 465, 132 (2008).

30P. W. Selwood, Magnetochemistry (Interscience Publishers,
New York, 1956), p. 78.

31F. E. Mabbs and D. J. Machin, Magnetism and Transition Metal
Complexes (Chapman and Hall, London, 1973), p. 7.
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