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Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals
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We present a mean-field description of the zigzag phase transition of a quasi-one-dimensional system of
strongly interacting particles, with interaction potential r−ne−r/λ, that are confined by a power-law potential
(yα). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for
different values of α and n. Close to the transition point for the zigzag phase transition, the scaling behavior of
the order parameter is determined. For α = 2, the zigzag transition from a single to a double chain is of second
order, while for α > 2, the one-chain configuration is always unstable and, for α < 2, the one-chain ordered state
becomes unstable at a certain critical density, resulting in jumps of single particles out of the chain.
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I. INTRODUCTION

During the last two decades, the interest in self-organized
systems has increased enormously both experimentally and
theoretically due to its importance in solid-state physics
and plasma physics, as well as in atomic physics. Wigner
crystals are an elementary example of self-organization,
which has been realized in very diverse systems as, e.g.,
electrons on liquid helium1 by using the well-known Paul and
Penning traps2,3 to confine ions in a limited region, in dusty
plasma,4 and more recently using static and radio-frequency
electromagnetic potentials where crystallization was realized
through laser cooling.5 Additionally, it has been proposed that
these structures can be used for a possible implementation of
a scalable quantum information processor6,7 and as quasi-one-
dimensional (Q1D) Wigner crystals.8 The theoretical analysis
of these crystal structures has been realized previously for
three-dimensional (3D),9,10 two-dimensional (2D),11–13 and
Q1D (Refs. 14 and 15) systems. From those studies, it was
shown that structural phase transitions can be induced by
varying the strength of the external confinement potential
and/or the density of particles.

In this paper, we concentrate on the ordered state of
identical particles that are confined in a Q1D channel. When
the particles move in 2D and are confined by a parabolic14

or hard-wall16 potential in one of the in-plane directions,
the particles arrange themselves in parallel chains at low
temperature. Previously, it was found14 that, with increasing
density (or decreasing strength of the confinement potential),
the system passes through a sequence of first- and second-
order phase transitions, where at each point the number
of chains changes. Of particular interest to us is the one-
to two-chain transition, which for a parabolic confinement
potential was found to be a second-order phase transition
that occurs as a zigzag transition. Such a transition was
observed experimentally17–20 in systems with a finite number
of particles, and the effects of a narrow channel and finite
size of the system on the diffusion were recently analyzed in
Refs. 21 and 22. Recently, it was found theoretically23 that the
analytic form of the confinement potential is very important
for the occurrence of the zigzag transition and the order of
the phase transition. Therefore, in this paper, we generalize
the previous analysis to an arbitrary power-law confinement

potential (i.e., yα) and also to arbitrary interparticle interaction,
which we model by r−ne−r/λ, which simulates most of the
relevant experimental particle-particle interactions. With this
model potential, we can simulate both short- and long-range
interactions.

We are interested in the behavior of the system at the
zigzag transition, i.e., at the critical point. This can be
viewed as a spontaneous symmetry breaking and we will
cast the problem into a mean-field theory based on Landau’s
theory of phase transitions. In this way, we will construct
a Ginzburg-Landau theory for the single- to two-chain
transition in a quasi-one-dimensional system of interacting
particles. We generalize the approach of Refs. 15 and 24 to
arbitrary power-law confinement and interparticle interaction
potential. We obtain a Ginzburg-Landau equation for the order
parameter close to the transition point, and determine all the
relevant parameters in this equation. The order parameter is
the distance of the particles from the trap axis. By considering
a large number of particles and using the local density
approximation, we can consider the crystal as a continuum,
so that the order parameter becomes a field.

This paper is organized as follows. In Sec. II, we describe
the model system and, using Landau theory, we find the
behavior of the system close to the transition point. Next,
we derive a Ginzburg-Landau equation for the system finding
the dispersion relation. In Sec. III, the results for the critical
point and the normal mode spectrum are discussed. Our
conclusions and a discussion of possible quantum effects are
given in Sec. IV.

II. THEORETICAL FRAMEWORK

We consider a two-dimensional system consisting of N

particles with mass m and charge q, which are allowed to
move in the x-y plane. The charged particles interact through
a repulsive interaction potential; they are free to move in the
x direction, but are confined by a one-dimensional potential,
which limits their motion in the y direction. The total energy
of the system is given by

E = 1

2
m

N∑
i=1

ṙ2
i + Vconf + Vint, (1)

134106-11098-0121/2011/84(13)/134106(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.134106
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where Vconf and Vint are the confinement and interaction
potential respectively, given by

Vconf = 1

2
mυ2

t R
2

N∑
i=1

|yi |α
Rα

, (2a)

Vint =
N∑

i=1

N∑
j>i

Vpair(rij ), (2b)

where Vpair(rij ) represents the interparticle interaction. The
latter one will be taken as a screened power-law potential as
follows:

Vpair = q2

εR

Rne−rij /λ

rn
ij

, (3)

where rij = |ri − rj | represents the relative position between
the ith and the j th particles, the exponent n is an integer, and
ε is the dielectric constant of the medium the particles are
moving in. In the above, R is an arbitrary length parameter,
which we introduced to guarantee the right units. The energy
can be written in dimensionless form

E =
∞∑
i=1

ṙ2
i + υ2

N∑
i=1

|yi |α +
N∑

i=1

N∑
j>i

e−κrij

rn
ij

, (4)

with dimensionless frequency υ given by υ = υt/ω0, while
ω0 measures the strength of the confinement potential and
t0 = 1/ω0 is the unit of time. The energy is expressed
in units of E0 = (mω2

0/2)n/(n+α)(q2/ε)α/(n+α)R(2n−α)/(n+α)

and all distances are expressed in units of r0 = (2q2/

mω2
0ε)1/(n+α)R(n+α−3)/(n+α). Additionally, the dimensionless

parameter κ = r0/λ represents the screening parameter of the
potential. Limiting cases of this interaction potential are as
follows: Yukawa potential (n = 1), power-law potential (κ =
0), Coulomb potential (κ = 0, n = 1), and dipole interaction
(κ = 0, n = 3). We introduce a dimensionless linear density
η defined as the number of particles per unit of length along
the unconfined direction.

In Ref. 23, it was demonstrated that, for α > 2, the one-
chain configuration is not stable for any values of η and υ. Only
for α = 2 does the system exhibit a continuous transition from
the one- to the two-chain configuration (i.e., zigzag transition)
at a transition point defined by a critical density (ηc) or a critical
frequency (υc). For α < 2, the ground-state configuration of
the particles is, below ηc or above υc, arranged in a single
chain. Beyond this critical point, particles are expelled one by
one from this chain to positions parallel to the chain.

For the special case of α = 2 and before the transition
point, the particles crystallize around the minimum point of
the confinement potential V , at the positions rlinear

i = (i/η)ex
with i an integer. The stability of the linear chain along the
x axis requires a relative transverse trap frequency exceeding
a threshold value υc or a linear density smaller than ηc. At
this critical point, the configuration has a structural instability,
such that for υ < υc or η > ηc, the particles are organized
in a zigzag structure, ordered in two chains with equilibrium
positions rzigzag

i = (i/η)ex + (−1)i(c/η)ey, where c is a real
and positive constant, d = c/η represents the distance of each
particle from the confinement potential minimum, and D = 2d

indicates the lateral separation between the two chains.

FIG. 1. (Color online) The proportionality coefficient Y (υ; n,κ)
as a function of κ for different values of n with υ = 1.

A. Landau theory for the zigzag transition

For the case α = 2 and near the zigzag regime, we follow
the Landau theory approach of Ref. 23, and expand the total
potential energy of the system as a function of the order
parameter c in a polynomial, i.e., V (c) = V1ch − Ac2 + Bc4,
where V1ch represents the potential energy for the one-chain
configuration. By minimizing the potential energy, we obtain
the condition

2
∞∑

j=0

[nηn + κηn−1(2j + 1)]
e
−κ

2j+1
η

(2j + 1)n+2
− υ2

η2
= 0. (5)

From this equation, we obtain the value of ηc(υ) or υc(η)
at which the single-chain configuration becomes unstable.
Considering ηc and expanding the potential energy around
this critical value, we find that the order parameter close to the
transition point is given by

c = Y (υ : n,κ)|η − ηc| 1
2 , (6)

with Y (υ; n,κ) = √
YBYC − YAYD/YB , where YA = nηn

c S2 +
ηn−1

c κS1 − υ2/2η2
c , YB = 2n(n + 2)ηn

c S4 + 2(2n + 1)ηn−1
c κ

S3 + 2ηn−2
c κ2S2, YC = n2ηn−1

c S2 + (2n − 1)ηn−2
c κS1 + ηn−3

c

κ2S0 + υ2/η3
c , YD = 2n2(n + 2)ηn−1

c S4 + 2[n(3n + 1) − 1]
ηn−2

c κS3 + 2(3n − 1)ηn−3
c κ2S2 + 2ηn−4

c κ3S1, with

Sk =
∞∑
i=0

e
−κ 2i+1

ηc

(2i + 1)n+k
. (7)

The value of Y = Y (υ; n,κ) is plotted in Fig. 1 as a function
of κ for different values of n and a fixed value υ = 1. Notice
that the curves Y (n,κ) for different values of n cross each other
at some value of κ . The critical exponent of the order parameter
of the zigzag transition [Eq. (6)] was verified experimentally
on a low-dimensional dusty plasma in Ref. 25 and theoretically
in Refs. 23, 15, 26, and 27.

B. Ginzburg-Landau Lagrangian for the zigzag phase transition

Recently, this zigzag transition (for α = 2, κ = 0, and n =
1) was cast into a mean-field description resulting in similar
expressions as in the Landau theory of phase transitions.
This resulted in a one-dimensional Ginzburg-Landau-type
nonlinear field theory.24 Here, we will extend the previous
calculation to the more general problem described by the
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energy Eq. (4). We start by considering the system in the
situation that the one-chain configuration is stable but that
it is close to the transition point. The equilibrium positions
of all the particles are along the x axis. We consider small
oscillations around the equilibrium position of each particle as
follows: xlin

i = (i/η) + xi and ylin
i = 0 + yi . Then, the relative

position between the particles can be written as

rij =
[

1 + τij + εij

Aij

]1/2

(Aij )1/2, (8)

with Aij = (
ij )2, τij = 2
ij (xi − xj ), and εij = (xi − xj )2

+ (yi − yj )2, where 
ij = (i − j )/η. Now, we assume that
the vibration amplitudes in the axial and transverse directions
are much smaller than the distance between the particles, i.e.,
τij , εij � Aij . We expand Eq. (8) and the exponential term as

rij ≈ 
ij + (xi − xj )

+
(

1 − (xi − xj )


ij

+ (xi − xj )2

(
ij )2

)
(yi − yj )2

2
ij

, (9)

e−κrij ≈ e−κ
ij

[
1 − κ(xi − xj ) + κ2 (xi − xj )2

2

− κ
(yi − yj )2

2
ij

]
, (10)

and similar to the nth power of the inverse of Eq. (8), i.e., 1/rn
ij ,

as a Newton binomial around the equilibrium positions. These
expansions result in a decomposition of the total potential as

V = υ2
∞∑
i=1

|yi |α +
∞∑
l

V
(l)

int , (11)

where the label l indicates the order of the expansion. Each
order of the expansion of the interaction potential can be
written as

V
(l)

int = 1

2

∞∑
i �=j

W
(l)
ij , (12)

where the expansion terms up to fourth order are given by

W
(0)
ij = e−κ
ij


n
ij

,

W
(1)
ij = − e−κ
ij

(
ij )n+1
[ϑijn + κ
ij ](xi − xj ),

W
(2)
ij = e−κ
ij

2(
ij )n+2

{[
n(n + 1) − 2ϑijnκ
ij + κ2
2

ij

]
(xi − xj )2 − (n + κ
ij )(yi − yj )2

}
,

W
(3)
ij = e−κ
ij

2(
ij )n+3
n(xi − xj )

[
−

(
ϑij

3
(n2 + 3n + 2) + (n + 1)κ
ij + ϑij κ

2
2
ij

)
(xi − xj )2

+ [
ϑij (n + 2) + κ
ij

]
(yi − yj )2

]
,

W
(4)
ij = e−κ
ij

2(
ij )n+4
n

[(
1

12
(n3 + 6n2 + 11n + 6) + 3(n2 + 3n + 2)κ
ij + 2(n + 1)κ2
2

ij

)
(xi − xj )4

−
(

1

2
(n2 + 5n + 6) + [9(n + 2)ϑij + 2(n + 1)]κ
ij + 2κ2
2

ij

)
(xi − xj )2(yi − yj )2

+
(

1

4
(n + 2) + 2κ
ij

)
(yi − yj )4

]
,

with ϑij = 
ij/|
ij |. It is sufficient to restrict ourselves to
terms up to the fourth order and, thus, the potential can be
written as Vint ≈ V

(0)
int + V

(1)
int + V

(2)
int + V

(3)
int + V

(4)
int .

1. Representation in reciprocal space

Now, we assume that the particles are pinned in the
longitudinal direction and that they can only oscillate in the
transverse direction (xi = 0). Therefore, their normal axial
modes can be neglected and we can discard the coupling
to the longitudinal modes. In this regime, we find that
W

(0)
ij = e−κ
ij /(
n

ij ), W
(1)
ij = 0, W

(2)
ij = −(n + κ
ij )(yi −

yj )2e−κ
ij /[2(
ij )n+2],W (3)
ij = 0, and W

(4)
ij = n[(n + 2) +

8κ
ij ](yi − yj )4e−κ
ij /[8(
ij )n+4].

In order to find the representation in reciprocal space,
we define the normal modes of vibration in the transversal
direction with wave vector k as �k = ψ

(+)
k − iψ

(−)
k with am-

plitude |ψk|2 = ψ
(+)2
k + ψ

(−)2
k . Following the standard process

to find this representation as shown in, e.g., Ref. 15 and
using Plancherel’s theorem28 for the confinement potential
transformation, the different terms of the potential become

Vconf = υ2

√
N

∑
k>0

|ψk|α, (13a)

V
(1)

int = 0, (13b)

V
(2)

int =
∑
k>0

ω⊥(n,κ,k)2ψ2
k , (13c)
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V
(3)

int = 0, (13d)

V
(4)

int =
∑

k1+k2+k3+k4=0

A(k1,k2,k3,k4)
4∏

m=1

ψ
km

, (13e)

where ω⊥(n,κ,k)2 = −ω(n,κ̃,k)2, A(k1,k2,k3,k4) =
nηn+4[(n + 2)A0(k1,k2,k3,k4) + 8κ̃A1(k1,k2,k3,k4)]/8,
with κ̃ = κ/η and

ω(n,κ̃,k)2 = 2ηn+2

[
n

∞∑
j=1

e−j κ̃

j n+2
sin2

(
j
k

2

)

+ κ

∞∑
j=1

e−j κ̃

j n+1
sin2

(
j
k

2

)]
, (14a)

A0(k1,k2,k3,k4) = 2

N

∑
j>0

e−j κ̃

j n+4

4∏
m=1

sin

(
j
km

2

)
,

(14b)

A1(k1,k2,k3,k4) = 2

N

∑
j>0

e−j κ̃

j n+3

4∏
m=1

sin

(
j
km

2

)
.

Due to the condition that the motion of the particles is
restricted to the longitudinal direction, it becomes apparent
that the first- and third-order terms of the interaction potential
will be zero, and additionally we know that the first derivative
equals zero because it is the necessary condition to have an
equilibrium configuration.

2. Minimum frequency of the interaction potential

From the definition of ω⊥(n,κ,k)2, we find that its minimum
value is located at k0 = π . Let us expand for k around this value
(k = k0 − δk), and we obtain

ω⊥(n,κ,k0 − δk)2 = ω⊥(n,κ̃,k0)2

+h(n,κ̃)2δk2 + O(δk4), (15a)

A(k1,k2,k3,k4) = 1

2N
A(n,κ̃) + O(δk2), (15b)

where ω⊥(n,κ̃,k0)2 = −� (n,κ̃)2 with

� (n,κ̃)2 =
(η

2

)n+2
e−κ̃

[
2n�

(
e−2κ̃ ,n + 2,

1

2

)

+ 4κ̃�

(
e−2κ̃ ,n + 1,

1

2

)]
, (16a)

h(n,κ̃)2 =
(η

2

)n
2∑

j=1

(−1)j+1e−j κ̃

[
n

2
�

(
e−2κ̃ ,n,

j

2

)

+ κ̃�

(
e−2κ̃ ,n − 1,

j

2

) ]
, (16b)

A(n,κ̃) =
(η

2

)n+4
ne−κ̃

[ (n

2
+ 1

)
�

(
e−2κ̃ ,n + 4,

1

2

)

+ 8κ̃�

(
e−2κ̃ ,n + 3,

1

2

) ]
, (16c)

where �(z,s,a) is the Lerch transcendent defined as
�(z,s,a) = ∑∞

k=0 zk/(k + a)s . In Table I, we show the limiting
behavior of these terms. It is important to note that the square
of the transverse frequency is negative.

3. Stability of the system

The system is stable when the second-order term of the
total potential energy (i.e., the coefficient of ψ2

k ) is minimum.
For the parabolic case (α = 2), the confinement potential term
contributes to the second order of the total potential energy,
then

V (2) =
∑
k>0

ω⊥(n,κ,k)2ψ2
k , (17)

where the transverse frequency is

ω⊥(n,κ,k)2 = υ2 − ω(n,κ̃,k)2 (18)

and we note that its minimum value is reached for k0 = π .
Thus, the critical value for the confinement frequency is
given by

υ2
c (n,κ) = � (n,κ̃)2. (19)

When υ > υc, the ground-state configuration is a one-chain
organization of the particles. For υ < υc, the linear chain is
unstable and the particles are arranged in a two-chain structure
through a zigzag organization. When υ is sufficiently close to
the critical value υc, an effective potential can be derived for
the transverse normal modes ψk with wave vector k̃ = k0 −
δk, such that δk � 1. The second-order term of the effective
potential is given by Eq. (17), where its coefficient, Eq. (15a),
can now be written as

ω⊥(n,κ,k0 − δk)2 = δυ(n,κ̃) + h(n,κ̃)2δk2, (20)

where δυ(n,κ̃) = υ2 − υc(n,κ̃)2. In the limiting case of
a Coulomb interparticle potential (κ = 0, n = 1) and
considering η = 1, we find υc(1,0) = √

7ζ (3)/2 = 1.450 38,
h(1,0) = √

log(2)/2 = 0.588 71, and A(1,0) = 93ζ (5)/64 =
1.506 79, which agrees with the results of Refs. 24 and 15.
In Table II, we show the values of these terms for different
interaction potentials. Notice that the critical confinement
frequency υc decreasing with increasing screening κ , and it
increases with increasing density. The relation between υc

TABLE I. Behavior of the coefficients in the Ginzburg-Landau equation in two limiting cases, where κ̃ = κ/η.

κ̃ � 1 κ̃ � 1

� (n,κ̃)2 2n
(

η

2

)n+2
e−κ̃

∑∞
j=0

1−2j κ̃

(j+1/2)n+2 2nηn+2κ̃e−κ̃

h(n,κ̃)2 n

2

(
η

2

)n ∑∞
j=0 (1 − 2j κ̃)

(
1

(j+1/2)n − 1
(j+1)n

) (
η

2

)n
κ̃e−κ̃

∑∞
j=0

e−2j κ̃

(j+1/2)n−1

A(n,κ̃) n
(

n

2 + 1
) (

η

2

)n+4 ∑∞
j=0

1−2j κ̃

(j+1/2)n+4 8n
(

η

2

)n+4
κ̃e−κ̃

∑∞
j=0

e−2j κ̃

(j+1/2)n+4
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TABLE II. Values of the critical parameters for different values of n and κ .

η = 0.50 η = 1.00 η = 1.50
n κ υc(n,κ̃) h(n,κ̃) A(n,κ̃) υc(n,κ̃) h(n,κ̃) A(n,κ̃) υc(n,κ̃) h(n,κ̃) A(n,κ̃)

1 0.5 0.43113 0.38151 0.06332 1.36621 0.57569 2.13008 4.02285 0.82789 62.6067
1 1.0 0.31885 0.30221 0.04019 1.21941 0.53954 2.02615 3.86422 0.81415 68.1625
1 2.0 0.15131 0.15008 0.01002 0.90183 0.42740 1.28595 3.44901 0.76302 64.8368
2 0.5 0.37195 0.35188 0.06901 1.74736 0.80730 4.85728 7.52638 1.71598 299.492
2 1.0 0.26019 0.25394 0.04230 1.48781 0.70376 4.41649 6.98946 1.61460 310.865
2 2.0 0.11720 0.11676 0.01030 1.04076 0.50788 2.70688 5.95124 1.40752 282.655
3 0.5 0.30339 0.29542 0.05605 2.06259 0.99201 8.19081 12.7470 3.04303 1047.17
3 1.0 0.20566 0.20332 0.03331 1.71625 0.83557 7.17465 11.6677 2.80582 1048.42
3 2.0 0.08952 0.08936 0.00794 1.16342 0.57508 4.26315 9.70860 2.36334 918.354

and n depends on the density value, as will be discussed
later.

Additionally, from a simple expansion of the dispersion
relation (18) around the equilibrium positions and for values
of the frequency and density close to their critical values, the
value of the parameter c can be found from the nonlinear
algebraic equation

υ2 − 2ηn+2

[
n

∞∑
j=1

e−κ̃
√

(2j−1)2+c2

[(2j − 1)2 + c2]
n+2

2

+ κ̃

∞∑
j=1

e−κ̃
√

(2j−1)2+c2

[(2j − 1)2 + c2]
n+1

2

]
= 0. (21)

4. Continuum approximation

Close to the transition point (δk � 1), the transverse
deviation of the particles is very small and we can use a
continuum approach for these modes. In doing so, we replace
the discrete sum over k̃ by an integral

∑
k → ∫

d(δk)N/2π .
Using the Fourier transform, we obtain a continuous form for
the modes ψ(x) as follows: ψk = ∫

dx ψ(x)e−iδkx/
√

N . Then,
the remaining terms of the potential become

V (α) = 1

2

∫
υ2 |ψ(x)|α dx, (22a)

V (2) = 1

2

∫ [
− � (n,κ̃)2ψ(x)2 + h(n,κ̃)2

(
∂ψ

∂x

)2 ]
dx,

(22b)

V (4) = 1

2

∫
A(n,κ̃)ψ(x)4dx. (22c)

Finally, we obtain the Lagrangian L = ∫
L(x)dx, where

the Lagrangian density L(x) reads as

L(x) = 1
2 {[∂tψ(x)]2 − h(n,κ̃)2[∂xψ(x)]2 + � (n,κ̃)2ψ(x)2

−υ2|ψ(x)|α − A(n,κ̃)ψ(x)4}. (23)

In the special case α = 2, κ = 0, n = 1, this Lagrangian
density is the one found in Ref. 24, and it has the form
of a Ginzburg-Landau equation (Refs. 24 and 29). Defining
ϕ(x) = ηψ(x) and υ̃(n,κ̃)2 = υ(n,κ̃)2/ηn+α , we may find
from Eq. (23) an expression for the potential energy density V:

2V
ηn

= K(n,κ̃)ϕ(x)4 + υ̃(n,κ̃)2|ϕ(x)|α − �(n,κ̃)ϕ(x)2,

(24)

with the real positive coefficients �(n,κ̃) = � (n,κ̃)2/ηn+2

and K(n,κ̃) = A(n,κ̃)/ηn+4, which are plotted in Fig. 2 as
a function of κ̃ for different values of n. Notice that both
coefficients are positive and decrease with increasing κ̃ .
Now, the density η plays the role of a scaling parameter in

FIG. 2. Ginzburg-Landau coefficients for the potential energy density [Eq. (24)] as a function of the screening parameter κ̃ = κ/η for
different values of n.
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FIG. 3. (Color online) Critical value of the exponent of the
confinement frequency as a function of the density for different values
of the strength of the confinement potential. We took the parameters
n = 1 and κ = 1.

the potential energy density (V), in the screening parameter
(κ), in the strength of the confinement (υ), and in the order
parameter (ψ). For α = 2, we find the usual Landau energy
expression for a second-order phase transition

2V
ηn

= K(n,κ̃)ϕ(x)4 + [υ̃(n,κ̃)2 − �(n,κ̃)]ϕ(x)2. (25)

5. Equation of motion

From Eq. (23), we obtain the equation of motion for ψ(x)
as follows:

∂2
t ψ(x) − h(n,κ̃)2∂2

xψ(x) − � (n,κ̃)2ψ(x)

+ αυ2

2
sign[ψ(x)]|ψ(x)|α−1 + 2A(n,κ̃)ψ(x)3 = 0. (26)

In this context, the order parameter ψ(x) represents a
continuous version for the value of c, which is the distance of
the particles (d = c/η) from the minimum of the confinement
potential. When the order parameter varies slowly in space,
the time-independent version of Eq. (26) becomes

� (n,κ̃)2ψ − αυ2

2
sign(ψ)|ψ |α−1 − 2A(n,κ̃)ψ3 = 0. (27)

We note that, for α < 1, a one-chain configuration is not
allowed because ψ = 0 is not a solution of Eq. (27) in this
case.

Considering α � 1 and defining ã(n,κ̃) = αυ2/2ηn+2

�(n,κ̃) and b̃(n,κ̃) = 2η2K(n,κ̃)/�(n,κ̃), the latter equation
is reduced to

1 − ã(n,κ̃)|ψ |α−2 − b̃(n,κ̃)ψ2 = 0. (28)

TABLE III. Order parameter for different values of α.

α ψ

2
√

(1 − ã)/b̃

3
(
−ã +

√
ã2 + 4b̃

)
/2b̃

4 1/
√

ã + b̃

FIG. 4. (Color online) Displacement from the x axis as a function
of the linear density for υ = 1. The dashed lines are obtained from
the Landau theory, while the solid lines are the solutions of Eq. (21).
The open circles represent the results of our Monte Carlo simulations
for n = 1 and 3.

For α = 2, this equation results in a second-order transition,
from the single-chain (i.e., ψ = 0) to the zigzag (i.e., ψ �= 0)
configuration, with the critical point defined by ã(n,κ̃) = 1,
which in fact is a generalization of Eq. (21).

For 1 < α < 2 and minimizing Eq. (28), we find

2�(n,κ̃) −
(

α2
cυ

2

2ηn+αc

) 2
4−αc

(
4αc

2 − αc

K(n,κ̃)

) 2−αc
4−αc = 0, (29)

which represents a nonlinear equation for the critical exponent
of the confinement potential (αc), which is the minimum value
of α for which a one-chain configuration is the ground-state
configuration. From Eq. (29), we note that this critical value
will be at most equal to 2, as shown in Fig. 3 for different
values of the strength of the confinement frequency.

Finally, we may find analytical expressions for the order
parameter from Eq. (28) for different values of α � 2, which
are given in Table III. Notice that it is always possible to find a
ψ �= 0, which indicates that the single-chain configuration is
always unstable when α > 2. For α = 2, we find ψ �= 0 only
when ã(n,κ̃) < 1.

FIG. 5. (Color online) Critical linear density as a function of
the n exponent of the interparticle interaction for different values of
the parabolic confinement frequency. The (solid and dashed) lines are
the prediction of the Landau theory and the (solid and open) circles
are found with the present method (for κ = 0 and 1, respectively).
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FIG. 6. Potential energy per particle as a function of the position
of one of the particles in the confinement direction, before (η=
0.78ηc), after (η=1.34ηc), and at the transition (η=ηc) for parabolic
confinement. We took the parameters υ = 1, κ = 1, and n = 1.

III. RESULTS AND DISCUSSION

As has been found in the preceding section, a continuous
zigzag transition occurs for parabolic confinement. For the
case α �= 2, it is not possible to define a transition between
the one- and two-chain configuration because the confinement

potential does not contribute to the second-order term of the
total potential energy. Additionally, we find that the minimum
value of the transverse frequency is purely imaginary [see
Eqs. (15a) and (16a)], and this condition implies that, in this
case, the transition for the one- to the two-chain configuration
is not allowed, which agrees with previous23 results. We also
performed Monte Carlo simulations and found that, for α > 2,
the one-chain configuration is never formed for any value of the
density and the confinement frequency. However, from similar
simulations, one can show that, for α < 2, the one-chain
configuration is stable until a critical point, beyond which the
configuration is changed to a single chain containing vacancies
due to jumps of individual particles away from the chain
axis.

A. Transition point for α � 2

For the case of a power-law interparticle potential (κ = 0)
with parabolic confinement and using dimensionless units,
it is possible to find an analytical relationship between the
confinement frequency and the linear density as η = υ−2/(n+2).
For this case, we show in Fig. 4 the behavior of the order
parameter as a function of the linear density for different
values of n. Dashed curves represent the solution from the

FIG. 7. (Color online) Contour plots of the critical frequency υc as a function of n and κ for (a) η = 0.50, (b) η = 0.75, (c) η = 1.00, (d)
η = 2.00 in the case of a parabolic confinement potential.
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FIG. 8. Critical transition point for the one-chain configuration. Above the curves, the one-chain configuration is the ground state. Results
are shown for (a) Coulomb potential, (b) dipole potential, and (c) Yukawa potential for different values of the exponent of the confinement
potential α.

Landau theory [Eq. (6)], and the full curves are the solution
of Eq. (21) and they are compared with the results of a Monte
Carlo simulation for n = 1 and 3 (open circles in Fig. 4).
From these results, we notice that there is perfect agreement
between our calculation and the exact results obtained from
Monte Carlo simulations. In the same context, Fig. 5 shows the
variation of the critical density as a function of the exponent
n as obtained from Landau theory (solid and dashed curves
for κ = 0 and 1, respectively), and the results from this work
(full and open circles for κ = 0 and 1) are shown for different
confinement frequencies. Notice that, for υ = 1, this function
has a local minimum where the dipole potential exhibits the
lowest critical density.

On the other hand, it is also possible to find the value of
d numerically by fixing one particle at a distance y from the
one-chain axis in the confinement direction and minimize the
energy with respect to the position of the other particles. The
resulting minimum potential energy of the system is shown
in Fig. 6 for a Yukawa interparticle potential with κ = 1 and
υ = 1. For η � ηc, the minimum is found at y = 0, and for
η > ηc, it continuously shifts to y �= 0, which is typical for a
second-order transition.

From Eq. (19), we draw the contour plot of υc as a function
of n and κ for several values of the density (when making

the contour plot, we replaced n by a real number), which
are shown in Fig. 7. We observe a strong dependence of
the highest value of υc on η, and therefore the region of
frequencies over which the one-chain configuration exists. For
low densities (η < 1), the one-chain organization is dominant
for small values of the exponent n and gradually this region
is extended to higher values of n with increasing η. This
result shows that, for low densities, the one-dimensional
behavior of the system is a better representation for the
Coulomb and dipole interparticle potentials. For η � 1, the
one-dimensional region of frequencies increases with increas-
ing n. In all cases, the critical frequency decreases with
increasing κ .

Our previous mean-field theory was derived for modes of
the linear chain close to the instability point. Therefore, it
is possible to find the critical point for the aforementioned
instability from Eq. (27). In Fig. 8, we plot the transition point
at which the one-chain structure becomes unstable for α � 2.
Above each curve, only ψ = 0 is a solution of Eq. (27). Only
for α = 2 do the curves correspond to a second-order zigzag
transition. Notice that the stability region for the single-chain
configuration increases with decreasing α.

In Fig. 9(a), we show the dispersion relation for the normal
modes in the case of parabolic confinement for different

FIG. 9. (Color online) (a) Dispersion relation ω⊥ as a function of δk for parabolic confinement (i.e., α = 2) where dashed, solid, and dotted
lines represent the results for υ = 0.95υc, υc, and 1.05υc, respectively. (b) Square transverse frequency ω2

⊥ as a function of δk for α > 2. We
have considered n = 1, η = 1 and different values of κ as shown in (a).
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FIG. 10. Distance of the particles from the y axis as a function of the density for different values of α and υ = 1. The interparticle interaction
is a dipole potential. The symbols represent the results from Monte Carlo simulations and the dashed vertical lines indicate the transition point
from the two- to the four-chain configuration.

values of κ in the three cases: linear regime (dotted lines),
where the system is stable for any value of the wave vector
close to k0; the zigzag regime (dashed lines); and in the
transition point (solid lines) where the dispersion is linear close
to k0.

B. Case α > 2

In this case, the most simple configuration of the particles is
restricted to a two-chain structure; however, from Monte Carlo
simulations, we know that there is a transition to a four-chain
structure after some value of the linear density. This is shown
in Fig. 10, where we plot the distance from the y = 0 axis of
the particles as a function of the density considering a dipole
interparticle interaction for different values of α. In those
figures, the two- to four-chain transition points are marked
with a vertical dashed line. In our theoretical model, we have
found from Eqs. (15a) and (16a) that ω2

⊥ < 0, as shown in
Fig. 9(b), and thus the transverse frequency is imaginary and
therefore the one-chain structure is unstable for any value of
the density and the confinement strength.

This is illustrated in more detail in Fig. 11, where we plot
the distance of the particles from the x axis for different

FIG. 11. Order parameter as a function of the linear density in
the two-chain region for different values of the exponent of the
confinement potential α. The solid curves represent the solutions of
Eq. (27) and open circles the results of our Monte Carlo simulation.
We took the parameters υ = 1, κ = 1, and n = 1.

values of η. Note that our mean-field results from Eq. (27)
agree with the simulation for small values of η. Note that, for
small values, the confinement potential energy is significantly
larger than the interparticle potential energy and, therefore, the
fluctuations of the order parameter are smaller. With increasing
η, the interaction between the particles start to dominate
and all curves converge to each other (without crossing) for
η > 1.

IV. CONCLUSIONS

In this work, we studied the critical behavior of a system
of particles confined in a 2D channel through a yα potential
with different functional forms for the interparticle interaction
potential. We derived a Ginzburg-Landau equation for the
system and determined the behavior of the system close
to the transition point where the single-chain configuration
becomes unstable. We determined the order parameter and
its dependence on the external confinement and the particle
density.

For α = 2, the critical frequency for the zigzag transition
is larger than for smaller values of α, which shows that
the stability of the linear chain configuration is lower for
parabolic confinement. However, for low densities (η < 1),
the one-chain configuration is the most stable state for α � 2.

For α > 2, the single-chain configuration is unstable for any
value of the particle density and the strength of the confinement
potential. We found the distance between the two chains as a
function of the particle density. With increasing density, a first-
order phase transition is found to the four-chain configuration.

For α < 2, we found analytically no continuous zigzag
configuration irrespective of the interparticle potential. The
instability of the single-chain configuration occurs through the
expulsion of single particles from the chain to y �= 0 positions.

The instability point for α = 2 is given by υc = η
2/(n+2)
c ,

which becomes an almost linear relation, i.e., υc ∼ ηc for α =
1 and n = 1.

In a future work, we plan to generalize the present analysis
to the quantum regime. For the special case of electrons
confined by a parabolic potential, i.e., α = 2, n = 1, and
λ = ∞, such an analysis was presented by Meyer et al.30,31

Subsequently, the strongly correlated regime, which results in
Wigner crystal physics in quantum wires, was addressed in
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J. E. GALVÁN-MOYA AND F. M. PEETERS PHYSICAL REVIEW B 84, 134106 (2011)

Ref. 32. Such a quantum analysis will address the effect of
quantum statistics of the particles and the effect of quantum
fluctuations on the zigzag transition.
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