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Mn+1AXn phases (M: early transition metal, A: IIIA- or IVA-group element, X: carbon or nitrogen) are layered
ternary compounds that possess both metal- and ceramic-like properties with numerous potential applications in
bulk and thin film forms, particularly under high-temperature conditions. In this work, we use the cluster expansion
formalism to investigate the energetics of C-N interactions across the entire Ti2AlC-Ti2AlN composition range. It
is shown that there is a definite tendency for ordering in the C,N sublattice. However, the molar volume and bulk
modulus of the ordered structures found along the Ti2AlC-Ti2AlN composition range show small deviations from
the (linear) rule of mixing, indicating that despite the ordering tendencies, the C-N interactions are not strong
and the solution becomes disordered at relatively low temperatures. Random solid solutions of Ti2AlC1−xNx

are simulated using special quasirandom structures (SQS) with x = 0.25, 0.50, and 0.75. The thermodynamic
properties of these structures are compared to those of the structures found to belong to the ground state through
the cluster expansion approach. It is found that the structural properties of these approximations to random alloys
do not deviate significantly from Vegard’s law. The trend in the structural parameters of these SQS are found to
agree well with available experimental data and the predictions of the bulk modulus suggest a very weak alloying
effect—with respect to Vegard’s law—on the elastic properties of Ti2AlC1−xNx .
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I. INTRODUCTION

Mn+1AXn phases (M: early transition metal, A: IIIA- or
IVA-group element, X: carbon or nitrogen) are interesting
types of layered ternary compounds that possess both metal-
and ceramic-like properties. While they show the machinabil-
ity, thermal-shock resistance, damage tolerance, and electrical
and thermal conductivity of metals, they are similar to ceramics
in terms of their high stiffness, corrosion, and oxidation
resistance.1–4

Among the more than 70 Mn+1AXn phases synthesized
to date, Ti2AlC and Ti2AlN and their solid solutions are
perhaps the best characterized ones. The synthesis of bulk
polycrystalline samples of these two ternary alloys was
reported by Barsoum and his group in 1997.5 Since then,
several experimental and theoretical studies have addressed
different structural aspects and mechanical properties of
Ti2AlC, Ti2AlN, and their solid solutions.6–14 Recently, there
have been a number of theoretical works investigating the ther-
modynamic properties of the Ti2Al(C,N) system. For example,
Drulis et al. studied the heat capacity of Ti2AlC0.5N0.5.15 In a
similar work, Scabarozi et al. compared the specific heats of
Ti3Al(C0.5N0.5)2, Ti2AlC0.5N0.5, and Ti2AlN.16 More recently,
Du and collaborators investigated the elastic properties of
Ti2AlC0.5N0.5 solutions using theoretical means.17 As of now,
and to the best of the knowledge of the authors, there are
not many theoretical works addressing the nonstoichiometry
of MAX phases in a systematic manner. Du’s work,17 for
example, approximated the Ti2AlC0.5N0.5 solution by simply
setting a mixed occupancy (C and N) in the X sublattice
of a Ti2AlX structure. This model implicitly assumes that
C-N interactions are not significant enough. The underlying
assumption for this approximation cannot be assessed unless
a systematic investigation of the alloying behavior of C and N
in the X sublattice is carried out.

In this work, we address this issue by first investigating
the energetics of the C-N alloying in the X sublattice using

the cluster-expansion formalism. The ground state of the
Ti2AlC-Ti2AlN system is obtained and the alloying effects
on some structural properties of these alloys are predicted
using the properties calculated for structures derived from
the underlying Ti2Al(C,N) lattice. Furthermore, random solid
solutions of Ti2Al(C,N) are simulated using so-called special
quasirandom structures (SQS)18 to mimic random arrange-
ment among C-N within a limited coordination range. The
electronic, structural, and mechanical properties of a select set
of Ti2Al(C,N) alloys with 25, 50, and 75 % compositions are
investigated. The properties and energetics of the structures
investigated are calculated using ab initio methods based on
density functional theory.19 The available experimental data
are used to evaluate the validity of the approach used and
to gain a better insight on the underlying physical behavior
responsible for the macroscopic properties of these alloys.

II. METHODOLOGY

A. Electronic structure calculations

The total energy calculations were performed within the
framework of the density functional theory,19 as implemented
in the Vienna ab initio simulation package (VASP).20,21 The
generalized gradient approximation (GGA) is used in the form
of the parametrization proposed by Perdew, Burke, and Ernz-
erhof (PBE).22,23 The electronic configurations of titanium,
aluminum, carbon, and nitrogen were chosen to be [Ar]3d34s1,
[Ne]3s23p1, [Ar]3d104s24p1, 1s22s22p2, and 1s22s22p3,
within the projector augmented-wave (PAW) pseudopotentials
formalism,24 implemented in the VASP package.25,26 The Bril-
louin zone integrations were performed using a Monkhorst-
Pack mesh27 with 5000 k points per reciprocal atom. Full
relaxations were realized by using the Methfessel-Paxton
smearing method of order one28 and a final self-consistent
static calculation with the tetrahedron smearing method with
Blöchl corrections.29 A cutoff energy of 520 eV was set for all
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of the calculations and the spin polarizations were taken into
account.

B. Elastic properties

The elastic constants were estimated by stress-strain
approach30–36 where a set of strains ε = (ε1,ε2,ε3,ε4,ε5,ε6)
is imposed on a crystal structure. If A is the lattice vectors
specified in Cartesian coordinates, ε1,ε2,ε3 and ε4,ε5,ε6 are
the normal strains and the shear strains, respectively. Then,
the deformed lattice vectors are

A = A

⎛
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1 + ε1
ε6
2

ε5
2
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After the application of the strain, it is possible to obtain
the set of stresses t, which result from the changes on the
energy due to the deformation, which is calculated using DFT
methods.

Applying Hooke’s law (t = εC), if a n set of strains (ε1→n)
are applied, the result is a set of stresses (t1→n) which can be
used to find the 6 × 6 elastic constant matrix (C) according to⎛
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C. Approaches to modeling configurational disorder

One of the most straightforward approaches to investigate
the configurational effects on the properties of alloys is to
simply use a large periodic structure in which configurational
disorder is simulated by randomly decorating the atomic sites
to yield a target composition. Conventional methods can then
be used to predict the electronic properties of these “random”
structures. In principle, if the structure is large enough, it is to
be expected that the ensemble of local atomic environments
would approximate that of a true random alloy up to a certain
distance.37 Whether this distance is sufficient to accurately
calculate the properties of a truly random alloy actually
depends on the property to be calculated as well as the strength
of the interaction between the atoms that contribute to the
configurational disorder.

Instead of relying on statistical sampling methods to simu-
late disorder, approaches based on perturbation theory perform
the configurational “averaging” analytically.38 One of the
most popular mean-field approaches to model configurational
disorder is the coherent potential approximation (CPA)39 and
its variants. In the CPA, the random alloy is modeled as an
ordered lattice of “effective atoms.” The coherent potential
describing this effective medium is constructed by requiring
that the electron scattering off the real atoms embedded in this
mean field vanish on average. This robust and computationally
cheap method38 allows the modeling of disordered alloys
with arbitrary compositions. However, given its mean-field

character, local effects, such as ion relaxations and charge
transfer, are not generally taken into account.

D. Special quasirandom structures

The approaches described above suffer from important
limitations. On the one hand, electronic structure calculations
are quite computationally expensive and it is not practical
to simulate structures with more than a few hundred atoms.
On the other hand, mean-field approaches do not generally
take into account effects of local ionic relaxations. Ideally,
one would like to accurately calculate the thermodynamic
and physical properties of random alloys—including local
effects—with as small a periodic structure as possible so accu-
rate first-principles methods can be used. This has been made
possible thanks to the development of special quasirandom
structures (SQS) by Zunger et al.18

SQS are small, periodic supercells that are specially
designed to reproduce approximately the configurational struc-
ture of an infinite random alloy. The configurational state of a
random alloy with a given underlying lattice and composition x

can be characterized by its many-body correlation functions.18

Within the context of lattice algebra, we can assign a “spin
value”—±1 in the case of a binary system—to each of the sites
of the configuration, depending on the type of atom sitting on
the site. Furthermore, all the sites can be grouped in figures,
f (k,m), of k vertices spanning a maximum distance of m (m =
1,2,3, . . . is the first, second, and third-nearest neighbors, . . .).
For each figure, the product of the spin variables is taken and
then averaged over all the figures belonging to the same (k,m)
set, yielding the correlation function, �̄k,m. Rigorously, the
ensemble average of a physical property can be expressed in
terms of these correlation functions. The optimum SQS for a
given composition is the one that best satisfies the condition

(�̄k,m)SQS
∼= 〈�̄k,m〉R, (3)

where 〈�̄k,m〉R is the correlation function of a random alloy,
which is simply given by (2x − 1)k , x being the composition
in the A1−xBx substitutional binary alloy. Note that in this
case this constraint is only satisfied up to a maximum range,
limited by the periodicity of the structure. It is important to
note that the accuracy of the “random” properties calculated
using SQS depends on the actual range of the interactions
relevant to that property. This is especially true when one
calculates properties that are mostly dependent on the local
atomic arrangements, such as enthalpy of mixing,40 charge
transfer,37 local relaxations,41 and so forth. This approach
clearly fails whenever the interactions that control a given
property decay slowly with distance.

Before continuing, it is highly important to stress the
fact that these SQS are periodic structures. As such, they
cannot, in principle, capture the physics of random alloys,
particularly with respect to properties in which the lack of
crystal momentum conservation, which is inherent to truly
random alloys, plays a role. Despite this serious limitation, one
can posit that there are some properties which are dominated
by local, configurational effects. For these properties, ab initio
calculations of the corresponding SQS may still yield useful
results.
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In this work, we constructed special quasirandom structures
(SQS) to simulate Ti2AlC1−xNx solid solutions, with x =
0.25, 0.50, 0.75.

E. Cluster expansion

When the focus is on the energetics of an alloy, we
can use yet another approach to investigate the effects of
configurational degrees of freedom on the thermodynamic
properties of an alloy. A cluster expansion (CE) is simply
a compact representation of the energetics of an alloy that can
be constructed by using first-principles methods to calculate
the energetics of a finite set of ordered structures with a fixed
underlying lattice.42 Formally, a CE is defined by assigning
occupation variables σi to each site i of a lattice (or sublattice).
The occupation variables are assigned specific values (±1
in a binary system) depending on the identity of the atom
occupying the site. A particular arrangement of these “spins”
corresponds to a configuration which is then represented as
a vector σ of spins σi . The CE then parametrizes the energy
(or any other property) of the alloy in terms of polynomial
functions of the occupation variables:

E(σ ) =
∑

α

mαJα

〈∏
i∈α′

σi

〉
, (4)

where α is a cluster (a collection of sites i). The sum is
taken over all clusters α which are not equivalent by a
symmetry operation of the space group of the lattice and
the average is taken over all α′ symmetry-equivalent clusters.
The coefficients Jα are called the effective cluster interactions
(ECIs) and relate a given configurational state to a particular
energy. The multiplicities mα correspond to the number of
equivalent clusters (by symmetry) in a given configuration.
Once the cluster expansion is found—the convergence of the
expansion is highly system dependent—the energy of any
configuration can be calculated by simply applying Eq. (4).

III. RESULTS

A. Determination of the ECIs for the cluster expansion

In this work, we have used the maps code in the ATAT

package42 to evaluate the cluster expansion of Ti2AlC1−xNx

considering that carbon and nitrogen can exchange places in
the X site. In Table I, we show the standard crystallographic
parameters of the Ti2AlC structure obtained from the ICSD

database.43

The cluster expansion for the Ti2Al(C,N) system was
obtained through the use of the maps code in the ATAT

TABLE I. Crystal structure parameters of Ti2AlC.

Space Group: P 63/mmc (194)
Lattice Parameters: a = b = 2.96, c = 13.22, α = β = 90, γ = 120

Atomic Positions:
Atom Wyckoff Position X Y Z

C,N 2a 0.0000 0.0000 0.0000
Al 2c 0.3333 0.6667 0.2500
Ti 4f 0.3333 0.6667 0.5882

TABLE II. Effective cluster interactions. The energies for the
ECIs are already divided by the corresponding multiplicities.

Multiplicity No. of Points Cluster Diameter (Å) Energy (meV)

1 0 0.00 −82.37
1 2 0.00 1.13
6 2 3.07 13.63
6 2 5.31 1.21
6 2 6.14 0.90
2 2 6.87 −1.42
12 2 7.52 0.78
4 3 3.07 −0.97

package.42,44 The unknown parameters Jα (effective cluster
interactions, ECIs) of the cluster expansion [see Eq. (4)] can
be determined by fitting them to the energy of a finite number
of configurations, which in turn can be calculated using DFT
approaches. The ECIs were selected based on the principle
of minimization of the so-called cross-validation (CV) score,
which is defined as45

(CV )2 = n−1
n∑

t=1

(Ei − Ê(i)), (5)

where Ei is the calculated energy of structure i, while Ê(i) is
the energy of the structure i obtained from the least-squares
fit to the (n − 1) other structures. Minimization of this CV
ensures good fitting of the ECIs while ensuring that the cluster
expansion retains its predictive power and avoid the pitfalls
of overfitting.45 The maps code successively increased the
structure data set until the CV reached a value of less than
1 meV. Table II shows the obtained ECI parameters for the
Ti2Al(C,N) obtained in this work. A total of 69 structures were
used, with energies calculated using the same methodologies
described in Sec. II A. All the structures had the underlying
motif of the structure described in Table I and the largest
structures considered had 40 atoms per primitive cell, which
is equivalent to five primitive cells.

Table II shows the calculated effective cluster interactions
resulting from the cluster expansion for Ti2Al(C,N). Excluding
the empty and point ECIs, one can easily see that the
first-nearest-neighbor pair ECI dominates the energetics of
the system. In fact, this ECI is an order of magnitude larger
than that of the remaining ECIs. Table II shows that the
sole triangle ECI obtained in the present cluster expansion
makes negligible contributions to the configurational energy
in this system. Figure 1 shows the convergence rate of the pair
ECIs as a function of cluster diameter (atom-atom distance).
The figure shows that the pair ECIs converge rapidly as the
cluster diameter increases. The positive values of the ECIs
with smallest diameter suggest an ordering tendency between
C and N in the X sublattice as it is energetically favorable to
have C-N pairs.

B. (Pseudo) ground state in Ti2Al(C,N)

Figure 2(a) compares the calculated and fitted (formation)
energies (in units of kJ per formula unit) resulting from the
cluster expansion and the ECIs showed in Table II. Excluding
the structures with positive (formation) energies, the figure
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FIG. 1. (Color online) Pair effective cluster interactions (ECIs)
as a function of cluster diameter.

shows very good agreement between calculated and fitted
energies, as evident from the fact that all data points fall along
the 45◦ line. Figure 2(b) shows that the uncertainty in the
predicted structure energies is about ±0.25 kJ/fu. This level of
uncertainty is acceptable and it is about an order of magnitude
lower than the energy scale of the system.

By sampling the configuration space generated through
the search for optimal ECIs (see Table II) necessary to
represent the energy of the Ti2Al(C,N) as a function of
configuration, the “ground state”47 of the Ti2AlC-Ti2AlN
system was determined.

Here we have used the term “pseudo” to qualify the “ground
state” reported in this work because we have not considered the
relative stability of Ti2Al(C,N) with respect to unary, binary,
and other ternary compounds that may take part in equilibria
in the Ti-Al-C-N system. A good example of the correct
treatment of this phase stability problem is given by Dahlqvist
et al.46 In that work, Dahlqvist and coworkers investigated
the phase stability of Ti2AlC1−xOx using SQS. To determine
whether the Ti2Al(C,O) structures were thermodynamically
stable against decomposition, they proceeded to compare their

stability with respect to other equilibrium phases in the system.
The problem is essentially a linear optimization problem where
the total energy of the system is minimized, subject to mass
conservation constraints.

In this work we ignore the formal phase stability problem
and assume that solutions involving Ti2AlC-Ti2AlN or ordered
structures derived from the Ti2Al(C,N) motif are lower in
energy than competing phase equilibria involving unary,
binary, ternary, and even higher order structures in the Ti-Al-
C-N system. Although it is not possible to assert the validity
of this assumption, the fact that solid solutions Ti2AlC1−xNx

have already been synthesized experimentally48 lends some
credibility to this admittedly problematic simplification.

Although the ground-state search in this work is definitely
not exhaustive, the calculations suggest ordering tendencies
between C and N in the X sublattice, in agreement with the
ECIs shown in Table II and Fig. 1. Figure 3 was obtained by
exploring a configuration space spanning structures with up
to 40 atoms per primitive cell. The resulting ground state of
this system is indicated through the convex hull construction.
The figure clearly shows a tendency for the Ti2Al(C,N) to
form ordered structures at least at low temperatures. The
lowest lying configurations have formation energies close
to −5 kJ/fu. Our calculations yield six structures that fall
on the convex hull. Interestingly, the ground state of the
system is slightly asymmetrical, with structures rich in carbon
being slightly more stable than those rich in nitrogen. The
calculated convex hull does not yield any ground state at the
x = 0.5 composition. We would like to note that Du et al.17

approximated a Ti2AlC0.5N0.5 solution by simply using the
primitive cell of Ti2AlX with mixed occupancy of C and N in
the X sublattice (space group: P 3m1). This structure, however,
is well above the ground state, with a formation energy close
to 1 kJ/fu. The figure also shows the formation energies
calculated for Ti2AlC1−xNx SQS structures with x = 0.25,
0.5, 0.75. These structures are above the ground state but they
have negative formation energies, indicating their stability with
respect to the end members of the Ti2Al(C,N) system.

To gain a better understanding of the ground-state structures
found in this system, the calculated electronic density of
states of the ground-state structures found in Fig. 3 are
shown in Fig. 4. The figure shows that all structures are

FIG. 2. (Color online) Fitting error in cluster expansion for Ti2Al(C,N). (a) Calculated and fitted energies resulting from the cluster
expansion. These energies are calculated with respect to the Ti2AlC and Ti2AlN reference states. (b) Error between calculated and fitted
energies resulting from the cluster expansion. ±0.25 kJ/fu error bands are depicted with dashed lines.
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FIG. 3. (Color online) Calculation of ground state—at 0 K—for
Ti2Al(C,N) system. [Note that in this work the full phase stability
problem has been ignored and assumed that compounds along the
Ti2AlC-Ti2AlN pseudobinary line are thermodynamically stable with
respect to decomposition into combinations of other structures in
the Ti-Al-C-N system. For more details see Dahlqvist (Ref. 46).]
Formation energies are calculated using Ti2AlC and Ti2AlN as
reference. The energy of the ordered structure Ti2AlC0.5N0.5 proposed
by Du et al.(Ref. 17) to simulate a random Ti2AlC0.5N0.5 is shown
for comparison.

metallic, with the d-band electrons from Ti ions contributing
the most to the conductivity of the structures. Examining the
atom-projected electronic DOS for the end member Ti2AlC
as well as the moment-projected partial electronic DOS of Ti
and Al in Fig. 5 shows that the peaks centered around −1 eV
correspond to hybridized p-Al and d-Ti states. These peaks
become increasingly displaced to lower energies as nitrogen
increasingly substitutes for carbon in the X sublattice. On the
other hand, the peaks close to −2.5 eV in the electronic DOS
of the Ti2AlC correspond to hybridized p-C and d-Ti states.
These very low lying states induce very strong interactions
between Ti and C and result in the strong Ti-C bonds. As
nitrogen substitutes for C in the X sublattice, even lower
lying states—at around −5 eV—resulting from hybridization
between p-N and d-Ti states begin to appear.

C. Finite-temperature alloy behavior

On a per-atom basis, the formation energy of the most stable
structures (∼1.3 kJ/atom) shown in Fig. 3 corresponds to a
thermal energy of about 150 K. This suggests that despite the
ordering tendencies observed, Ti2Al(C,N) solutions are likely
to be disordered already at room temperature, which means
that full long-range ordering in this system is not likely to be
observed experimentally. To further explore the temperature
dependence of the short-range order parameters we have used
the fitted ECIs shown in Table II and Fig. 1 to investigate
the finite-temperature behavior of the configuration state of
this system using a simple Monte Carlo lattice simulation.
Specifically, we used the ECM2 code in the ATAT package.42 The
simulation size corresponded to an 8 × 8 × 8 supercell of the
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FIG. 4. (Color online) Calculated electronic density of states
for the ground states in the Ti2Al(C,N) system depicted in Fig. 3.
Bottom (top) DOS plot corresponds to the Ti2AlC (Ti2AlN) end
members.

Ti2Al(C,N) primitive cell, corresponding to 1024 X sites—Ti
and Al are merely expectation ions. 30 000 equilibration
and 30 000 production Monte Carlo steps were used. The
Monte Carlo calculations ignore electronic and vibrational
contributions to the free energy of the system and it is thus
likely that the temperature scale is off. When examining the
ordering energies as well as the small deviations with respect to
Vegard’s law in the calculated volume and bulk modulus of the
structures (see Figs. 8 and 9), it is not likely that vibrational
effects are significant. Moreover, since all the structures are
conducting, with similar electron densities at the Fermi level
(see Fig. 4), electronic contributions to the free energy are also
not likely to be that important. Based on these observations,
we would not expect very large deviations in the calculated
temperatures, although in all fairness these predictions must
be taken as qualitative.

Figure 6 shows the dominant pair correlation functions—up
to fourth-nearest neighbor—for the Ti2AlC0.5N0.5 composition
as a function of temperature. For this particular composition,
random-like correlation functions have a value of zero.
Negative pair correlation functions correspond to unlike pairs.
At low temperatures, the first pair correlation function shows
that carbon favors nitrogen atoms as its nearest neighbors (and
vice versa). On the other hand, the second pair correlation
function shows that at low temperatures next-nearest neighbors
consist of like-atom pairs.

As mentioned earlier in this work, thermal energies on
the order of 150–200 K are sufficient to disorder Ti2Al(C,N)
alloys. Close inspection of Fig. 6 shows that the second, third,
and fourth pair correlation functions decay to random-like
values at temperatures below ∼600 K. In fact, analyzing the
local atomic configuration in snap shots of the equilibrated
structure with Ti2AlC0.5N0.5 stoichiometry simulated at 500 K,
it is found that carbon has a significant preference for nitrogen
as nearest-neighbor (and vice versa). On the other hand, the
first pair correlation function asymptotically approaches a
value below zero at much higher temperatures. These results
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(a)Atom-projected electronic density of states of
C in Ti2AlC

(b)Atom-projected electronic density of states
of N in Ti2AlN

(c)Atom-projected electronic density of states of
Ti in Ti2AlC

(d)Atom-projected electronic density of states
of Al in Ti2AlC

FIG. 5. (Color online) Atom-projected electronic density of states of (a) C, (c) Ti, and (d) Al in Ti2AlC and (b) N in Ti2AlN.

suggest that although long-range ordering is not likely to be
observed in this system, short-range ordering is still somewhat
significant at elevated temperatures.

FIG. 6. (Color online) Pair correlation functions of the
Ti2Al(C,N) system as a function of temperature, for the 50% N
composition. Random-like correlation functions correspond to zero.

Figure 7 shows the mixing enthalpy of the Ti2Al(C,N)
at 500 K calculated through Monte Carlo simulations. The
temperature was chosen to ensure that no long-range ordering
was significant and thus represented the mixing enthalpy of
a close-to-random alloy. The figure shows that the mixing
enthalpy is closely symmetrical, with some bias toward the
carbon-rich region of the composition range. This is in
agreement with the ground-state calculations shown in Fig. 3.

D. Structural properties of Ti2Al(C,N)

The calculations in Sec. III C show that at moderate-to-
elevated temperatures, Ti2Al(C,N) alloys mostly correspond to
random solutions, with some degree of short-range ordering,
mainly between carbon and nitrogen nearest neighbors in
the X sublattice. Given that the ordering energies for this
system are somewhat moderate, the ordered structures used
to determine the cluster expansion are used to determine the
compositional dependence of the structural properties in this
system. Figure 8 shows the atomic volume for all 69 structures
used to fit the ECIs in the Ti2Al(C,N) system. These volumes
correspond to the fully optimized lattice parameters for each
of the structures. The structures were optimized by relaxing
volume, cell parameters, and internal degrees of freedom.
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FIG. 7. (Color online) Calculated mixing enthalpy in the
Ti2Al(C,N) at 500 K. Ti2AlC and Ti2AlN are reference states.

For convenience, the expected atomic volume in the
Ti2Al(C,N) according to Vegard’s law are shown in Fig. 8.
The figure shows that most of the structures have volumes that
correspond to a small but negative deviation from Vegard’s law,
with structures corresponding to the Ti2AlC0.5N0.5 stoichiome-
try showing the largest deviation, in agreement with the exper-
imental observations by Radovic et al.49 According to Fig. 1,
carbon and nitrogen have small but attractive interactions as
nearest neighbors in the X sublattice of the carbo-nitride.
This attractive interaction contributes to a shortening of C-N
bonds—with respect to the weighed average of the lengths of
C-C and N-N bonds in the end members. Closer inspection of
the figure, however, shows that virtually all structures fall very
close to the line corresponding to Vegard’s law. These small
deviations from Vegard’s law are consistent with the relatively
small ordering energies calculated in this system.

Figure 9 shows the calculated bulk modulus for the different
ordered structures corresponding to the ground state in the

FIG. 8. (Color online) Calculated atomic volumes—in
Å3/atom—for the 69 structures used to determine the ECIs for the
cluster expansion in Ti2Al(C,N).

FIG. 9. (Color online) Calculated bulk modulus—in GPa—at
0 K for the structures corresponding to the ground state in Ti2Al(C,N).
The experimental values are taken from the work by Radovic et al.49

Note the two values for the bulk modulus for Ti2AlN. The higher value
corresponds to a sample with greater density (4.3 vs 4.245 g/cm3),
although the less dense sample is closer to the Ti2AlN stoichiometry.
See text for a more detailed discussion.

system. The bulk modulus was calculated by isotropically
scaling the lattice parameters of the structures at five different
volumes ranging from −5 to 5% of the equilibrium volume
calculated at 0 K. The picture gets more complicated when
examining the alloying behavior of the bulk modulus in the
Ti2Al(C,N) system: Although the calculated bulk moduli are
relatively close to the line corresponding to the (linear) rule of
mixing, there is no clear trend as in the case of the volume
vs composition calculations. Moreover, in the carbon-rich
region of the system, the bulk modulus is a bit smaller than
what could be expected from the (linear) rule of mixing; in
the nitrogen-rich region there is a positive deviation. The
calculated bulk modulus is in slight disagreement with the
calculated volumes as one would expect that smaller volumes
would result in stiffer interatomic bonds and thus larger bulk
moduli.

The discrepancy between Figs. 8 and 9 may be due to the
relatively small sample used to fit the equation of state for
each of the structures considered. Additionally, the deviations
from the expected behavior are not significant. In any case,
the calculated alloying behavior for the volume and bulk
modulus in the Ti2Al(C,N) system suggest that despite the
tendency for this system to order, the weak C-N interactions
are not sufficient to result in significant strengthening of
Ti2AlC-Ti2AlN alloys.

The compositional behavior of the elastic constant tensor in
the Ti2Al(C,N) system is shown in Fig. 10. The figure shows
that the elastic constants for all the structures more or less
follow the (linear) rule of mixing, with C11, C33, and C12

stiffening somewhat close to the Ti2AlC0.5N0.5 stoichiometry.
Most of the elastic constants in the system remain more or less
constant as the nitrogen content increases. The most notable
exception to this behavior corresponds to the C13 elastic
constant. In this case, the stiffening of the elastic constant as
the nitrogen concentration increases is notable. Whether this
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FIG. 10. (Color online) Calculated elastic constant tensor for the
ground-state structures in the Ti2Al(C,N) system.

has consequences for the deformation behavior in this system
is beyond the scope of this work but is worth investigating.

E. Special quasirandom structures in Ti2Al(C,N)

In the previous sections, we investigated the alloying
behavior of Ti2Al(C,N) solid solutions using the cluster
expansion formalism. While this type of study has shed some
light on the nature of the C-N interactions when they mix in
the X sublattice as well as their effect on the thermodynamic
and structural properties of these systems, it is necessary to
investigate the properties of random solutions. In Sec. II D
it was argued that in principle it is impossible to simulate a
truly random solution with a finite set of atomic sites. A good
approximation, however, can be achieved by using special
quasirandom structures (SQS).

In this work we used three different special quasirandom
structures representing 25, 50, and 75% N compositions.
The structures were generated using the ATAT package.42 All
structures consisted of 64 atoms. In order to simplify the
structure generation, all structures were based on a 2 × 2 × 2
supercell of the 8-atom primitive cell. For the structure
simulating the 50% composition, the pair correlation functions
were random-like up to the third-nearest-neighbor pair. In
the case of the 25 (and 75) % composition structure, it
was impossible to find a structure that perfectly mimicked
a random solution beyond the first-nearest-neighbor pair. The
structures used to calculate the properties of Ti2AlC1−xNx

solid solutions with x = 0.25, 0.50, 0.75 are available as
Supplemental Material.50

Table III shows the calculated formation energies for SQS
with three different compositions, using as reference Ti2AlC
and Ti2AlN. Figure 3 shows that these SQS are above the
ground state of the Ti2AlC-Ti2AlN system, although they
are certainly stable with respect to decomposition into the
constituent end members—i.e., they have negative formation
energies. In Table III, the first formation energy (second
column) corresponds to the formation energy when no local
ionic relaxation is taken into account. The formation energy
upon full relaxation of volume, c/a ratio, and ion positions

TABLE III. Formation energies (kJ/fu) of SQS for different
relaxations. Ti2AlC and Ti2AlN were used as reference states.

Composition No Local Relax. Full Relax. Relaxation Energy

xN = 0.25 −1.95 −2.18 −0.23
xN = 0.50 −2.97 −3.58 −0.60
xN = 0.75 −0.96 −2.3 −1.34

is shown in the third column of the table. The table shows
clearly that as the concentration of N increases, the energy
gain through local ionic relaxation increases. Although in
absolute terms relaxation energies are not every important,
as N increases, ionic local relaxations contribute with 10, 20,
and 50 %, respectively, of the formation energies for these
solutions. This is important and shows that even in systems
were the mixing atoms are similar in ionic radii, it is still
important to consider local relaxation effects, particularly
when formation energies are relatively low in magnitude.

Table IV shows the calculated lattice parameters of the
end members as well as the experimental lattice parameters
obtained and/or compiled by Radovic et al.49 For convenience
and in order to immediately detect the trends, some of these
parameters are plotted in Fig. 11. The table and figure show
good agreement between calculations and experiments as the
the shrinkage—on a relative basis—of the a axis is larger than
that of the c axis with good agreement between the theoretical

TABLE IV. Structural parameters of SQS structures. Experimen-
tal data are shown in parentheses and were taken from the work by
Radovic et al.(Ref. 49) unless otherwise noted.

Composition a (Å) c (Å) c/a Vol. B0 (GPa)
(Å3/atom)

xN = 0.00 3.069 13.730 4.474 14.00 139
(3.055) (13.65) (4.468) (13.61) (140, 18651)

xN = 0.25 3.056 13.661 4.470 13.81 143
xN = 0.50 3.037 13.631 4.488 13.61 148

(3.023) (13.61) (4.50) (13.45) (151)
xN = 0.75 3.017 13.628 4.517 13.42 153
xN = 1.00 2.997 13.639 4.551 13.25 159

(2.996) (13.62) (4.54) (13.17) (150, 175, 16951)

Note 1. Experimental uncertainty in lattice parameters is approxi-
mately ±0.01 to ±0.04 Å.
Note 2. The bulk modulus from Radovic et al. (Ref. 49) was obtained
from their measured values of Young’s (E) and shear modulus (G)
and converted to bulk modulus using the formula B = EG

3(3G−E) . These
measurements correspond to adiabatic conditions.
Note 3. Radovic et al. (Ref. 49) measurements of the elastic constants
were done through resonant ultrasound spectroscopy (RUS). No
temperature is reported but is assumed to be room temperature.
Note 4. The two values for the bulk modulus of Ti2AlN correspond
to two different samples (see text).
Note 5. The bulk modulus reported in Manoun et al. (Ref. 51)
were obtained using a diamond anvil cell (DAC). No temperature
is reported but is assumed to be room temperature. Uncertainty in
experiments is about ±3 GPa. These experiments were performed
under close-to-isothermal conditions.
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FIG. 11. (Color online) Lattice parameters of the SQS structures
compared with end members Ti2AlC and Ti2AlN.

and experimental observations.49 Table IV and Fig. 11 also
show that as nitrogen substitutes carbon, the a axis shrinks,
although the compositional trend follows closely Vegard’s law.
On the other hand, replacing carbon with nitrogen leads to a
reduction in the c axis after which this parameter increases
again toward the N-rich region of the composition range. The
same can be observed in the plot of the c/a ratio shown in
the same Fig. 11. The stronger deviation from Vegard’s law
in the case of the c axis may be due to the stronger M-X
interactions that result from carbon and nitrogen mixing in
the X sublattice. As shown in Sec. III B, there is also a net
attractive interaction between C and N as they start to mix in
the X sublattice.

Table IV also shows the calculated—at 0 K—and
experimental49,51—assumed at room temperature—bulk mod-
ulus (B0) for Ti2Al(C,N) solid solutions. The experimental data
from Manoun et al.51 were obtained from diamond anvil exper-
iments while those reported by Radovic et al.49 used resonant
ultrasound spectroscopy (RUS) techniques. Immediately, we
can see a rather large and qualitatively important difference
between both experimental data sets: Discrepancies in the
measured bulk modulus for Ti2AlC reach close to 50 GPa.
One could argue that the bulk moduli reported in both sets
of experiments are fundamentally different thermodynamic
quantities as one corresponds to isothermal (diamond anvil)
while the other one corresponds to adiabatic (RUS) conditions.
However, at room temperature it is unlikely that adiabatic and
isothermal bulk moduli differ by such a large range. More
importantly, the diamond anvil experiments suggest that the
bulk modulus of Ti2AlC is actually larger than that of Ti2AlN.
This result is clearly in conflict with the more recent RUS
results from Radovic et al.49 as well as with the calculations.
In recent work by the author and collaborators,52 it is argued
that the larger bulk modulus of Ti2AlN is due to the stronger
covalent character of Ti-N bonds in Ti2AlN. This is also
consistent with the shorter Ti-X bonds in Ti2AlN. Here we
would like to note that the values for the bulk modulus of
Ti2AlN reported by Radovic et al.49 in Table IV correspond
to two samples. The sample with higher density (4.3 g/cm3)
had a stoichiometry corresponding to Ti1.93AlN0.975, while the

sample with lower density (4.245 g/cm3) had a stoichiometry
corresponding to Ti2AlN0.996, which is closer to Ti2AlN. The
densities and stoichiometries of the samples are in conflict,
which could be explained by different degrees of porosity. In
this work, we assume that the bulk modulus of the denser
sample is closer to the true bulk modulus of materials close
to the Ti2AlN stoichiometry, although further investigation is
warranted.

In Sec. III D, it was noted that the observed alloying
behavior of the bulk modulus does seem to be in contradiction
with the observed (slight) negative deviations from the (linear)
rule of mixing in the compositional dependence of the volume
(see Fig. 9). In Fig. 9 it is shown that the ordered structures
belonging to the ground state have bulk moduli that follow
closely the (linear) rule of mixing, although the deviations
are negative in the carbon-rich region of the composition
range. The calculations for the SQS structures also show
essentially the same thing: Despite the fact that C-N alloying
results in shorter bonds (smaller volume) relative to the
weighed average of the end members, the bulk modulus
actually decreases—relative to the (linear) rule of mixing—as
nitrogen substitutes carbon. Table IV and Fig. 9 show that the
experimental results are somewhat inconclusive. In their work,
Radovic et al.49 prepared two different samples of nominal
Ti2AlN that actually had very different concentration levels
of point defects (nitrogen vacancies). The sample with the
highest density (4.3 vs 4.245 g/cm3) showed a much higher
bulk modulus that agreed somewhat better with the theoretical
results. On the other hand, the sample with the lowest density
showed a remarkable softening of about 25 GPa. We would
like to note that the higher values of the bulk modulus obtained
by Radovic et al.49 for one of the Ti2AlN samples agree better
with the anvil experiments by Manoun et al.51

If we only consider the highest density sample for Ti2AlN
and compare the experimental and calculated trends in Fig. 9,
we can clearly see that there is good agreement between
experiments and calculations: Despite the fact that on average
there are shorter bonds at intermediate compositions—again,
relative to the (linear) rule of mixing—we can see a softening
of the bulk modulus relative to the weighed average of the
bulk modulus for Ti2AlC and Ti2AlN. The reason for this
negative deviation from the (linear) rule of mixing is not
entirely clear at this moment but it is likely related to changes
in the bonding behavior between Ti-Al, T-X, and X-X atoms as
carbon and nitrogen mix in the X sublattice. This explanation
is admittedly unsatisfactory and one must also consider the
softening observed in one of the two samples of Ti2AlN
examined by Radovic et al.49 It is very likely that this softening
is induced by point defects but since in this work the formation
of nitrogen vacancies was not considered it is not possible to
make a stronger assertion regarding the underlying effect of
alloying on the properties of Ti2Al(C,N) solid solutions close
to the nitrogen-rich region of the composition range.

IV. SUMMARY AND CONCLUSIONS

In this work, we have investigated the alloying behavior
of Ti2Al(C,N) solid solutions through theoretical means. The
following are some of the most important results obtained in
this work:
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(1) A cluster expansion describing the chemical interactions
between C and N in the X sublattice was built by fitting the
effective cluster interactions (ECIs) of the expansion to the
calculated energies of 69 structures derived from Ti2AlC.

(2) A ground-state search using this cluster expansion
showed ordering tendency between C and N, and several
ground states—with up to 40 atoms per primitive unit cell—
were identified.

(3) The ordering tendency is not significant and it is likely
that the system looses long-range order at 500–600 K. Calcula-
tions of the temperature evolution of pair correlation functions
for the Ti2AlC0.5N0.5 stoichiometry seem to corroborate this.

(4) Using the calculated structural properties of the struc-
tures used to determine the cluster expansion, we found a
shortening of the average interatomic distances upon C-N
alloying, relative to Vegard’s law.

(5) The elastic properties of the structures considered seem
to follow closely the (linear) rule of mixing, with some
deviation as the alloying progresses. Paradoxically, while
alloying seems to result in shorter interatomic distances, the
bulk modulus of structures corresponding to C-N alloying
shows negative deviations from the (linear) rule of mixing,
which implies a net softening of the solid solution upon
alloying.

(6) Solid solutions were simulated through the use of special
quasirandom structures (SQS) and the results are basically in
agreement with those obtained using ordered structures with
an underlying Ti2Al(C,N) motif.

(7) Some experimental results seem to suggest that this
alloying-mediated softening is real, although no conclusive
statement can be made due to the fact that point defects may
play a very significant role in determining the properties of
these solid solutions.
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