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Simulating dislocation loop internal dynamics and collective diffusion using
stochastic differential equations
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Nanoscale prismatic loops are modeled via a partial stochastic differential equation that describes an
overdamped continuum elastic string, with a view to describing both the internal and collective dynamics of
the loop as a function of temperature. Within the framework of the Langevin equation, expressions are derived
that relate the empirical parameters of the model, the friction per unit length, and the elastic stiffness per
unit length, to observables that can be obtained directly via molecular-dynamics simulations of interstitial or
vacancy prismatic loop mobility. The resulting expressions naturally exhibit the properties that the collective
diffusion coefficient of the loop (i) scales inversely with the square root of the number of interstitials, a feature
that has been observed in both atomistic simulation and in situ TEM investigations of loop mobility, and (ii) the
collective diffusion coefficient is not at all dependent on the internal interactions within the loop, thus qualitatively
rationalizing past simulation results showing that the characteristic migration energy barrier is comparable to that
of a single interstitial, and cluster migration is a result of individual (but correlated) interstitial activity.
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I. INTRODUCTION

Materials in extreme radiation environments exhibit a
complex and dynamic behavior strongly influenced by their
initial as-prepared microstructure, and at the same time show
fundamental generic features—radiation defects are mobile,
interact with each other via long-range elastic forces and,
when sufficiently close, react and transform to microstructures
characterized by quite different mobility and interaction laws.
Collectively, such defects evolve and interact with the mobile
dislocations and thus strongly affect the mechanical response
of the material, where, for example, stable and immobile
(possibly extended) defects evolve to cause hardening and a
resulting loss in ductility.

Ab initio and empirical atomistic simulations have pro-
vided considerable insight into the microscopic aspects of
microstructural evolution,1 through the calculation of (zero-
temperature) formation and migration energies of individual
self-interstitial atom (SIA) and vacancy defects.2–4 When the
migration energies are sufficiently small, empirical atomistic
simulations performed at finite temperature have allowed
for the direct measurement of defect diffusion coefficients
demonstrating that individual SIAs have nontrivial mobil-
ity properties that strongly depend on material type and
temperature. For the nonmagnetic bcc transition metals the
ground-state structure of a single SIA is a 〈111〉 crowdion,5

in which the extra atom is delocalized within a 〈111〉 string
over a number of lattice constants. On the other hand, for
ferromagnetic bcc Fe it is the 〈110〉 dumbbell, which is
a somewhat more localized defect. These quite different
structures admit different thermally activated mechanisms for
SIA transport.

For the case of the 〈111〉 crowdion, atomistic simulation
work has revealed the occurrence of fast one-dimensional
(1D) diffusion along the 〈111〉 direction with each component

migration involving several interatomic distances.6,7 A high
value of the diffusion coefficient reflects a low value of
the so-called lattice friction, where D = kBT/γ in which
D is the diffusion constant, γ is the friction coefficient,
and T is the temperature. In terms of a Frenkel-Kontorova
model for a generic interstitial,8,9 such SIA activity could
be interpreted as a manifestation of the formation of a true
quasiparticle “whose properties are radically different from
properties of (the) strongly interacting atoms forming that
quasiparticle,” and whose friction coefficient exhibits a tem-
perature dependence that results in a non-Arrhenius behavior
for the corresponding diffusion coefficient. This theoretical
prediction was later confirmed using atomistic simulation with
the observation of non-Arrhenius behavior of crowdion SIAs in
vanadium.10 Indeed for the case of tungsten, both simulation
and theory have shown that the diffusion coefficient of the
〈111〉 crowdion obeys a linear temperature dependence in the
high-temperature regime due to a corresponding temperature-
independent friction coefficient.11 For the case of bcc Fe, the
ground-state 〈110〉 interstitial dumbbell executes 3D motion
via the Johnson mechanism12 resulting in a nearest-neighbor
displacement and rotation of the dumbbell to another 〈110〉
direction. With increasing temperature, simulation has also
found that the 〈110〉 dumbbell structure is excited to a
〈111〉 configuration with subsequent 1D movement over many
interatomic distances until relaxation to a 〈110〉 dumbbell
configuration of a possibly different orientation.13,14

Atomistic simulations have also investigated the stability
and mobility of clusters of SIAs in which the SIAs condense
to a 〈111〉 platelet of extra atoms.6,7,15–18 Such a 〈111〉
configuration also occurs in bcc Fe for greater-than-three
SIA clusters,14,19–21 despite the ground-state structure of a
single SIA being the 〈110〉 dumbbell interstitial. At even
higher temperatures for bcc Fe, the ground-state prismatic loop
structure has a 〈100〉 Burgers vector and is immobile in the time
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frame of atomistic simulation, an experimental observation
that is now understood to arise from magnetic fluctuations,
which also leads to the α-γ structural phase transformation in
Fe.22 This aspect will not be considered further in the present
work. For the case of vanadium SIA clusters, simulation has
also demonstrated strong non-Arrhenius behavior which was
analogous to that seen for a single SIA.18 All such work
demonstrated that in terms of the jump frequency23 (rather
than the diffusion coefficient), Arrhenius behavior is apparent,
giving two important results: (1) the energy barrier associated
with the jump frequency is of a similar value to that of
the corresponding single SIA and only weakly dependent on
the size of the SIA cluster, and (2) for a cluster containing
N SIAs, the prefactor of the jump rate exhibited a 1/Nα

dependence where α ∼ 0.5–0.64.15,18 In the work of Osetsky
et al.15 detailed analysis of atomistic simulations revealed that
SIA cluster mobility was largely mediated by individual (but
correlated) SIA activity and that with increasing cluster size,
such activity became more prevalent in the perimeter region of
the cluster. This latter observation was put on firm theoretical
grounding via an analysis of the multistring Frenkel-Kontorova
model,24 which demonstrated that with increasing size, explicit
interstitial activity concentrated on the perimeter of the cluster.
Moreover, in the limit of large cluster size the perimeter
structure would approach that of an edge dislocation and
therefore the notion of a prismatic dislocation loop could be
formally introduced. Such a viewpoint is also supported by
good agreement between atomistic and continuum elasticity
descriptions of large SIA clusters.25

Experimentally, the use of in situ electron microscopy has
allowed for the direct observation of such microstructural
dynamics,26–30 showing how a population of both mobile and
immobile self-interstitial/vacancy clusters diffuse, interact,
and can contribute to structural evolution under irradiation.
Indeed in the work of Arakawa et al.26 a power-law dependence
in terms of loop size on mobility was also observed with
the jump-rate dependence given by 1/Nα , where α ∼ 0.8.
More generally, such observations show that the simultaneous
production of mobile defects at high irradiation dose-rates re-
sults in the evolving microstructures being strongly affected by
collective modes involving the correlated migration of defects,
formation of rafts of defects, coalescence of defects, and the
eventual self-organization and spatial ordering of defects. This
indicates that both short and long-range (elastic) interactions
between radiation defects play a significant part in the dynam-
ics of microstructural evolution. At higher temperatures, where
〈100〉 prismatic loops dominate, such experimental work has
also shown the mobility of such loops,27 albeit at a significantly
reduced rate when compared to 〈111〉 prismatic loops.

Direct simulation of such microstructural evolution is
not possible using standard molecular dynamics because
of the characteristic large length and long time scales. While
the above has shown that atomic simulation is able to address
the mobility of individual SIA clusters, the simulation of
multiple and interacting SIAs becomes impractical due to
the computational requirements of system size. Moreover,
reaction kinetics (between defect clusters and/or immobile
impurity complexes) often involve energy barriers much
higher than the thermal energy scale resulting in the relevant
diffusion phenomena (and therefore microstructural evolution)

occurring at the microseconds to the human time scale—a time
regime well beyond that accessible to the molecular-dynamics
simulation technique, which is generally limited to the
nanosecond time regime. An important example demonstrat-
ing this is in the work of Arakawa et al.26 in which the mobility
of interstitial clusters in ion-irradiated bcc Fe was observed
to be orders of magnitude less than that seen in simulation
suggesting the presence of (unseen) impurity atmospheres
with energy barriers much larger than that corresponding to
the thermal energy scale. The quantitative resolution of this
experimental observation remains an unsolved problem.

Significant progress has been made in the study of mi-
crostructural evolution through the use of kinetic Monte Carlo
(KMC) methods that allow for the modeling of heterogeneous
defect dynamics at time scales extending to the human
time scale.31 These methods are statistical in nature and
can, in the long time limit, correctly describe the temporal
dynamics of material evolution. As input, KMC requires
kinetic data in the form of migration and reaction energy
barriers derived from ab initio and empirical simulations. This
demonstrates that the modeling of materials evolution is a
truly multiscale modeling methodology. Such an approach has
aided in the detailed interpretation of temperature-dependent
resistivity recovery data;4 a revealing experimental method
that is difficult to interpret since the method cannot explicitly
distinguish between vacancy and interstitial defect structures
and their corresponding reactions.

KMC algorithms for simulating radiation damage effects
are generally based on the assumption that defects perform
unbiased three-dimensional migration in the material, and that
interactions are described as short-range inelastic collisions.
The simulations include no treatment of long-range elastic
forces or the one-dimensional modes of motion characteristic
of prismatic dislocation loops, and therefore cannot presently
be used to quantitatively understand the collective defect
dynamics observed in in situ electron microscopy.

The Langevin approach provides a powerful alternative to
the KMC modeling of defects. It is a method that retains
atomic resolution in terms of a defect’s position, whilst coarse-
graining the atomistic detail of the defect structure keeping
only its bare diffusion coefficient and the dimensionality of its
mobility. Because of this, the method does not suffer from
the time-scale problem normally associated with atomistic
simulations, whilst still providing Newtonian-like trajectories
whose time scale is set by the corresponding defect’s diffusion
coefficient. Due to the coarse graining of the atomic lattice,
interactions between “Langevin” particles are derived from the
appropriate elastic interaction between defects. The omitted
atomistic details are accounted for by stochastic differential
equations in which a stochastic force is introduced to promote
fluctuations within the system whilst a frictional term is added
to take into account the dynamics of dissipation associated
with the underlying discreteness of the atomic scale. Formally,
the Langevin equation is equivalent to a Fokker-Planck
equation that governs the probability distribution of the random
variables, which in this case are the positions of all defects
in the considered system. Such an approach has recently been
used to match and explain the real-time dynamics of interacting
prismatic dislocation loops in both electron- and ion-irradiated
bcc Fe.32
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In the present work the Langevin approach is extended to
the modeling of both the internal dynamics and the collective
behavior of interstitial (or vacancy) prismatic loops. This is
achieved by recognizing that larger loops can be well described
by the elasticity of prismatic dislocation loops, which in turn
can be described (if the loop is not too large) by the dynamics
of an elastic string connected end to end. Section II develops
the discretized version of the partial stochastic differential
equation for a continuous elastic string within the framework of
the Langevin equation. It is shown that the collective diffusion
and internal fluctuations of the elastic string are fully and
independently described by, respectively, the center-of-mass
diffusion coefficient and the elastic string stiffness. In Sec. III,
these two microscopic parameters are obtained from finite
temperature molecular-dynamics simulations of interstitial
and vacancy prismatic loop mobility performed using the
magnetic potential for ferromagnetic bcc Fe,20,33 from which
both the collective diffusion and internal fluctuations of the
loop can be directly obtained. In Sec. IV, these results are
discussed in terms of existing knowledge of prismatic loops
derived from both molecular-dynamics simulation and theory.
The Appendix includes a modified derivation of the so-called
“drift technique,” developed in Refs. 11 and 34, and used
here to obtain the converged diffusion coefficients of the
atomistically simulated prismatic loops in Sec. III.

II. DISCRETE ELASTIC STRING MODEL
FOR A PRISMATIC LOOP

The description of a dislocation via a continuum elastic
string model and with overdamped dynamics has been used
to study the local interaction of a dislocation with pinning
sites. Also referred to as the line-tension model, much work
in this direction has been performed in the framework of
understanding internal friction experiments; see, for example,
the early work of Granato and Lücke.35 Later work attempted
to reconcile such a continuum description with the discreteness
of the atomic lattice (via the existence of dislocation kinks),
finding an equivalence between the two descriptions when the
kink density is high: a regime in which the short-range kink-
kink interaction is dominant.36,37 It is from this perspective that
the present work attempts to describe the internal dynamics
of a prismatic dislocation loop. Such an approach has been
also taken by Ohsawa and Kuramoto38,39 where they studied
the migration barrier of an elastic loop in the presence
of a Peierls-like energy barrier. Generally, the empirical
parameters of the elastic string description are the effective
string mass, the viscous drag force, and effective tension
per unit length, microscopic parameters whose values depend
on the coarse grained features of the discrete lattice. In the
present work, a description is developed that makes it possible
to obtain these parameters directly from molecular-dynamics
simulations of vacancy or interstitial prismatic loops. In the
first step of this procedure the differential equation describing
the overdamped elastic string is recast in the framework of
a stochastic differential equation thereby relating the viscous
drag term directly to the mobility properties of the loop via the
fluctuation-dissipation theorem, thereby avoiding the need for
defining an explicit microscopic mechanism for diffusion.

The elastic string description for a damped dislocation loop
under zero applied shear stress conditions obeys the partial
differential equation:35

M∂2z(l,t)

∂t2
+ γ

∂z(l,t)

∂t
− C ∂2z(l,t)

∂l2
= 0, (1)

where M is the effective mass per unit length, γ is the
viscous drag per unit length, and C is the line tension per unit
length. The elastic string is joined end to end via the boundary
condition

z(l + L) = z(l). (2)

To explicitly consider the effects of thermal fluctuations a
δ-correlated random force satisfying

〈ζ (l,t)ζ (l′,t ′)〉 = δ(l − l′)δ(t − t ′), (3)

is introduced giving

M∂2z(l,t)

∂t2
+ γ

∂z(l,t)

∂t
− C ∂2z(l,t)

∂l2
= f ζ (l,t). (4)

Here the parameter f sets the scale of the so-called stochastic
force. In the overdamped regime of diffusion, the inertial
term becomes negligible and can be omitted resulting in the
stochastic partial differential equation:

γ
∂z(l,t)

∂t
= C ∂2z(l,t)

∂l2
+ f ζ (l,t). (5)

In this form, the Langevin approach is equivalent to a
Fokker-Planck equation in which only the spatial degrees
of freedom are considered, a form that corresponds to a
generalized diffusion equation. The drag (or friction) term may
be characterized by γ = kbT /D, whereD can be considered as
the diffusion constant per unit inverse length, and upon division
by the length of the string will give the diffusion coefficient of
the entire string. A more convenient form of Eq. (5) is written
as

∂z(l,t)

∂t
= CD

kbT

∂2z(l,t)

∂l2
+ fD

kbT
ζ (l,t). (6)

The parameter f may be determined by considering the
equation of motion for the center of position (COP) of the
elastic string:

∂zCOP(t)

∂t
= fD

kbT

1

L

∫ L

0
dl ζ (l,t), (7)

where the COP is defined as

zCOP(t) = 1

L

∫ L

0
dl z(l,t). (8)

To obtain Eq. (7), the identity∫ L

0
dl

∂2z(l,t)

∂l2
≡ ∂z(l,t)

∂l

∣∣∣∣
L

− ∂z(l,t)

∂l

∣∣∣∣
0

, (9)

which is equal to zero due to the periodic boundary conditions
[Eq. (2)], has been used. This last equation simply reflects the
fact that the net force on the string is zero.

Equation (7) has the solution

zCOP(τ ) = zCOP(0) + fD
kbT

1

L

∫ L

0
dl

∫ τ

0
dt ζ (l,t). (10)
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Setting the initial COP to be at the origin, zCOP(0) = 0, the
mean-square displacement of zCOP(τ ) is given by

〈|zCOP(τ )|2〉 =
(

fD
kbT L

)2 ∫ L

0
dl

∫ L

0
dl′

×
∫ τ

0
dt

∫ τ

0
dt ′〈ζ (l,t)ζ (l′,t ′)〉 (11)

=
(

fD
kbT L

)2

Lτ ≡ 2DCOPτ. (12)

By definition, DCOP equals the diffusion coefficient of the
entire loop and is equal to D/L. Thus, by requiring that the
COP exhibits Brownian motion, characterized by a diffusion
coefficient equal to D/L, f is defined and results in Eq. (6)
becoming

∂z(l,t)

∂t
= CD

kbT

∂2z(l,t)

∂l2
+

√
2Dζ (l,t). (13)

This constitutes an example of the application of the
fluctuation-dissipation theorem.

With the goal being the development of a numerical
simulation strategy, Eq. (13) is now discretized by replacing
the second-order differential term with a finite-difference
representation defined in terms of the segment length �L,

∂z(l,t)

∂t
= CD

kbT

[
z(l − �L,t) − 2z(l,t) + z(l + �L,t)

(�L)2

]

+
√

2Dζ (l,t), (14)

and averaging within all such segment lengths,

∂zn(t)

∂t
= CD

kbT (�L)2
[zn−1(t) − 2zn(t) + zn+1(t)]

+
√

2Dζn(t). (15)

Here

zn(t) = 1

�L

∫ ln+�L/2

ln−�L/2
dl z(l,t) (16)

and

ζn(t) = 1

�L

∫ ln+�L/2

ln−�L/2
dl ζ (l,t). (17)

In the above ln+1 − ln = �L and n is chosen to range from
zero to L/�L − 1 = N − 1. Using Eq. (3), the discrete form
of the δ-correlated spatiotemporal noise evaluates to

〈ζn(t)ζn′(t ′)〉 =
∫ ln+�L/2

ln−�L/2
dl

∫ ln′+�L/2

ln′−�L/2
dl′δ(l − l′)δ(t − t ′)

= 1

�L
δn,n′δ(t − t ′). (18)

The final form of the discrete differential equation is then given
by

∂zn(t)

∂t
= CD

kbT (�L)2
[zn−1(t) − 2zn(t) + zn+1(t)]

+
√

2
D

�L
ζn(t) (19)

with

〈ζn(t)ζn′(t ′)〉 = δn,n′δ(t − t ′). (20)

These equations may be readily transformed to a series
of uncoupled Langevin equations via the discrete Fourier
transform

zk(t) = 1

N

N−1∑
n=0

zn(t) exp

(
i2πnk

N

)
(21)

and its inverse transform

zn(t) =
N−1∑
k=0

zk(t) exp

(
− i2πnk

N

)
. (22)

It is noted that

z0(t) = 1

N

N−1∑
n=0

zn(t) = zCOP(t), (23)

which is the COP for the elastic string. The resulting N

independent Fourier transformed Langevin equations are

dzk(t)

dt
= −λkzk(t) +

√
2
D

�L
ζk(t), (24)

where

λk = 2CD
kbT �L2

[
1 − cos

(
2πk

N

)]
(25)

and

ζ k(t) = 1

N

N−1∑
n=0

ζn(t) exp

(
i2πnk

N

)
. (26)

In the above definitions, both zn(t) and ζn(t) are real
and therefore their Fourier coefficients satisfy the following
condition: (i) The k = 0 and k = N/2 (if N is even) Fourier
coefficients are real. (ii) The kth coefficient equals the
conjugate of the (N − k)th coefficient for k = 1,N/2 − 1 if
N is even, and for k = 1,(N − 1)/2 − 1 if N is odd.

To ensure that this is the case for ζ k(t), the N independent
Fourier-space random forces are assigned to the real numbers
ζ k=0(t) [and ζ k=N/2(t) if N is even] and the real and
imaginary parts of the complex numbers ζ k(t), where k =
1,N/2 − 1 if N is even, and k = 1,(N − 1)/2 − 1 if N is
odd. Doing so results in the following δ-correlated temporal
correlation functions for the Fourier transformed random
forces:

〈ζ k(t)[ζ k′(t ′)]†〉 = 1

N
δk,k′δ(t − t ′). (27)

For k = 0, λk = 0 and Eq. (24) reduces to

dz0(t)

dt
=

√
2
D

�L
ζ 0(t), (28)

which has the solution

z0(τ ) = z0(0) +
√

2
D

�L

∫ τ

0
dt ζ 0(t), (29)
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resulting in [when setting zk(0) to zero]

〈|z0(τ )|2〉 = 2
D

�L

∫ τ

0
dt

∫ τ

0
dt ′〈ζ 0(t)[ζ 0(t ′)]†〉

= 2
D

�L

τ

N
= 2

D
L

τ, (30)

which is in agreement with Eq. (12). This result does not
depend on the choice of the number of nodes N .

For k �= 0, the general solution to Eq. (24) takes the form

zk(τ ) = exp(−λkτ )

[
zk(0) +

√
2
D

�L

∫ τ

0
dt exp(λkt)ζ k(t)

]

(31)

leading to

〈zk(τ )[zk′(τ )]†〉 = exp[−(λk + λk′)τ ]

[
zk(0)[zk′(0)]†

+ 2
D

�L

∫ τ

0
dt

∫ τ

0
dt ′

× exp(λkt) exp(λk′ t ′)〈ζ k(t)[ζ k′(t ′)]†〉
]

= exp[−(λk + λk′)τ ]

[
zk(0)[zk′(0)]†

+ 2D
�LN

∫ τ

0
dt exp(2λkt)δk,k′

]
. (32)

If k �= k′ then

〈zk(τ )[zk′(τ )]†〉
= exp[−(λk + λk′)τ ]zk(0)[zk′(0)]† → 0 (33)

in the long time limit (τ → ∞), whereas if k = k′,

〈|zk(τ )|2〉 = exp(−2λkτ )

[
|zk(0)|2 + 2D

�LN

exp(2λkτ ) − 1

2λk

]

→ D
�LNλk

. (34)

The instantaneous spatial correlation function is then given
by

〈zn(τ )[zn′(τ )]†〉

=
N−1∑

k,k′=0

〈zk(τ )[zk′(τ )]†〉 exp

(
− i2πnk

N

)
exp

(
i2πn′k′

N

)

= 2Dτ

�LN
+

N−1∑
k=1

D
�LNλk

exp

(
− i2π (n − n′)k

N

)
, (35)

where in the last step the results contained in Eqs. (30), (33),
and (34) have been used. It is noted that in the very last term of
Eq. (35) the summation in k does not include the k = 0 term.
Using Eq. (25) gives

〈zn(τ )[zn′(τ )]†〉 = 2Dτ

�LN
+ kbT �L

2C G(n,n′), (36)

where

G(n,n′) = 1

N

N−1∑
k=1

exp
( − i2π(n−n′)k

N

)
1 − cos

(
2πk
N

) . (37)

G(n,n′) evaluates to a real function for all values of n and n′,
and has a form similar to the static (ω = 0) phonon spatial
Green’s function for a one-dimensional peroidic Harmonic
chain.

Equation (36) allows for a direct calculation of the mean-
square displacement of the COP of the loop,

zCOP(τ ) = 1

N

N∑
n=1

zn(τ ). (38)

That is,

〈|zCOP(τ )|2〉 = 1

N2

N∑
n,n′=1

〈zn(τ )[zn′(τ )]†〉

= 1

N2

N∑
n,n′=1

[
2Dτ

�LN
+ kbT �L

2C G(n,n′)
]

= 2Dτ

�LN
= 2Dτ

L
, (39)

where in the last step, the sum rule,

N∑
n=0

G(n,n′) =
N∑

n′=0

G(n,n′) = 0, (40)

has been exploited. This identity may be easily established
by using Eq. (37) and the fact that each summation in spatial
index yields a Kronecker δ in k that is equal to unity only for
k = 0, a term that is not included in the summation of Eq. (37).

As expected, Eq. (39) gives an identical result to that of
Eqs. (12) and (30), or that derived directly from Eq. (19). In a
similar way, the mean-square fluctuation of the nodal positions
relative to the COP can be evaluated giving, for all n,

〈|zn(τ ) − zCOP(τ )|2〉
= 〈|zn(τ )|2〉 − 2〈zn(τ )[zCOP(τ )]†〉 + 〈|zCOP(τ )|2〉
= kbT �L

2C G(n,n). (41)

G(n,n′) may be readily numerically evaluated for a given N—
it is well behaved due to the omission of the k = 0 term.
Figure 1 plots G(n,n)/N as a function of N and it is seen that
for N > 5 it is well approximated by the constant 1/6. Also
included in this figure are the results of dynamical (interacting
N -body) Langevin simulations for reasonable (but arbitrarily)
chosen values of D and C—see Sec. III C.

Thus Eq. (41) gives the central result

〈|zn(τ ) − zCOP(τ )|2〉 = 〈|δz|2〉 = kbT �LN

12C = kbT L

12C ,

(42)

showing that the magnitude of the fluctuations scales linearly
with the perimeter of the loop and the temperature of the
system. As with the COP diffusion coefficient, this result
does not depend on the choice of N . Thus a prescription
to determine the (bare) microscopic parameters of the loop
becomes evident. By matching the COP diffusion coefficient
with the known diffusion coefficient of a similarly sized
loop, D can be determined, and by matching the scale of
the fluctuations within the loop with a known value, C can
be obtained. Such microscopic data are directly obtainable
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FIG. 1. (Color online) A plot of G(n,n)/N as a function of N

where the red line represents 1/6. The stars represent values of
G(n,n)/N taken directly from fully dynamical Langevin simulations.

from molecular-dynamics simulations, and thus a multiscale
modeling strategy naturally emerges to model loops at time
and spatial scales well beyond that of atomistic simulation
methods.

III. DETERMINING C AND D FOR α-FE FROM
MOLECULAR-DYNAMICS SIMULATIONS

A. Interstitial prismatic loops

To obtain estimates of the COP diffusion coefficient D/L

and the line tension C/L a 〈111〉 interstitial prismatic loop is
created by inserting a 〈111〉 platelet of atoms of hexagonal
shape into an otherwise perfect bcc lattice of approximately
cubic shape, with the coordinate axes orientated along x =
[11̄0], y = [112̄], and z = [111], and comprising 20 × 10 ×
40 unit cells of size a(

√
2 × √

6 × √
3/2), where a is the

lattice constant (48 000 atoms in total). The number of atoms
in the platelet is 61, corresponding to an area of ≈234.5 Å

2

and a perimeter of L ≈ 57 Å. This initial configuration is
relaxed to a local energy minimum using molecular statics.
To describe the Fe-Fe interaction, the empirical magnetic
potential is employed.20,33 Figure 2(a) displays the resulting
structure, showing only those atoms with a cohesive energy
0.15 eV greater than the average local cohesive energy of the
sample. To investigate the finite temperature dynamics of this
prismatic loop, a series of eight finite temperature molecular-
dynamics simulations were performed for the temperature
range 100–800 K in increments of 100 K. The simulations were
performed under zero hydrostatic pressure conditions using
the Parrinello-Rahman barostat method. To obtain sufficient
statistics, each simulation was run for 2 ns and every 100 fs the
atomic positions were stored for those atoms with a cohesive
energy 0.15 eV greater than the instantaneous average local
cohesive energy of the entire sample.

Closer inspection of Fig. 2(a) reveals that at 0 K the core
region consists of a perimeter of high-energy atoms aligned
along the 〈111〉 axis. This scenario is approximately main-
tained for the temperature range considered [see Fig. 2(b) for
the case of 400 K], although the core region is now somewhat
more irregular due to increasing noise in the local cohesive
energy arising from thermal vibrations. Indeed, many atoms
not at all associated with the dislocation loop now survive the
energy filtering process and correspond to random high-energy
fluctuations occurring within the bulk lattice. Thus with rising
temperature, the data become increasingly noisy and further
processing is required. To do such postprocessing of the
atomic positions, clusters of atoms along a 〈111〉 direction
are identified according to a nearest-neighbor criterion, and
all clusters containing less than four atoms are removed.
Also, any remaining cluster that is not located within a
chosen distance (a factor of its known radius) to the loop is
removed. The positions of the atoms in the remaining clusters

(a) (b)

[111]

[1-10]

[11-2]

[111]

[111]

FIG. 2. (Color online) (a) The 0-K relaxed starting configuration for the interstitial prismatic loop containing 61 self-interstitial atoms.
Only high-energy atoms are shown and are colored according to their local cohesive energy (red, the most negative, and light blue, the least
negative). The displayed bounding box represents the cell size in which the simulations were performed. The inset shows the prismatic loop
with the viewing direction along the 〈111〉 Burgers vector direction. (b) Instantaneous three-dimensional snapshot of the prismatic loop at a
temperature of 400 K; only high-energy atoms are shown.

134109-6



SIMULATING DISLOCATION LOOP INTERNAL DYNAMICS . . . PHYSICAL REVIEW B 84, 134109 (2011)

(a) (b)

(c) (d)

100K 400K

800K

FIG. 3. (Color online) Examples of loop postprocessing at tem-
peratures (a) 100 K, (b) 400 K, and (c) 800 K. The small red circles
represent the filtered high-energy atoms and the blue balls represent
the resulting configuration of the loop using the postprocessing
procedure outlined in the text. (d) Closeup of a loop at 400 K
displaying its identified 〈111〉 strings (points) and their respective
COPs (balls) that are used to characterize the loop’s instantaneous
configuration.

are then averaged within each cluster to finally obtain the
current configuration of the loop. Figures 3(a)–3(c) display the
atomic configurations arising from the molecular-dynamics
simulations for the temperatures 100, 400, and 800 K,
showing that with increasing temperature the dislocation
loop position and shape become more difficult to identify.
Figure 3(d) displays a closeup of a loop via its identified 〈111〉
strings.

The resulting coordinates of the loop are then used to
calculate the COP of the loop zCOP and the mean-square
fluctuations in the 〈111〉 direction:

1

N

N∑
i

(zi − zCOP)2. (43)

Here the summation is over the N identified 〈111〉 strings
constituting the loop at a given instant (or interval) of time.
N will vary from configuration to configuration (especially at
the higher temperatures), but will generally have a maximum
value of 24 [see Fig. 3(a)]. For each temperature, Eq. (43)
is averaged over all the (≈20 000) configurations obtained
during the 2-ns molecular-dynamics simulation. To obtain
the diffusion coefficient from the time series of zCOP at each
temperature, the mean-square displacement is calculated for
a selected range of time intervals using the “drift correction”
technique developed in previous work.11,34 The as-published
method, which ensures that the mean position of a diffusing
particle remains zero when sampling a trajectory of finite
length, was found to consistently overestimate the diffusion
coefficient by a factor of 3 when compared to more traditional
methods. The Appendix details the origin of this difference,
shedding further light into the statistics of particle trajectories.
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FIG. 4. (Color online) Molecular-dynamics data from an intersti-
tial prismatic loop where (a) is an Arrhenius plot of the measured
diffusion coefficients as a function of inverse temperature and (b) is
the mean-square fluctuations along the direction of the 〈111〉 Burgers
vector as a function of temperature. In (a), the red line represents an
Arrhenius fit and (b) represents a linear fit to the high-temperature
mean-square-fluctuation data, adjusted such that it extrapolates to the
origin. The red data points represent the corresponding quantities
derived directly from the Langevin dynamics loop trajectories.

Figure 4(a) displays the natural logarithm of the resulting
diffusion coefficients as a function of inverse temperature.
Inspection of this figure reveals a temperature dependence
that is not so well represented by simple Arrhenius behavior.
Much better agreement with Arrhenius behavior for bcc Fe
is seen in the work of Osetsky et al.15 and more recently
in Refs. 16 and 17. This is quite different from the strongly
non-Arrhenius behavior seen in molecular-dynamics simula-
tions of interstitial cluster mobility in vanadium.18 Indeed in
the work on vanadium, the authors comment on this, stating
that this might be due to the relatively narrow temperature
regime that can be studied in Fe compared to that of vanadium.
With the understanding that an Arrhenius description of
cluster diffusion is most probably an oversimplification of
the actual diffusion mechanism, the prefactor and migration
energy barrier are calculated from Fig. 4(a) giving D0 =
392.69 × 10−10 m2 sec−1 and E = 0.0386 eV, the latter value
being quite comparable to that expected for a 〈111〉 crowdion in
bcc Fe. As in previous work, this suggests that the microscopic
mechanism, which facilitates loop diffusion, is in part related to
the mobility of the 〈111〉 SIA crowdion, a defect that on its own
decays to the ground-state 〈110〉 SIA defect structure, but in
a many-SIA loop configuration generates the shortest Burgers
magnitude corresponding to the minimum-energy structure
predicted by dislocation theory.

Figure 4(b) displays the resulting mean-square fluctuations
of the loop [as defined by Eq. (43)] as functions of temperature
using the postprocessed data. In the high-temperature regime,
the fluctuations depend linearly on temperature as predicted by
Eq. (42). However, with decreasing temperature a strong devia-
tion away from linearity is apparent—indeed the mean-square
fluctuations appear to increase with decreasing temperature
when below 300 K. This behavior may be rationalized by
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(a)

[111]

[1-10]

(b)

FIG. 5. (Color online) (a) Typical loop configuration consisting of 51 SIAs at 100 K (with viewing direction along the [112] axis) with a habit
plane not perpendicular to the [111] Burgers vector direction. (b) Measured loop’s COP as a function of simulation time at 100 and 400 K.

inspecting the typical loop configurations at these low temper-
atures. Figure 5(a) displays such a configuration at 100 K and
it is seen that the corresponding habit plane of the loop is not in
the [111] direction associated with the loop’s Burgers vector.
Such configurations can last many nanoseconds suggesting
that the low-temperature ground state of the prismatic loop
is not that of the relaxed 0-K structure of Fig. 2 [where the
habit plane is (111)], but rather that shown in Fig. 5(a) with
its normal along the [110] direction, an observation that has
been also noticed by Wirth et al.6 Under these circumstances,
the application of Fig. 4(b) is somewhat nonsensical, since a
static non-{111} habit plane configuration will yield a large
value for the instantaneous fluctuation. That the mean-squared
fluctuation increases in Fig. 5(b) with decreasing temperature
is thus simply a result of the prismatic loop spending much
of its time in its non-{111} habit plane configuration. Longer
simulation times at these lower temperatures should result in
a less nonlinear temperature dependence since the dislocation
loop will have time to “flip” its habit plane to one of the other
two equivalent 〈110〉 habit planes. Using the values of the
mean-squared fluctuations at 700 and 800 K, an estimate of
the gradient yields 0.012 Å

2
K−1, the necessary microscopic

quantity to determine the line tension coefficient C.
From the above analysis, the simple elastic string model

developed in the previous section becomes applicable at
temperatures above 300 K. Below this temperature, the con-
tinuum approximation inherent to the elastic string description
breaks down and the discreteness of the atomic structure
becomes apparent with strong deviations away from the
linear temperature dependence of the mean-square fluctuations
predicted by Eq. (42). Additionally, it is noted that even the
high-temperature linear region of Fig. 4(b) does not intersect
the origin when extrapolated to T = 0 K, indicating a inherent
discreteness at the atomic scale, where internal fluctuations
cannot be less than typical interatomic distances. The emer-
gence of atomic discreteness at the lower temperatures also
manifests itself in the nature of the diffusion. Figure 5(b) shows

that at 100 K, the path the loop takes is more discrete than say
at 400 K, which is more typical of the self-similar Brownian
motion that the Langevin technique can model.

B. Vacancy prismatic loops

The vacancy prismatic dislocation loop was prepared in
a way inverse to that of the interstitial case, where, rather
than adding a 〈111〉 platelet of 61 atoms, an entire plane of
atoms was added except within the radius of the required loop.
After relaxation this created the required “collapsed” vacancy
dislocation loop.21 The details of the simulation cell and the
raw data collection methods were otherwise identical to that of
the interstitial loop simulations. Visual inspection of the high-
energy atomic configurations revealed, at all temperatures,
a much more ill-defined dislocation loop resulting in the
interstitial loop postprocessing procedure of locating clusters
of individual 〈111〉 strings not being applicable. The more diffi-
cult nature of identifying the actual location and instantaneous
configuration of the vacancy prismatic loop is possibly due to
incomplete relaxation of the loop during its initial creation,
or more generally due to the molecular-dynamics observation
that the vacancy prismatic loop structure is in fact a metastable
structure, having a higher formation energy than a comparable
spherical void.21

It was found that a more reliable approach was to, instead,
identify small unit clusters of two to four atoms that existed
over a short temporal period as belonging to the cluster, and
using those to construct the instantaneous position of the
loop. Figure 6 displays the resulting diffusion coefficient and
mean-square fluctuations along the 〈111〉 Burgers vector of the
loop. The diffusion coefficient was found to be independent of
the choice of the unit-cluster size, whereas the mean-square
fluctuations were found to depend on it rather strongly. Despite
this, the mean-square fluctuations as a function of increasing
temperature show the same qualitative behavior for all choices
of unit-cluster size where there is a deviation away from
linearity at lower temperatures. At the lowest temperature,
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FIG. 6. (Color online) Molecular-dynamics data from a vacancy
prismatic loop where (a) is an Arrhenius plot of the measured
diffusion coefficients as a function of inverse temperature and (b) is
the mean-square fluctuations along the direction of the 〈111〉 Burgers
vector as a function of temperature, using three different unit-cluster
sizes (see text). In (a), the red line represents an Arrhenius fit and (b)
represents a linear fit to the high-temperature mean-square-fluctuation
data, adjusted such that it extrapolates to the origin. The red data
points represent the corresponding quantities derived directly from
the Langevin dynamics loop trajectories.

there exists a distinct change in behavior, corresponding
to a drop in internal fluctuations, which Fig. 7 reveals to
be due to a change in how the vacancy cluster moves. At
this lowest temperature, the cluster remains stationary with
intermediate jumps to neighboring positions, whereas at higher
temperatures, a more self-similar behavior (as in the case of
the interstitial clusters) is apparent. Visual inspection of the
vacancy cluster configuration at this low temperature showed
no deviation of the habit plane from a normal defined by its
Burgers vector. Indeed, even at higher temperatures, the habit

FIG. 7. (Color online) Trajectories of a vacancy prismatic disloca-
tion loop at 100 and 200 K obtained using molecular dynamics. At the
temperature of 100 K, there is a distinctly different behavior where the
vacancy stays stationary jumping intermittently to a nearby position,
whereas at a temperature of 200 K (and above) the trajectories are
less discrete and visually more self-similar.

plane of a vacancy dislocation loop is much more stable than
that of the interstitial case due to the absence of an alternative
favourable configuration of two adjacent vacancies—in the
interstitial case two crowdions tend to offset from one-another,
but this does not happen with vacancies.

Figure 6(a) shows that the temperature dependence of the
diffusion coefficient is somewhat more scattered than that of
the interstitial data [Fig. 4(a)]. This might, however, be due to
the more difficult nature of identifying its actual position and,
in the case of the 100-K data, insufficient statistics. Despite
the scattered nature of the data, an Arrhenius fit gave D0 =
118.69 × 10−10 m2 sec−1 and E = 0.0396 eV. Interestingly,
the diffusion coefficient of the vacancy prismatic loop is not
so different from its interstitial counterpart, demonstrating that
vacancy transport via such prismatic loops is comparable to
the interstitial mechanism, if they are able to be formed. Indeed
the Arrenhius energy barrier is comparable to that of the
interstitial prismatic loop, whereas the prefactor is three to four
times smaller. Recent in situ and ex situ TEM investigations
of loop formation in Fe and Fe-Cr alloys suggested that a
certain percentage of the observed loops were of the vacancy
type28 although the exact mechanism for the creation of these
metastable defects remains unclear. Fast one-dimensional
migration of vacancy clusters in fcc metals has also been
observed using similar in situ methods.30 The fact that vacancy
loops are generally only observed in experiments where the
dose rate is high enough to guarantee a large amount of
cascade overlap (in the case of heavy-ion irradiation) suggests
that they can only form when the local vacancy density is
sufficiently high, and even then the probability is still low,
with the formation of voids dominating.29

C. Simulation of elastic loop using Langevin dynamics

To make the developed Langevin formalism more easily
transferable to a typical molecular-dynamics code, Eq. (19) is
written in the more general form,

∂zn(t)

∂t
= − 1

kbT

D
�L

∂U

∂zn(t)
+

√
2
D

�L
ζn(t), (44)

where

U = U (z1(t),z2(t), . . . ,zN (t))

=
N∑

n=1

1

2

C
�L

[zn(t) − zn−1(t)]2. (45)

In the above, −∂U/∂zn(t) is the force on the nodal point n.
The results of Sec. II give

D
�L

= DN

L
= DCOPN (46)

and

C
�L

= CN

L
= kbT N

12〈|δz|2〉 , (47)

which fully defines the Langevin equations of motion to be
simulated from the microscopic parameters derived from finite
temperature molecular-dynamics simulations performed in the
previous section. We note that in the numerical integration of
Eq. (44), the chosen time step must be less than 100 fs such
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that the internal dynamics of the loop can be well described.
Despite this restriction in the fundamental time scale, due to
the several orders of magnitude savings in computational effort
(since all atoms of the system are not simulated), simulations
of such dislocation loops can be easily performed to the
millisecond to seconds time scale thus allowing for direct
comparison with experiment.

In performing the above described Langevin dynamics for
either the interstitial or vacancy prismatic dislocation loop
parameters, measurement of the loop’s diffusion constant
using the drift-correction method of the Appendix yielded
the diffusion coefficients and mean-square fluctuations that
were originally put into the model. For the following Langevin
simulations, the interstitial data were used. For each temper-
ature a simulation of duration 2 ns was performed using a
time step of 10 fs. Configuration data were collected every
100 fs, as in the case of the molecular-dynamics simulations.
The resulting mean-square fluctuations depended linearly on
temperature for all temperatures (100–800 K), falling on a line
that intercepted the T = 0 K origin having a gradient equal
to that put into the model [see Figs. 4(b) and 6(b)]. This was
performed for three discretizations of the loops using N = 10,
N = 20, and N = 40 nodal points. As expected, there is little
dependence on the choice of N . Figure 8(a) shows the random
walks undertaken by the three simulations at 400 K, along with
that resulting from the corresponding atomistic simulation.
Visually, the structures of all four are indistinguishable. For
the case of the Langevin data, the COP diffusion coefficient
is independent of the choice of N—indeed N = 1 (a point

FIG. 8. (Color online) (a) Trajectories of a Langevin dislocation
loop using a N = 10, 20, and 40 nodal representation for a given
diffusion constant and line tensions derived from molecular-dynamics
simulations at 400 K. Also shown is the actual molecular-dynamics
trajectory. (b) Sequential snapshots of the N = 10 Langevin loop.

object) would suffice to yield the correct diffusion properties.
Figure 8(b) displays a series of snapshots of the N = 10
dislocation loops, demonstrating the fluctuations occurring
during the simulation (six sequential configurations are shown
where the time step between each is 100 ps).

That the above Langevin simulations yielded diffusion
coefficients that were precisely those imputed (as a function
of temperature, these values are plotted in Figs. 4 and 6
as dotted red lines) demonstrates that the drift-corrected
method of measuring diffusion results in extremely well-
converged diffusion coefficients and that the more complex
temperature dependence seen in Figs. 4(a) and 6(a) for the
molecular-dynamics simulations (when compared to that of
literature15–17) is, in general, not a result of poor trajectory
statistics since the Langevin data were purposely chosen to
have a sampling equal to that of the molecular-dynamics data.
Possible origins of the scatter could be due to a feature of the
magnetic potential33 used in the simulations or an artifact of
extracting the center of position from the high-energy atoms
of the molecular-dynamics data.

Finally, it is worth noting that the stochastic differential
approach taken here to simulate the elastic string has the
great advantage that any temperature-dependent diffusion
coefficient model can be used in the Langevin simulations—
thus the non-Arrhenius behavior predicted by theory8,9,11 and
seen in simulation10,11,18 can be trivially incorporated into the
Langevin dynamics simulations.

IV. DISCUSSION

In Sec. II, the mean-square displacement of the COP of
the elastic loop, Eq. (39), was found to be independent of
the elastic stiffness parameter C, whereas the mean-square
fluctuation, Eq. (42), depended only on this parameter and
not on the diffusion parameter D. This result affords a
rather simple picture, which helps to interpret past molecular-
dynamics simulation work investigating the mobility of SIA
clusters, where it was found that the jump rate of SIA clusters
had a migration energy barrier that was comparable to an
individual SIA and varied only weakly with cluster size. Indeed
in the work of Osetsky et al.,15 SIA cluster movement was
described as being facilitated by jumps of individual SIAs.
This scenario is precisely the case for the discretized elastic
loop considered here, where nodal points (instead of explicit
SIAs) have an intrinsic diffusion coefficient (and therefore
an intrinsic jump rate) and whose collective diffusion leads
directly (and independently of their mutual interaction) to a
COP diffusion coefficient that may be identified with that of
the cluster’s diffusion coefficient. The role of the interaction
between such nodal points controls the strength of correlation
and therefore the nature of the collective diffusion, but not
the actual magnitude of the collective diffusion coefficient,
whether it is delocalized (resulting from no interaction) or
localized (resulting from interactions) into an object that can
be identified as the cluster.

From Eq. (39), DCOP is given by D/L ∼ D/
√

A, where A

is the area of the SIA cluster. Since A is proportional to the
number of SIAs within the cluster, N0, a natural explanation
is given for the observed N−α

0 (α ∼ 0.5–0.6) dependence of
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the prefactor of the jump rate. That the perimeter SIAs are
the only active SIAs of the cluster is an essential assumption
of the developed model, an assumption that has a strong
theoretical grounding in the work of Dudarev24 where it
was found that platelet SIAs away from the perimeter region
become increasingly delocalized to the point that, for large
platelet sizes, the instantaneous position of such SIAs becomes
ill-defined, effectively decoupling their corresponding degrees
of freedom from that of the diffusion dynamics, and relegating
them to a strain field that is carried with the SIA cluster.

By performing finite temperature molecular-dynamics
simulations, the empirical parameters D and C could be
determined for both an interstitial and vacancy prismatic loop
in bcc Fe. From Figs. 4(a) and 6(a) the values for D at 300 K
are ≈L80 × 10−10 m2 sec−1 for the interstitial loop and
≈L18 × 10−10 m2 sec−1 for the vacancy loop, where in both
cases the perimeter is L = 57 Å. By inspecting the high-
temperature gradients of the mean-square internal fluctuations
the line tension per unit length for both loops [Figs. 4(b) and
6(b)], C was determined to be ≈L6.0 × 10−4 eV Å−2 for the
interstitial loop and ≈L6.8 × 10−4 eV Å−2 for the vacancy
loop. The uncertainty in both D and C is expected to be
higher for the case of the vacancy loop due to the difficulty
of analyzing its instantaneous position and configuration. With
these parameters determined it now becomes possible to model
interstitial and vacancy prismatic loops of any size (perimeter)
in bcc Fe using the Langevin approach developed in Secs. II
and IV, at experimental and human time scales.

The applicable regimes of the developed model are now
discussed. There exists a lower loop size in which an elastic
continuum description of a prismatic loop is expected to fail.
In this regime, 〈111〉 crowdions away from the perimeter
are not sufficiently delocalized and therefore retain much of
the quasiparticle identity of a single 〈111〉 crowdion. Such
a criterion might actually lead to quite small loops still
being described via elasticity theory. Indeed when using the
multistring Frenkel-Kontorova model for an edge dislocation
via a crowdion representation, the effective spatial extent of
each crowdion was found to increase rapidly as a function
of distance away from the core of the dislocation structure.24

Moreover, in a comparison between atomistic simulation re-
sults and continuum elasticity theory, Puigvi et al.25 conclude
that clusters in bcc metals with diameters above 2 nm can
be described reasonably well as dislocation loops in the
elastic continuum approach. The applicability of a continuum
elasticity approach is expected to be a minimal requirement of
line-tension models such as that developed here.

There also exists an upper loop length scale in which the
present elastic string approach is expected to fail. In general,
line-tension models have as their central approximation that
the local configuration of the dislocation depends on the
local properties. Dislocations are, however, topological defects
and, as a result, carry a long-range interaction—in principle
every point on a dislocation will be influenced by every other
point on the same dislocation and those of other dislocations.
The underlying approximation of the line-tension picture of
the elastic string is that the in-plane kink density (local
curvature) is sufficiently high such that the short-range (local)
aspect of the kink-kink interaction dominates. With larger
loops, the in-plane kink number per unit length decreases

and this assumption is expected to break down. Ohsawa
and Kuramoto38 have calculated the change in energy of a
unit fluctuation (defined as a out-of-plane double kink along
the loop, with the kink-kink distance being maximal) of a
circular loop using a full dislocation-dynamics description for
perimeters up to 230b, and found only a small contribution due
to the so-called long-range self-interaction, which increases
with loop size. Thus in terms of fluctuations of the loop away
from the 0-K perfect circle, the elastic string approximation is
expected to be valid. This, however, was done for the highly
symmetric circular loop case (as is the case for the present
work), and it is expected that such long-range interactions will
have an increasing effect in low-symmetry loop configurations,
particularly when there exists a population of loops. This is a
relevant point, since recent in situ work by Arakawa et al.40

has detailed the direct observation of loop coalescence between
loops of differing Burgers vector orientation, where the larger
loop completely absorbs the smaller loop, therefore changing
both its size and shape. It presently remains unclear whether
such a complex dislocation geometry and reaction sequence
could be described by an extension of the simple line-tension
model developed here, or instead by the more contemporary
segment-tracking dislocation dynamics simulation method
within the framework of the Langevin approach—an avenue
of methodology that has already been explored in the study of
edge dislocation mobility41 and dislocation patterning.42,43

In summary, a stochastic differential equation describing
a continuum elastic string model has been developed and
investigated with the view of developing a simplified descrip-
tion of the collective and internal dynamics of prismatic self-
interstitial and vacancy loops. By exploiting the time-average
properties of the stochasticity, relationships between the
microscopic parameters of the theory, the friction coefficient,
and elastic stiffness per unit length, are given in terms of
observables that can be directly obtained from atomistic sim-
ulations of prismatic loops. Large scale molecular-dynamics
simulations of interstitial and vacancy prismatic loops in bcc Fe
have therefore been used to obtain these microscopic empirical
parameters resulting in quantitatively analogous Langevin
simulations of both the collective and internal dynamics of
a prismatic loop at time scales well beyond that achievable
with the molecular-dynamics method.
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APPENDIX: CORRECTED DERIVATION OF
DRIFT-CORRECTION METHOD FOR THE

MEASUREMENT OF DIFFUSION COEFFICIENTS

To obtain a diffusion coefficient an ensemble of trajectories
is needed from which the mean-squared displacement after a
time t0 is calculated, 〈z2(t0)〉, directly giving D via the Einstein
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relation D = 〈z2(t0)〉/2t0. This relation becomes exact in the
limit of large t0 since only then is the mean displacement
zero. Trajectories obtained from simulation are, however, of
finite temporal length. Moreover, a single trajectory is often
split into many separate shorter trajectories from which an
average of the mean-square displacement is taken under the
assumption of statistically independent subtrajectories.44 Such
short (finite) time trajectories do not have a mean displacement
of zero, causing additional statistical fluctuations that make it
difficult to obtain a reliable value for the diffusion constant.
In the work of Refs. 11 and 34 this fact was noticed and
corrected for by subtracting off the actual displacement of each
subtrajectory before taking the ensemble average, resulting in
a better estimate of the corresponding diffusion coefficient.

The more reliable diffusion coefficient was obtained via

Dmeasured = 1

2t0

〈 (
z(t0) − 2

t0

∫ t0

0
dτz(τ )

)2 〉
, (A1)

where the second term within the square is the so-called drift
correction. Expanding the square within the average gives

Dmeasured = 1

2t0

(
〈z2(t0)〉 − 4

t0

∫ t0

0
dτ 〈z(t0)z(τ )〉

+ 4

t2
0

∫ t0

0
dτ

∫ t0

0
dτ ′〈z(τ )z(τ ′)〉

)
, (A2)

resulting in the diffusion coefficient being a function of the
mean-square displacement and also the position-position cor-
relation function—when finite time trajectories are employed.
For sufficiently large t0 it was assumed in Refs. 11 and 34 that
these correlation functions would vanish and the drift corrected
Dmeasured would be formally identical to the actual diffusion
coefficient. However, the present simulations (both molecular
dynamics and Langevin dynamics) have shown that this is not
the case. Indeed, when applying the drift correction method,
diffusion coefficients were obtained that were a factor of 3
larger than that obtained when using a non-drift-correction
method.

This result can be understood by explicitly calculating the
above correlation functions within the framework of a one-

dimensional Langevin equation. The overdamped Langevin
equation in one dimension can be written as

dz

dt
=

√
2kBT

γ
ζ (t), (A3)

where D = kBT/γ and

〈ζ (t)ζ (t ′)〉 = δ(t − t ′). (A4)

Equation (A3) has the solution

z(t) =
√

2kBT

γ

∫ t

0
dτζ (τ ) (A5)

giving the position-position correlation function as

〈z(t)z(t ′)〉 = 2kBT

γ

∫ t

0
dτ

∫ t ′

0
dτ ′〈ζ (τ )ζ (τ ′)〉 (A6)

= 2kBT

γ

∫ t

0
dτ

∫ t ′

0
dτ ′δ(τ − τ ′). (A7)

By using the fact that if t > t ′, the integral∫ t ′

0
dτ ′δ(τ − τ ′) (A8)

equals zero if τ > t ′ and unity if τ < t ′, and always unity if
t < t ′, the position-position correlation function can be shown
to reduce to

〈z(t)z(t ′)〉 = 2kBT

γ
min{t,t ′}. (A9)

Thus the position-position correlation function does not
vanish in the |t − t ′| → ∞ limit. This was confirmed via sim-
ulation. Figure 9 displays the correlation function, 〈z(t0)z(τ )〉,
derived from atomistic and Langevin simulations of a inter-
stitial cluster at 400 K, and it is seen that for large t and t ′ it
grows linearly. After some integration and algebra, Eq. (A9)
results in the measured diffusion constant [Eq. (A2)] equaling

Dmeasured = kBT

γ
− 2kBT

γ
+ 4kBT

3γ
= 1

3

kBT

γ
= D

3
,

(A10)

FIG. 9. (Color online) The measured correlation function 〈z(t)z(t ′)〉 obtained via (a) molecular and (b) Langevin dynamics.
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which explains the origin of the discrepancy in the obtained dif-
fusion coefficient. Thus although the drift-correction method
achieves more reliable values of the diffusion constant, the

physical diffusion coefficient is one-third of the obtained value
and therefore the correcting factor of 3 needs to be introduced
in the drift-correcting equations given in Refs. 11 and 34.
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H. Van Swygenhoven, D. Terentyev, J. Wallenius, D. Weygand, and
F. Willaime, J. Nucl. Mater. 386–388, 1 (2009).

2C. Domain and C. S. Becquart, Phys. Rev. B 65, 024103 (2001).
3C. C. Fu, F. Willaime, and P. Ordejón, Phys. Rev. Lett. 92, 175503
(2004).

4C. C. Fu, J. Dalla Torre, F. Willaime, J. L. Bocquet, and A. Barbu,
Nat. Mater. 4, 68 (2005).

5D. Nguyen-Manh, A. P. Horsfield, and S. L. Dudarev, Phys. Rev. B
73, 020101 (2006).

6B. D. Wirth, G. R. Odette, D. Maroudas, and G. E. Lucas, J. Nucl.
Mater. 276, 33 (2000).

7Y. N. Osetsky, D. J. Bacon, A. Serra, B. N. Singh, and S. I. Golubov,
J. Nucl. Mater. 276, 65 (2000).

8S. L. Dudarev, J. Nucl. Mater. 307–311, 881 (2002).
9S. L. Dudarev, Phys. Rev. B 65, 224105 (2002).

10L. A. Zepeda-Ruiz, J. Rottler, S. Han, G. J. Ackland, R. Car, and
D. J. Srolovitz, Phys. Rev. B 70, 060102(R) (2004).

11P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B
76, 054107 (2007).

12R. A. Johnson, Phys. Rev. 134, A1329 (1964).
13B. D. Wirth, G. R. Odette, D. Maroudas, and G. E. Lucas, J. Nucl.

Mater. 244, 185 (1997).
14S. Chiesa, P. M. Derlet, S. L. Dudarev, and H. Van Swygenhoven,

J. Phys.: Condens. Matter 23, 206001 (2011).
15Y. N. Osetsky, D. J. Bacon, A. Serra, B. N. Singh, and S. I. Golubov,

Philos. Mag. 83, 61 (2003).
16D. A. Terentyev, L. Malerba, and M. Hou, Phys. Rev. B 75, 104108

(2007).
17N. Anento, A. Serra, and Y. N. Osetsky, Modell. Simul. Mater. Sci.

Eng. 18, 025008 (2010).
18L. A. Zepeda-Ruiz, J. Rottler, B. D. Wirth, R. Car, and D. J.

Srolovitz, Acta Mater. 53, 1985 (2005).
19F. Willaime, C. C. Fu, M. C. Marinca, and J. Dalla Torre, Nucl.

Instrum. Methods Phys. Res. B 228, 92 (2005).
20P. M. Derlet and S. L. Dudarev, Prog. Mater. Sci. 52, 299

(2007).
21M. R. Gilbert, S. L. Dudarev, P. M. Derlet, and D. G. Pettifor,

J. Phys.: Condens. Matter 20, 345214 (2008).

22S. L. Dudarev, R. Bullough, and P. M. Derlet, Phys. Rev. Lett. 100,
135503 (2008).

23The jump frequency is in general a more easily determined quantity
than the diffusion coefficient since it requires only the sampling
of the time between migration events of the diffusing defect. An
Arrhenius behavior of this quantity does not at all imply a similar
behavior for the diffusion coefficient and it should be noted that in
the case of fast interstitial migration where the obtained migration
barriers are comparable to the thermal energy scale, the assumption
of a “rare event” phenomenon (central to the thermal activation
hypothesis underlying the Arrhenius form) is not satisfied.

24S. L. Dudarev, Philos. Mag. 83, 3577 (2003).
25M. A. Puigvi, Y. N. Osetsky, and A. Serra, Philos. Mag. 83, 857

(2003).
26K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and

H. Mori, Science 318, 956 (2007).
27M. L. Jenkins, Z. Yao, M. Hernandez-Mayoral, and M. A. Kirk,

J. Nucl. Mater. 389, 197 (2009).
28Z. Yao, M. Hernandez-Mayoral, M. L. Jenkins, and M. A. Kirk,

Philos. Mag. 88, 2851 (2008).
29M. Hernandez-Mayoral, Z. Yao, M. L. Jenkins, and M. A. Kirk,

Philos. Mag. 88, 2881 (2008).
30Y. Matsukawa and S. J. Zinkle, Science 318, 959 (2007).
31M. J. Caturla, N. Soneda, E. Alonso, B. D. Wirth, T. D. de la Rubia,

and J. M. Perlado, J. Nucl. Mater. 276, 13 (2000).
32S. L. Dudarev, M. R. Gilbert, K. Arakawa, H. Mori, Z. Yao, M. L.

Jenkins, and P. M. Derlet, Phys. Rev. B 81, 224107 (2010).
33S. L. Dudarev and P. M. Derlet, J. Phys.: Condens. Matter 17, 7097

(2005).
34S. L. Dudarev, C. R. Phys. 9, 409 (2009).
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