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First-principles study of the biomineral hydroxyapatite
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The biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone.
Hydroxyapatite crystallizes in the hexagonal and monoclinic phases, the main difference between them being the
orientation of the hydroxyl groups. Using density functional theory, we study the energetics of the hexagonal and
monoclinic phases, along with the several hypothetical crystal structures of hydroxyapatite. The monoclinic phase
has the lowest energy, with the hexagonal phase being only 22 meV/cell higher in energy. We identify a structural
transition path from the hexagonal to monoclinic phase, with the activation energy of 0.66 eV per hexagonal
cell. At room temperature, the transition occurs on a millisecond time scale. The electronic structures of the
monoclinic and hexagonal phases are compared. For the hexagonal phase, we calculate the phonon frequencies
at the �-point and elastic constants. Both are in good agreement with available experimental results.
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I. INTRODUCTION

A carbonated form of hydroxyapatite [Ca10(PO4)6(OH)2] is
one of the most abundant materials in mammal bone.1 It crys-
tallizes within the free space between tropocollagen protein
chains (Fig. 1) and strengthens the bone tissue. The mineral
content of a typical human bone increases with age and reaches
a maximum value in males and females at different ages.2

From this peak value, the mineral content starts to decrease,
leading to diseases such as (e.g., osteomalacia, softening of
the bone caused by the loss of bone mineral). Some of the
emergent applications of hydroxyapatite (HA) are, therefore,
bone repair and replacement and production of synthetic bone
material.3 Although, by itself, HA is too brittle to be used
as bone replacement directly, a variety of coating techniques
have been developed in recent years to combine the strength of
metals (such as titanium) with the natural bioactivity of HA.4

The key property besides bio-activity is therefore HA adhesion
to metals. Adhesion is governed by chemical bonding; thus,
the problem is that of the electronic properties of the interface.
Therefore, a thorough understanding of the electronic and
mechanical properties of HA and its surface and interfaces
to other substrates are of scientific interest.

A significant amount of experimental work on HA has been
done, and for an excellent review of this work, in particular
in the medical implant field, we refer the interested reader to
Ref. 4. Some of the first experimental reports of HA date back
to 1936.5 In his work on dental enamel, Schmidt demonstrated
that the crystallographic c-axes of the HA platelets within the
collagen framework are well aligned with the collagen fibrils
(Fig. 1). The hexagonal crystal structure of HA with P63/m
symmetry (#176 in the International X-Ray Tables, Fig. 2) and
the atomic positions were determined in 1958 by Posner et al.6

using X-ray diffraction In 1964, Kay and coworkers7 refined
the positions of the OH molecules using neutron diffraction.
Studies of the alignment of tropocollagen chains in mammal
bone and alignment and growth of HA crystals were done
by Weiner and coworkers.8 In the 1970s,9 Carlisle showed
that doping (in that study with Si) can play an important role
in supporting bone growth. A monoclinic variant of HA was
suggested in 1967 by Young.10 He inferred that a HA crystal
sufficiently free of impurities and vacancies could crystallize

in the monoclinic phase analogous to the known monoclinic
chlorapatite. Before this work, it was believed that HA only
appeared in a hexagonal structure. Recently, the monoclinic
variant of hydroxyapatite attracted significant interest (e.g.,
Refs. 11 and 12).

From the theoretical point of view, the HA crystal presents
an interesting challenge because of its complexity and impor-
tance in biological and biophysical systems. Only with the
recent increase in computational power has a theoretical study
on HA become feasible, and of late, along with other calcium
apatites, HA has been subject to a number of first-principles
calculations. De Leeuw,13 using density functional theory
(DFT), analyzed the HA crystal structure and, specifically, the
position and orientation of hydroxyl molecules. She suggests
that the experimentally found OH disorder in the crystal
is due to locally ordered domains with differently oriented
OH molecules. In the simplest case, this is achieved in a
monoclinic cell. Later, using DFT, Calderin et al.14 have
analyzed the crystal structure and electronic density of states of
stoichiometric and OH-deficient HA, as well a variety of other
calcium apatites. They found that monoclinic and hexagonal
HA are very close in energy, indicating no particular preference
for crystallization in a specific structure. They also found that
apatites permit exchange of OH molecules with other anions.
The electronic structure has been confirmed by Rulis and
coworkers15 using the orthogonalized linear combination of
atomic orbitals method. More recently, studies have focused
on altering the electronic and chemical properties of HA with
doping. For example, Chappell and Bristowe16 have studied
the influence of substituting phosphorus with silicon on the
HA crystal and electronic structure. Silicon incorporation is
found to be energetically most favorable in combination with
removing one of the two negatively charged OH pairs in the
primitive cell to maintain the overall charge neutrality (the
ionic charge of SiO4 is −4 compared with −3 of a PO4

unit). Other recent theoretical studies of doping include the
substitution of OH by fluorine17 (making the crystal a mixture
of HA and flourapatite [FA]), introduction of carbonate ion
(CO2−

3 ) to study the physiologically found carbonated form of
HA,17 and calcium substitution by titanium18 and strontium19

to induce structural modifications. Using a classical shell
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FIG. 1. (Color online) Schematic of the HA crystallization during
bone formation. Experiments suggest that the c-axes of both the
tropocollagen and HA platelets are aligned (Ref. 8). The formation of
bone tissue happens in several steps. After the tropocollagen helices
are aligned, constituents of the HA crystal accumulate in the spaces
between the tropocollagen and crystallize in the (001) orientation.
The final HA mineral within the spaces consists of many separate
HA platelets.

model, Calderin et al.20 investigated the lattice dynamics,
calculated thermal factors, and simulated the infrared spectra
of HA. They find good agreement with experimental results
for the low-frequency and high-frequency vibrational modes
at the �-point, whereas in the intermediate frequency range,
the reported agreement is poor. More recently, classical
and quantum mechanical molecular dynamics simulations
have been used to study preferred surface orientations and
terminations of HA17,21,22 and to study water and amino acid
adsorption on the HA surface.17,21,23–25

Despite recent progress, many questions remain. Little is
known, for example, about transformation mechanisms be-
tween the hexagonal and monoclinic phases. The mechanical
properties of HA remain virtually unstudied. HA is still a chal-
lenging subject for first-principles calculations due to a large
number of atoms in the unit cells and a variation in the nature
of interatomic bonding. In this paper, using density functional
theory, we investigate both hexagonal and monoclinic forms of
HA. We identify the monoclinic phase as the ground state and
analyze possible pathways for the phase transition between
the hexagonal and monoclinic phases. We carefully compare
the electronic structure of both phases. For the hexagonal
phase, we calculate the phonon frequencies at the �-point and
elastic constants. Both are in good agreement with available
experiment.

II. COMPUTATIONAL DETAILS

All calculations are done using density functional theory as
implemented in VASP code.26–30 We use the Perdew-Wang31

(PW91) exchange correlation functional and projected
augmented wave (PAW) pseudopotentials.32 The valence con-
figurations are 1s1 for hydrogen, 3s23p3 for phosphorus, 4s2 for
calcium, and 2s22p4 for oxygen. We use 700 eV as the kinetic
energy cutoff for bulk calculations. When calculating the
phonon frequencies, we increase the energy cutoff to 950 eV
to obtain highly accurate forces. In all calculations—except
the elastic constant calculations—we allow for full relaxation
of the cell, including changing the volume and adjusting
the atomic positions and cell shape. When calculating the
elastic constants, we only allow for the relaxation of ionic
positions within the strained cells. Symmetry operations
are switched off during relaxation. We use a 6 × 6 × 8
Monkhorst–Pack33 k-point mesh for the Brillouin Zone (BZ)
integration of hexagonal cells that ensures the convergence
to 1.8 meV/cell. For the monoclinic primitive cells, we use 6
× 4 × 6 Monkhorst–Pack k-point meshes. All structures are
relaxed until the largest force on atoms in the cell is smaller
than 20 meV/Å. When calculating the vibrational modes, we
relax the atomic positions until the largest force is smaller
than 0.2 meV/Å.

FIG. 2. (Color online) HA primitive cells as described in Refs. 6 and 7. The cell dimensions are a = b = 9.432 Å, c = 6.881 Å. The main
difference between the two structures is the location of the oxygen atoms from the OH pairs as indicated in the figure. Following our notation
(see text), we call the shown orientation of the OH pairs the (↓↓) orientation.
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III. RESULTS

A. Ground state crystal structure

To identify the theoretical ground state of HA, we start
from the experimental structure reported by Posner et al.6 and
Kay and Young7 (as shown in Fig. 2). They report a hexagonal
primitive cell of P63/m symmetry (#176 in the International
X-Ray Tables, Fig. 2) that contains 10 Ca atoms, six phosphate
(PO4) groups, and two hydroxyl (OH) molecules. In Fig. 3, we
present a top view of the crystal. For pictorial purposes we shift
the original primitive cell boundaries along the a and b axes
in such a way that the OH column is now in the center of the
cell. There are two types of Ca atoms in the cell. Ca atoms of
one type are arranged in a hexagon around the OH molecules
(Fig. 3). The darker and lighter colors distinguish two atomic
planes. The darker balls are located at z = 0.25c, and the
lighter ones are at z = 0.75c. The remaining four Ca atoms are
arranged in two columns at the corners of the cell in Fig 3. In the
upper left column, the two CaI atoms are located at z = 0.999c

and z = 0.501c. In the lower right column, the two remaining
CaI atoms are located at z = 0.499c and z = 0.001c. Similar
to first type of Ca, six phosphorus atoms of PO4 molecules
are arranged in two triangles around the OH channel: three
are at z = 0.25c and three are at z = 0.75c. Again, the
darker and lighter color in Fig. 3 distinguishes between the
two planes. Although most of the atomic coordinates reported
in Refs. 6 and 7 are almost exactly the same, the two structures
differ in the position of the OH molecules. In Ref. 6, the
exact positions of hydrogen atoms could not be determined,
and the oxygen atoms are said to be located within the
symmetry-related planes at 0.25c and 0.75c. The later work7

specifies the positions of hydrogen atoms and suggests that
the oxygen of OH is shifted by ∼0.3 Å along the c-axis with
respect to the previously reported positions, as indicated in
Fig. 2. The OH groups bring a structural ambiguity: two OH
molecules do not have an energetic preference as to whether to
point the hydrogen atom “upward” or “downward” along the

FIG. 3. (Color online) Top view of the hexagonal primitive cell.
In the figure, we shifted the original primitive cell in the x and y

directions so that the OH column is in the center of the depicted cell.
The darker colored CaII atoms and PO4 molecules are centered at z =
0.25c, and the lighter ones are centered at z = 0.75c. The OH column
is surrounded by six CaII atoms and six PO4 molecules. The CaI atoms
are now in the corners of the cell. Below both of the two visible CaI

atoms is a second CaI atom at the distance 0.5c. Here, the lighter CaI

atom is close to the top face, and the darker CaI atom is at ∼0.5c.

c-axis. This is accounted for by introducing 0.5 occupancies
in both possible arrangements. To simplify our discussion, we
introduce a notation wherein arrows (↑) and (↓) correspond to
the z-coordinate of the hydroxyl group—oxygen being smaller
and larger than the z-coordinate of hydrogen, respectively.
The pair of hydroxyl groups per primitive cell is denoted
by a pair of arrows. In the hexagonal primitive cell, four
different orientations, (↑↑), (↑↓), (↓↑), and (↓↓), are possible,
with (↑↑) and (↓↓) cells, and (↑↓) and (↓↑) cells being
equivalent.

To identify the ground state, we calculate the energy of
both the (↓↓) and (↓↑) configurations. For later use, we also
consider cells in which the hydroxyl molecules are slightly
tilted away from the c-axis, keeping the oxygen atoms on
the c-axis and OH bond length fixed. These are indicated by
(↘↙) if tilted from a (↓↓) configuration and by (↘↖) if
tilted from a (↓↑) configuration. Additionally, we consider
monoclinic cells created by doubling the hexagonal unit cell
in the b direction. Here, each of the two contributing hexagonal
cells is described by one pair of arrows for the OH orientation;
for example, (↓↓)(↓↓) or (↓↓)(↑↑) in the simplest cases.
The (↓↓)(↓↓) configuration resembles a monoclinic cell,
which is reducible to a single hexagonal cell with a (↓↓)
configuration. On the other hand, the (↓↓)(↑↑) configuration
resembles a monoclinic cell that cannot be reduced further
because of the alternating OH orientation in subsequent OH
columns.

The binding energies of all models are compared in Fig. 4.
The top line in the graph indicates on which reference
the unrelaxed cell is based, and arrows indicate the OH
configuration before relaxation. The results per hexagonal cell
are plotted in ascending energy order. The mixed configuration
(↓↓)(↑↑) monoclinic structure suggested by Elliott,34 yields
the lowest energy (structure 1) and is used as the reference
energy. The lattice constants are a = 9.53 Å, b = 2a, and c =
6.91 Å. We find the second lowest energy for the hexagonal
cell (structure 2) with the lattice constants a = b = 9.53 Å
and c = 6.91 Å. The relaxed bond lengths of the hydroxyl and
phosphate groups and bonding angles P-O-P of the phosphates
in structure 2 are listed in Table I. We find excellent agreement
with experimental results.6,7 During the relaxation of structures

FIG. 4. (Color online) The calculated structures are listed in
ascending order according to the binding energy per single cell, and
the minimum energy is shifted to zero. We find the lowest binding
energy for the monoclinic (↓↓)(↑↑) configuration followed by the
hexagonal (↓↓) structure. The energy difference between these two
is ∼22 meV/cell. The binding energies of structures 2–4 are identical.
Structures with flipped OH pairs within the same column generally
yield higher binding energy.
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TABLE I. Comparison of fully relaxed theoretical bond lengths
and bond angles in HA with experimental values.

Theory Exp. (Ref. 7)

P-OI 1.56 Å 1.54 Å
P-OII 1.57 Å 1.55 Å
P-OIII 1.55 Å 1.53 Å
O-H 0.977 Å 0.957 Å
OI-P-OII 111.1◦ 111.0◦

OI-P-OIII 111.6◦ 111.5◦

OII-P-OIII 107.5◦ 107.5◦

3 and 4, we find that the OH pairs realign with the c-axis,
ending up in structure 2. In structure 6, hydrogen atoms stay
at the tilted positions during relaxation, yielding a binding
energy that is ∼269 meV/cell higher than the hexagonal
ground state structure 2. The (↓↑) type configurations in which
OH pairs flip within the same c-column are ∼0.4 eV higher in
energy (per hexagonal cell) than the ground state, making them
unlikely.

The energy difference between the monoclinic (structure
1) and hexagonal (structure 2) cells is only ∼22 meV per
hexagonal cell, suggesting that at room temperature HA can
crystallize in a mixed phase with randomly distributed (↓↓)
and (↑↑) domains. In the rest of the paper, we will focus on
these two structures.

B. Activation energy for the hexagonal to monoclinic transition

The monoclinic phase of HA was first described by Elliott
et al.,34 who, following the work by Young,10 prepared a
sample consisting of ∼30% monoclinic HA and 70% hexag-
onal phases. They concluded that HA grown in a sufficiently
clean experimental environment and having few impurities or
vacancies can assume monoclinic symmetry under ambient
conditions. Later, Hitmi et al.35 found that, while at ambient
conditions, both the hexagonal and monoclinic phases can
occur. When heated above 470 K, HA always assumes the
hexagonal structure, and the transformation is reversible. The
overall structural similarity of the monoclinic and hexagonal
phases and closeness of the calculated binding energy raise a
question of the activation barrier and transition mechanism. To
investigate theoretically possible pathways of the transition,
we use transition state theory and, more specifically, the
nudged elastic band method (NEBM)36 as implemented in
the VASP code.

We start by calculating the energy barrier between two
equivalent hexagonal structures, (↓↓) and (↑↑), using hexag-
onal structure 2 described in section A. We assume that
changing the OH configuration from (↓↓) to (↓↑) is unlikely
because we have found the latter to be 0.4 eV higher in
energy than the former. The transformation involves not
only the hydrogen displacement but also that of oxygen
(Fig. 5), because the equilibrium positions of oxygen are
shifted from the mirror planes at 1/4c and 3/4c, containing
Ca triangles. One possible pathway for the transition is to
move the hydrogen atoms of the OH molecules along the
z-axis. This requires breaking the OH bonds and rebonding
hydrogen with the oxygen atom of the adjacent OH molecule

FIG. 5. (Color online) (a) OH positions with respect to the
surrounding CaII-triangles in the (↓↓) and (↑↑) configurations.
(b) The figures show two paths of the hydrogen atoms from
one equilibrium position to another symmetry-related equilibrium
position, thus flipping from (↓↓) to (↑↑).

(Fig. 5). Simultaneously, the oxygen atoms of OH are moved
in the opposite direction to their new equilibrium positions.
Another possible mechanism is rotating each hydrogen atom
around its bonding oxygen while translating the oxygen to its
new equilibrium position. The rotation and translation of the
hydrogen atom Hi from configuration (↓) to (↑) is described
using spherical coordinates as:

⇀
r Hi

= ⇀
r O(Hi ) + rO−H

⎛
⎜⎝

sin(ϑ) cos (ϕi)

sin(ϑ) sin (ϕi)

cos(ϑ)

⎞
⎟⎠ ϑ = π,... ,0. (1)

Note that
⇀
r O(Hi ) is not constant throughout the transition

because the original oxygen atom has to move along the c-axis

to its new equilibrium position. The
⇀
r O(Hi ) and the angle ϑ

are used to create the images for the NEBM to describe the
transition pathway. The angle ϕi is given with respect to the

⇀

a

lattice vector and is chosen to move the H atoms between two
Ca atoms (Fig. 6). This yields two choices:

(i) Rotate hydrogen atom with angles ϕ1 = π/3, ϕ2 =
4π/3, and move the oxygen atom.

(ii) Rotate hydrogen atom with angles ϕ1 = π/3, ϕ2 =
2π/3, and move the oxygen atom.

Figure 5 illustrates the linear and rotational transformations,
and Fig. 7 shows the calculated energy along these transition
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FIG. 6. (Color online) Top view along the OH column surrounded
by CaII and PO4. The dark Ca atoms are at z = 1/4c and the light
ones at z = 3/4c. The OH pairs are in the center. There are three
equivalent trajectories to flip the top OH pair rotationally. One of
them is indicated by projection 1. Once path 1 is selected, there are
two inequivalent ways to flip the bottom OH pair, as indicated by the
dashed lines.

paths. The energy barriers are 3.5 eV for the linear transition,
and 1.3 eV and 1.4 eV in the rotational transitions (i) and
(ii), respectively. These result in the activation energy per OH
of 1.75 eV, 0.65 eV, and 0.7 eV for the linear and spherical
transitions, respectively. The large difference in energy is not
surprising because the first mechanism requires breaking the
OH bonds. On the other hand, in the rotational flip, no bonds
are broken. The barriers for two rotational transitions are very
similar and close in energy. In what follows, we only consider
the rotational transformation of type (i).

Expanding the potential energy of the rotational transfor-
mation to second order around the minimum, we calculate the
oscillation frequency of approximately 250 cm−1 correspond-
ing to the period of τ ≈ 134f s. The average time after which
a spontaneous flip from (↓↓) to (↑↑) occurs is therefore

t(↓↓)→(↑↑) = τ × N = τ × exp(EB,0/kBT ) ≈ 162a (2)

FIG. 7. (Color online) The energy barriers corresponding to the
translational (1) and rotational (2 and 3) hydrogen trajectories. The
energy barrier for a translational displacement of the hydrogen atoms
along the z-axis is approximately three times higher than that of the
rotational transition.

at room temperature. In Eq. (2), N is the number of attempts
needed to simultaneously flip both OH molecules per unit
cell if each attempt has the probability of success of p =
exp

(−EB,0/kBT
)
. We use EB,0 = 1.3 eV for the activation

energy. The average transition time between the two equivalent
hexagonal structures (↓↓) and (↑↑) is 162 years at room
temperature.

Now consider the monoclinic cell. Assuming the OH
molecules located along the neighboring columns do not
interact, the energy barrier for rotational transitions in the
monoclinic cell can be written as:
(↓↓)(↓↓) → (↑↑)(↑↑) :EB = 2EB,0/4 = EB,0/2 = 0.65 eV

(↓↓)(↓↓) → (↓↓)(↑↑) : EB = EB,0/4 = 0.33 eV. (3)

In Eq. (3), EB,0 is the previously calculated energy barrier
of 1.3 eV in the hexagonal cell, and EB is the activation
energy per OH pair in the monoclinic cell. Transforming
(↓↓)(↓↓) to (↑↑)(↑↑) requires the same energy per OH as
flipping (↓↓) to (↑↑). However, the activation energy per
OH to transform from (↓↓)(↓↓) to (↓↓)(↑↑) is reduced by
a factor of two. The experimentally obtained range for the
activation energy to change from hexagonal to monoclinic is
0.016–0.630 eV per OH and 0.84–0.89 eV per OH, reported
by Hitmi and Nakamura35,37 are in qualitative agreement with
our results. Hitmi suspected a rotational, whereas Nakamura
suspected a linear, transition, explaining why the two ranges
are so different. Using classical molecular dynamics, Hochrein
et al.38 find 0.52 eV per OH flip in good agreement with our
results. Using our calculated activation energy, we write the
probability of transformation from (↓↓)(↓↓) to (↓↓)(↑↑) as

p = exp(−EB,0/2kBT ). (4)

Using the same oscillation period as for the hexagonal cell,
the average time for the spontaneous hexagonal-monoclinic
transition is estimated as

t(↓↓)(↓↓)→(↓↓)(↑↑) = τ × N = τ × exp(EB,0/2kBT ) ≈ 26 ms

(5)

at room temperature. The short transition time suggests that
the hexagonal phase would always flip to the monoclinic phase
under ambient conditions. Further investigation is needed to
explain why the transition from the monoclinic to hexagonal
phase occurs at 470 K.

C. Electronic structure

The total electronic density of states (DOS) for both the
hexagonal and monoclinic structures is shown in Fig. 8(a).
For comparison, we normalize the DOS to the hexagonal
cell. The DOS of both structures are very similar, and the
following description applies to both phases. Note that we
distinguish between the oxygen atoms from the phosphate
molecules (O(P)) and oxygen atoms from the OH molecules
(O(H)). The states between −20 eV and −17 eV mainly consist
of O(P), O(H), and phosphorous 2s and 3s states, respectively.
At −17 eV, the hydrogen 1s states are mixed in. In an ideal PO4

tetrahedron, the phosphorus sp3 hybridized orbitals form σ and
π bonds with the surrounding oxygen. The σ -type electronic
states appear in two peaks within the energy window −8 to
−4 eV. In an ideal PO4 tetrahedron, these σ -states would be
closer to each other in energy. However, in the HA crystal,
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FIG. 8. (Color online) The total DOS (a) and site-projected DOS
in the near-gap region (b) of hexagonal and monoclinic HA. The DOS
is normalized to a hexagonal cell. The Fermi level is at zero energy.
The band gap is 5.23 eV.

the PO4 tetrahedron is slightly distorted from the ideal 109.5◦
bonding angle, leading to a split in the energy levels. We find
the σ ∗ electronic states in the conduction band between 6
and 9 eV. The remaining O(P) and O(H) p-states are the main
contributors to the DOS between −3 eV and the top of the
valence band. Calcium 4s-states contribute mainly between
−3 eV and the top of the valence band at zero. In Fig. 8(b), we
show the partial DOS projected on the different atomic species
in the hexagonal and monoclinic cells in the near gap region.
At the bottom of the conduction band, the main contribution
is from the s-like states of Ca atoms. The conduction band
between 6 and 8 eV is almost entirely made up by unoccupied
Ca states, with l = 2. In both crystals, the GGA band gap is
5.23 eV, in good agreement with the previously reported LDA
band gap of 5.40 eV.14 The reported experimental values of
the band gap range from 3.95 eV39 to more than 6 eV.40 Our
calculations suggest a large band gap, considering that GGA
underestimates the gap. Because the DOS of the hexagonal
and monoclinic phase appear very similar, we only calculate
the band structure for the smaller hexagonal cell. In Fig. 9, we
show the calculated band structure along the high-symmetry
directions in the Brillouin zone in the near-gap region. First,
we notice that HA is an indirect gap material. The valence band
top shows little dispersion, indicating heavy localized holes.
We find two energy maxima in the valence band separated by
only 8 meV. The top of the valence band (shifted to 0 eV)
occurs along the � to K line. The bottom of the conduction

FIG. 9. (Color online) The electronic band structure of hexagonal
HA in the near-gap region. The energy range in the gap region is not
shown for clarity. The band structure suggests that HA is an indirect
band material. The lowest energy optical excitations are indicated.
The dashed lines between M and K indicate nearly constant energy
optical excitations.

band is at the �-point, and shows a free electron character
with the anisotropic effective mass. Fitting the bottom of
the conduction band at � to a second-order polynomial, we
calculate the effective electron mass tensor:

(m∗
αβ) = h̄2

[
d2E

dkαdkβ

]−1
=

⎛
⎜⎝

0.61 −0.01 −0.01

−0.01 0.61 −0.01

−0.01 −0.01 0.48

⎞
⎟⎠ × me.

(6)

The principal values are 0.48, 0.60, and 0.62 in units
of the electron mass. The indirect band gap is 5.23 eV.
The direct transitions at the top of the valence band and at
the �-point are at 5.46 and 5.28 eV, respectively. Another
interesting feature is the flat region in both the valence and
conduction bands along the M to K line. With the excitation
energy of 5.75 eV, this feature should be noticeable in optical
adsorption. Unfortunately, no experimental data are available.
When comparing our results with the band structure calculated
by Rulis et al.15 in Fig. 10, we notice slight differences. The
most notable one is the energy gap. Rulis calculates 4.5 eV
versus our 5.3 eV. We attribute the discrepancy to a different
basis (Rulis uses the linear combination of atomic orbitals).
The overall band structure and near-parabolic dispersion at the
bottom of the conduction band agree well with their results.

D. Phonon eigenmodes at the �-point

Experimental studies of hydroxyapatite vibrational prop-
erties remain scarce. The most recent papers are those of
Fowler et al.41 and Markovic et al.42 reporting the infrared (IR)
and Raman active vibrational modes, respectively. Theoretical
studies of the HA vibrational spectra are quite difficult
due to the crystal’s complexity, and are typically limited
to classical shell models.43 However, the results strongly
depend on the model potentials that have to be fitted to
match the experimental data (a comparison of different sets
of parameters is given by Calderin43). Therefore, a more
general and transferrable approach of calculating the phonon
spectrum is desirable. We use DFT to calculate the vibrational
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FIG. 10. The band structure of hexagonal HA from Ref. 15 (left)
compared with our band structure (right).

eigenmodes of hexagonal HA at the �-point. We analyze the
influence of the ionic nature (long range Coulomb interactions)
of the crystal on the eigenmodes and identify the vibrational
modes mostly affected by the long range effects.

To calculate the short-range force constant matrix we take
the numerical derivative of the Hellmann-Feynman forces
with respect to small ionic displacements (e.g., Ref. 44). The
lattice Fourier transform of the force constant matrix yields
the dynamical matrix:44,45

⇀

D(
⇀

k; μ,ν) = 1√
MμMν

∑
m

⇀

B (0,μ; m,ν)

× exp {2πi
⇀

k × [
⇀

R (0,μ) − ⇀

R (m,ν)]}. (7)
⇀

R(0,μ) is the position of atom μ in the 0th primitive cell

within the supercell.
⇀

R(m,ν) is the position of atom ν in the mth

unit cell.
⇀

B(0,μ; m,ν) are the force constants relating atoms
(0,μ) and (m,ν). Mμ and Mν are the masses of atoms ν and μ.
In three-dimensional space, the dimension of the dynamical
matrix is 3N × 3N , where N is the number of atoms in the
primitive cell. Since we are interested in phonons at the �-point
we only calculate the forces in a single hexagonal primitive
cell. In covalent systems, the range of interaction is assumed to
be finite, and the dynamical matrix can be directly calculated
using the Hellmann–Feynman forces acting on the ions in
the supercell when displacing one atom from its equilibrium
position. In the ionic system, one has to worry about long-range
dipole-dipole interactions. This is accomplished by adding a
long-range correction to the dynamical matrix given by:44

⇀

D
long

αβ (
⇀

k; μ,ν) = e2

V ε0ε∞

[
⇀

k
⇀⇀

Z∗ (μ)]α[
⇀

k
⇀⇀

Z∗ (ν)]β

|⇀k|2

× exp

(
−|⇀k|2

ρ2

)
. (8)

Here, we use SI units.
⇀⇀

Z is the Born effective charge tensor
of atom μ, and V is the volume of the primitive cell. The
long-range contribution only affects the phonon modes close
to the �-point. The Born effective charge tensors introduce a

directional dependence in Eq. (8). The total dynamical matrix
is given by a sum of Eqs. (7) and (8).

First, we calculate the phonon eigenmodes in HA at the
�-point without the long-range correction. We use a single
primitive hexagonal cell. There are 132 eigenmodes, including
Raman and IR active vibrations. We use our calculated
eigenmodes to approximate the phonon density of states
(PDOS) at the �-point given by:

# of Eigenmodes

�f
=

∑
i

δ (f − fi) ≡ N (f ) , (9)

The DOS is a sum of delta-functions positioned at the
calculated eigenmodes at each k-point. We represent these
peaks by a Gaussian, and apply a Gauss broadening of σ =
15 cm−1. In Fig. 11, we compare our results with the DOS
constructed using experimental IR and Raman active modes
as reported by Fowler41 and Markovic.42 The calcium ions
contribute predominantly to the low frequency modes. In the
ranges from 350 to 650 cm−1 and from 850 to 1100 cm−1,
mainly the PO4 molecules contribute to the spectrum. The OH
modes are at 693 and 3660 cm−1, corresponding to the OH’s
libration and stretching modes, respectively. Compared with
the experimental work, we find good qualitative agreement.
The frequencies corresponding to the phosphate eigenmodes
are underestimated by ∼5%–10%. This is consistent with
the observation that the theoretical PO bond length is 0.02–
0.03 Å longer than the experimental value. On the other
hand, theoretical eigenmodes of the OH groups at 693 cm−1

(libration mode in x and y directions) and 3660 cm−1 (OH
stretching mode) are overestimated by ∼5%–10% compared
with experimental results.

Having found reasonable agreement with experimental re-
sults without considering the long-range interactions, we now
include the long-range correction (Eq. (8)). We approach the �-
point along the M to �, K to �, and A to � directions. These di-
rections correspond to approaching � from the face center, cor-
ner, and top of the hexagonal Brillouin zone. Experimentally,
the high-frequency dielectric constant is sensitive to the Ca/P
ratio of the crystal (e.g., Ref. 46). The values for ε∞ in the lit-
erature for stoichiometric HA with the Ca/P ratio 1.67 vary be-

FIG. 11. (Color online) The theoretical phonon density of states
at the �-point compared with the experimental IR and Raman active
modes. Our Ca and PO4 peaks are underestimated by ∼10%, whereas
the OH modes are overestimated by ∼10%.
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FIG. 12. (Color online) (a) The phonon frequencies at the �-point
with and without the long-range correction. When applying the
long-range correction, we consider approaching the �-point from
the M-point, the K-point, and the A-point, corresponding to the
directions (100), (110), and (001). We use the experimental values
from Fowler and Markovic (Refs. 41 and 42). The direction of
approach has little influence on the eigenmodes. The deviation
from the experimental values is about 10%. (b) The change in
the phonon frequency when applying the long-range correction.
We find almost identical changes when approaching along the
(100) and the (110) direction (M to � and K to �, respectively).
The largest change occurs for the mode at 318 cm−1, which
corresponds to a pure OH libration mode. In the (001) direc-
tion (A→�), this mode is nearly unaffected by the long-range
correction.

tween ε∞ = 5 and ε∞ = 20,46–50 in part because of the variation
in porosity and the water content of the samples, and in part to
too low a frequency of measurement. In this work, we use ε∞ =
5 and cross-check with ε∞ = 7 to see the qualitative depen-
dency of the eigenmodes on ε∞. The calculated Born effective
charge tensors are summarized in Table II. For the Gaussian
smearing in (Eq. (8)), we use ρ = 0.02 Å−2. We plot our results
in Fig. 12(a), along with the experimentally measured modes.
We find that including the long-range correction has little
effect on most of the vibration modes in good agreement with
Calderin’s work,43 where a shell model was used to calculate
the phonons when approaching the �-point from the (100)
and the (001) direction. In Fig. 12(b), we show the difference
between the long-range corrected spectrum and uncorrected
spectrum below 1200 cm−1 at the �-point. Positive �f means
the long-range corrected modes are higher in frequency. The
frequency shifts are very similar when approaching along the
(100) direction and the (110) direction (M to � and K to
�), ranging from 1 to 25 cm−1. When approaching along the
(001) direction (A to �), somewhat different eigenmodes shift
compared with approaching along (100) and (110), and the
peak at 318 cm−1 virtually disappears. While in the modes
between 97 and 318 cm−1, all atoms in the cell are vibrating;
the 318 cm−1 mode is a pure OH libration mode in the x-y
plane. The remaining shifted modes close to 600 cm−1 and
around 1000 cm−1 are pure PO4 vibration modes. The change
in frequency due to the long-range correction is most notable
for the OH mode at 318 cm−1, which moves up to 343 cm−1

TABLE II. Born effective charge tensors for the different atomic
sites.

Born effective charge

H

⎛
⎝ 0.37 −0.01 0

0.01 0.37 0
0 0 0.28

⎞
⎠

P

⎛
⎝ 3.17 0.04 0

−0.01 3.17 0
0 0 3.08

⎞
⎠

CaI

⎛
⎝ 2.41 −0.08 0

0.08 2.41 0
0 0 2.51

⎞
⎠

CaII

⎛
⎝−

2.45 0.02 0
0.01 2.45 0

0 0 2.46

⎞
⎠

OI

⎛
⎝ −1.93 0.03 0

−0.02 −1.93 0
0 0 −1.41

⎞
⎠

OII

⎛
⎝ −1.92 0 0

0 −1.91 0
0 0 −1.30

⎞
⎠

OIII

⎛
⎝ −1.47 −0.02 0

0.02 −1.47 0
0 0 −2.13

⎞
⎠

OH

⎛
⎝ −1.71 0.04 0

−0.04 −1.71 0
0 0 −0.94

⎞
⎠
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TABLE III. Calculated elastic constants and bulk modulus compared with other theoretical calculations and corresponding experimental
values. The bulk modulus is related to the elastic constants by the formula B = 2

9

(
C11 + C12 + 2C13 + C33

/
2
)
.

Constant (1011 dyn/cm2) This work Ref. 53 Pseudo-exp. (Ref. 52)

C11 12.90 15.75 13.70
C12 3.70 5.74 4.25
C13 6.70 5.97 5.49
C33 17.30 14.73 17.20
C44 4.40 4.39 3.96
B 8.60 9.07 8.90

when approaching � from the M-point. Using ε∞ = 7 in the
long-range correction, this OH mode moves up to 335 cm−1,
being the only mode substantially affected by using ε∞ = 5.
Overall, we find good agreement between our phonon spectra
and experimental results.

E. Elastic constants of HA

The anisotropy of the elastic properties of bones is governed
by their main constituents, HA, the collagen chains, and
water. The theoretical determination of the elastic properties
of composite materials is often done by averaging the elastic
properties of the separate materials. Although the quality of
the results fluctuates depending on the material in question,
upper and lower bounds of the effective moduli of composites
can be found rigorously.51 Previously, Katz and Ukraincik52

calculated a set of pseudo-single crystal elastic constants
extracted from the measured elastic constants of fluorapatite.
The validity of such a calculation is somewhat justified by a
strong similarity of the crystal structures of these two materials.
Mustafa et al.53 use a force field approach to obtain the elastic
constants of HA. Here, we calculate the elastic constants of
hexagonal HA from first-principles.

Generally, the energy of a strained system can be written as
a second-order Taylor expansion in the distortion parameters
αi,j :

E (V,α) = E (V0,0) + V0

2

∑
a,b,c,d

Cabcdαabαcd . (10)

The first-order term drops out as the expansion is at about
the ground state. The second-order term is described by the
adiabatic elastic constants Cabcd . However, the Cabcd and αab

are not all independent, and using Voigt notation, Eq. (10) can
be written as

E (V,α) = E (V0,0) + V0

2

∑
i,j

Cijαiξiαj ξj . (11)

The introduced factors ξi account for the symmetry of the
α’s, αab = αba (i.e., for b �=a, both αab and αba are labeled with
the same Voigt index). Therefore, we get ξi = 1 if the Voigt
index is 1, 2, or 3 and ξi = 2 if the Voigt index is 4, 5, or 6.54

There are five independent elastic constants in a hexagonal
crystal: C11, C12, C13, C33, C44 = C55. To determine these
constants, five independent stresses must be applied to the
system (see the Appendix). Distortions (I), (III), and (V)
keep hexagonal symmetry in the strained cell. Distortion (II)
creates a monoclinic cell, and distortion (IV) creates a cell with
triclinic symmetry. Equation (11) is valid for small distortions.
To have a measure of “small,” we compare the volume changes

after applying a specific distortion. Distortions (I) and (V)
yield the largest change in volume. Thus, for (I), we use the
parameters α = −0.01, −0.005, 0.00, 0.005, and 0.01, and for
(V) we apply α = −0.005, −0.0025, 0.00, 0.0025, and 0.005.
For distortions (II)–(IV), we use α = −0.02, −0.01, 0.00,
0.01, and 0.02. These choices of α ensure that the change
in volume relative to the equilibrium volume V0 is smaller
than 15 Å3 or ∼2.8% of V0. For all distortions, we use a
quadratic fit to extract the elastic constants Cij . Our results are
summarized in Table III. For C11, C33, and the bulk modulus
B, we find agreement within ∼6% of the values previously
reported by Katz and Mostafa.52,53 Our C12, C13, and C44

are within ∼21% of Katz’s and Mostafa’s results, indicating
overall good qualitative agreement.

IV. CONCLUSIONS

Using density functional theory, we find that the ground
state of hydroxyapatite is monoclinic, in agreement with previ-
ous calculations13 and recent experiments.35,37 The hexagonal
phase is only 22 meV higher in energy than the monoclinic
ground state. The structural transition path from the mon-
oclinic to the hexagonal crystal phase and vice versa most
likely involves the rotation of hydroxyl groups, as suggested by
Hitmi.35 The activation energy for such a transition is 0.33 eV
per OH molecule, and the transition time at room temperature
is ∼26 ms. We find close similarity in the electronic structure
of both phases, suggesting similar chemical properties. For
the hexagonal phase, in agreement with previous theoretical
results, we find the indirect band gap 5.23 eV. The bottom
of the conduction band mainly consists of Ca s-states and
shows free-electron-like behavior with the anisotropic mass
at the �-point. Our results for the vibrational eigenmodes
at the �-point are within ±10% of available experimental
results,41,42 and calculated elastic constants agree well with
the experimental results reported by Katz52 and Mostafa.53
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APPENDIX

Following the approach described by Fast et al.,55 we use
five independent distortions to obtain the elastic constants of
the hexagonal cell. Their action on the crystal structure and
symmetry are explained in the section E. The small parameter
α describes the deviation of the distorted crystal from the
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original one.

eI =

⎛
⎜⎜⎝

1 + α 0 0

0 1 + α 0

0 0 1

⎞
⎟⎟⎠

eII =

⎛
⎜⎜⎝

1 + α 0 0

0 1 − α 0

0 0 1

⎞
⎟⎟⎠

eIII =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1 + α

⎞
⎟⎠

eIV =

⎛
⎜⎝

1 0 α

0 1 0

α 0 1

⎞
⎟⎠

eV =

⎛
⎜⎝

1 + α 0 0

0 1 + α 0

0 0 1 + α

⎞
⎟⎠ (A1)
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