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Nyquist-Shannon sampling theorem applied to refinements of the atomic pair distribution function
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We have systematically studied the optimal real-space sampling of atomic pair distribution (PDF) data by
comparing refinement results from oversampled and resampled data. Based on nickel and a complex perovskite
system, we show that not only is the optimal sampling bounded by the Nyquist interval described by the
Nyquist-Shannon (NS) sampling theorem as expected, but near this sampling interval, the data points in the PDF
are minimally correlated, which results in more reliable uncertainty estimates in the modeling. Surprisingly, we
find that PDF refinements quickly become unstable for data on coarser grids. Although the Nyquist-Shannon
sampling theorem is well known, it has not been applied to PDF refinements, despite the growing popularity of
the PDF method and its adoption in a growing number of communities. Here, we give explicit expressions for
the application of NS sampling theorem to the PDF case, and establish through modeling that it is working in
practice, which lays the groundwork for this to become more widely adopted. This has implications for the speed
and complexity of possible refinements that can be carried out many times faster than currently with no loss of
information, and it establishes a theoretically sound limit on the amount of information contained in the PDF
that will prevent over-parametrization during modeling.
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I. INTRODUCTION

Atomic pair distribution function (PDF) analysis of x-ray
and neutron powder diffraction data is becoming prominent in
structure analysis of complex materials due to an increasing
interest in studying nanoscale structural order.1 Details of the
atomic arrangement play a crucial role in determining the
physical properties of materials and for crystalline materials,
we have powerful crystallographic methods for solving the
structure with high precision.2,3 Equivalent methods are lack-
ing for nanomaterials such as nanoparticles and nanoporous
materials,1 which limits our ability to optimize and fully
exploit their interesting properties. Furthermore, it is becoming
increasingly apparent that nanoscale fluctuations exist in many
bulk materials and that these also are important factors in
the properties of those materials.4–7 The PDF technique has
emerged as a powerful tool for extracting quantitative infor-
mation from these materials when high-performance, modern
sources of high-energy x rays and neutrons are coupled with
emerging data modeling software.8–10 For example, details
of nanoparticle structure, defects, size, and strain state can
be quantitatively extracted from the smallest nanoparticles,11

nanosized domains can be studied in melt-quenched pharma-
ceutical drugs,12 species intercalated into nanoporous hosts
can be characterized,13,14 and hidden symmetry breaking
nanodomains can be detected in technologically important
bulk materials.6,7 As the community of users grows, dedicated
experimental facilities are appearing for PDF studies15,16 as
well as specialized software.17–22 As the PDF is becoming
a recognized tool for structure characterization in a growing
number of scientific communities,7,12,23–25 it is important to
reevaluate and strengthen our analysis techniques.

The PDF is a sine Fourier transform of properly corrected
and normalized x-ray or neutron powder diffraction data. One
of the user-specified parameters in the Fourier transform step
is the grid of points on which the PDF is calculated. Currently,

the sampling grid for PDFs is typically chosen in an ad
hoc way, for example, to give a visually smooth PDF. The
information content in the PDF does not increase for grid
intervals above a critical value given by the Nyquist-Shannon
(NS) sampling theorem. If the data are oversampled, not only is
no new information introduced, the points in the PDF become
statistically correlated,26,27 which leads to improper estimates
of uncertainties in refinement parameters as well as slowing
down structural refinements.28 Despite this, in practice, the NS
theorem is rarely, if ever, taken into account in PDF modeling.
There is no examination in the literature of how it applies
explicitly to the PDF. Such a treatment for the EXAFS case29

has had a large impact on how modeling is practiced in that
field and we hope that this treatment will similarly influence
practices in the growing PDF community.

We have systematically studied through modeling the
optimal PDF sampling interval for PDF data and demonstrate
that it is consistent with the value predicted by the NS
sampling theorem.30 This gives the minimum amount of
information we need to completely specify a PDF from
a given measurable scattering function. When this optimal
sampling is enforced, we see significant speedup in our PDF
refinements accompanied by a small increase in estimated
uncertainties due to the reduction of statistical correlations
among the PDF points. When the data are made sparser than
the optimal sampling interval, the refinement results rapidly
become unreliable due to aliasing.

II. THE PDF METHOD

The PDF method is a total scattering technique for
determining local order in nanostructured materials.27 The
technique does not require periodicity, so it is well suited
for studying nanoscale features in a variety of materials.8,9

The experimental PDF, denoted G(r), is the truncated Fourier
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transform of the total scattering structure function, F (Q) =
Q[S(Q) − 1]:31

G(r) = 2

π

∫ Qmax

Qmin

F (Q) sin(Qr) dQ, (1)

where Q is the magnitude of the scattering momentum. The
structure function S(Q) is extracted from the Bragg and diffuse
components of x-ray, neutron, or electron powder diffraction
intensity. For elastic scattering, Q = 4π sin(θ )/λ, where λ

is the scattering wavelength and 2θ is the scattering angle.
In practice, values of Qmin and Qmax are determined by
the experimental setup and Qmax is often reduced below the
experimental maximum to eliminate noisy data from the PDF,
since the signal-to-noise ratio becomes unfavorable in the
high-Q region.

The PDF gives the scaled probability of finding two atoms
in a material a distance r apart and is related to the density of
atom pairs in the material.27 For a macroscopic scatterer, G(r)
can be calculated from a known structure model according to

G(r) = 4πr [ρ(r) − ρ0] ,
(2)

ρ(r) = 1

4πr2N

∑
i

∑
j �=i

bibj

〈b〉2
δ(r − rij ).

Here, ρ0 is the atomic number density of the material and ρ(r)
is the atomic pair density, which is the mean weighted density
of neighbor atoms at distance r from an atom at the origin.
The sums in ρ(r) run over all atoms in the sample, bi is the
scattering factor of atom i, 〈b〉 is the average scattering factor,
and rij is the distance between atoms i and j .

In practice, we use Eq. (2) to fit the PDF generated
from a structure model to a PDF determined from exper-
iment. For this purpose, the delta functions in Eq. (2) are
Gaussian-broadened and the equation is modified to account
for experimental effects. PDF modeling is performed by
adjusting the parameters of the structure model, such as
the lattice constants, atom positions, and anisotropic atomic
displacement parameters to maximize the agreement between
the theoretical and an experimental PDF. This procedure is
implemented in PDFGUI,17 which is the program used in this
study. PDFGUI uses the Levenberg-Marquardt algorithm32,33

to locally optimize the model structure. The algorithm also
provides estimates of uncertainties on those parameters upon
convergence, though, strictly, the estimates are only accurate if
the data are independent and the statistical errors are Gaussian
distributed and properly determined.28

III. THE NYQUIST-SHANNON SAMPLING THEOREM

The Nyquist-Shannon sampling theorem specifies an upper
bound on the sampling interval of a discretized signal in the
time domain such that the sample contains all the available
frequency information from the signal. This upper bound is
π/�ω, where �ω is the angular frequency bandwidth of the
signal.30 The quantity π/�ω is commonly referred to as the
Nyquist interval. A continuous or discrete signal sampled on
a grid finer than the Nyquist interval can be, in principle,
perfectly reconstructed via interpolation, since the sampling
does not compromise the information content of the signal.

In relation to the PDF, the angular frequency domain is Q

space and we are interested in sampling in r space, the analog
of the time domain. The frequency information is specified
by F (Q) [see Eq. (1)], which has bandwidth Qmax. (The
sampling theorem as presented in Shannon’s paper deals with
signals having positive and negative frequency components.
The bandwidth is defined as the maximum absolute frequency
value. Mathematically, F (Q) is an odd function [see Eq.
(15) in Ref. 31], a fact we use when transforming F (Q) to
G(r) [Eq. (1)]. The “full” spectrum of F (Q) that includes the
negative-frequency branch can be calculated from the positive-
frequency branch, and spans the range [−Qmax,Qmax]. Qmin

does not enter into this, since we enforce F (Q < Qmin) = 0
during modeling.31) This gives a Nyquist interval of

drN = π/Qmax. (3)

The sampling theorem states that the PDF can be sampled on
any grid with intervals shorter than this without losing any
information from F (Q).

Whittaker34 and Shannon30 describe an interpolation for-
mula for reconstructing a signal from samples taken on a grid
with interval, dr , less than the Nyquist interval. In terms of the
PDF, the reconstruction formula is

G′(r) =
∑

n

G(ndr)
sin[π (r/dr − n)]

π (r/dr − n)
, (4)

where n iterates over the points of the sample. Later we will
demonstrate the benefits of modeling the PDF on an optimally
sampled grid. This formula allows us to interpolate a model
PDF onto a denser grid, e.g., for convenient visual inspection.
In practice, the sampled data must extend beyond the desired
range to avoid reconstruction errors in the high-r region.

A. Aliasing

Sampling G(r) at or coarser than the Nyquist interval results
in aliasing. This term refers to how, in undersampled data, high
Q information in F (Q) can masquerade as intensity at lower
Q. This is demonstrated for the PDF by considering its Fourier
series over −rmax � r � rmax. We choose this range because
it lets us consider the sine-Fourier series [G(r) is odd] and
because the PDF over this range contains the same information
as the PDF over 0 � r � rmax. Now,

G(r) =
mmax∑
m=1

bm sin(Qm r),

where Qm = mπ/rmax. Since G(r) contains no frequency
components greater than Qmax, Qm � Qmax, and thus mmax �
Qmaxrmax/π .

Consider the mth term of the series sampled on the
interval dr = π/Q′, where Q′ and m are chosen such that
Q′ � Qm � Qmax. For the nth sample, the contribution to
the Fourier series is bm sin(ndr Qm). Given the relationship
between Qm and Q′, ndrQm � n(π/Q′)Q′ = nπ . Thus we
can represent the argument as nπ + (Qm − Q′) ndr = 2nπ +
(Qm − 2Q′) ndr , so that the mth frequency component of
the sample looks like −bm sin[(2Q′ − Qm)ndr] for all n. The
contribution to G(r) from F (Q) at Q = Qm therefore appears
in G(r) as if it came from Q = 2Q′ − Qm in F (Q). In F (Q),
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FIG. 1. (Color online) Demonstration of aliasing in F (Q). (Top)
Experimental nickel F (Q) with Qmax = 29.9 Å

−1
featuring regions

above and below Q′ = 20.9 Å
−1

. (Center) Experimental nickel F (Q)
with the region above Q′ “folded” over to lower Q. (Bottom)
Aliased F (Q) obtained by sampling the PDF from the experimental
F (Q) on a grid with interval dr = 0.15 Å and Fourier transforming
back to F (Q) (solid line). This sampling interval is larger than the
Nyquist interval (drN = 0.105 Å) and corresponds to Q′ = π/dr =
20.9 Å

−1
. Overlaid is the F (Q) obtained by adding the unfolded and

folded segments of the experimental F (Q) (dashed line). Note that
the Q axis starts at 10 Å

−1
.

the signal above Q′ gets “folded” back to lower Q and overlaps
with the signal in the range 2Q′ − Qmax � Q � 2Q′. This
explains how information in F (Q) is progressively lost in
G(r) if it is calculated on grids that are too coarse. The more
undersampled the data the greater the Q range that is folded
back and the greater the loss of information in G(r) due to
overlapping signals from different Q values. The effect is
illustrated in Fig. 1.

We note that the case where the data are sampled precisely
on a grid with the Nyquist interval, dr = drN , then Q′ =
Qm = Qmax and there is no folding. However, there is still
loss of information, since sin(Qmndr) = 0, and so the mth
Fourier amplitude bm can take on any value. This is why a strict
inequality between the sampling and the Nyquist intervals is
required to avoid aliasing: dr < drN .

Aliasing implies that the sampled signal does not uniquely
identify its source. Since some frequency components alias
others, the PDF could represent the aliased F (Q) just as well as
the unaliased one. When back-Fourier transforming a sparsely
sampled G(r) into Q space, the aliased F (Q) will result. The
sampling theorem states that aliasing does not occur when
sampling at an interval smaller than the Nyquist interval.

B. Structural information in the PDF

The sampling theorem determines the number of data points
required to reconstruct a PDF signal from samples, which is

N = �r/drN = �rQmax

π
, (5)

where �r is the extent of the PDF in r space. What is
more relevant to PDF modeling is the amount of structural
information in the PDF. N is an upper bound on this, since we
cannot extract more independent observations of the structure

than raw information from the signal. Given perfect data and
the proper model, one can meaningfully extract N structural
parameters from a PDF signal.

Factors such as noise and peak overlap can obscure the
structural information in the PDF and therefore determine
whether N is a good estimate of the amount of structural
information in the PDF. For example, consider a situation
where the PDF contains a single peak, but has a very large
Qmax. In this case, a complete structure model cannot be
obtained from fitting this single peak, no matter how large
N is. In another extreme case, imagine that the majority of
PDF peaks have a single point or no points due to a small
Qmax. In this situation, the position and shape of the peaks
cannot be determined with certainty.

In practice, the amount of structural information in the PDF
cannot be precisely known. To perform a reliable refinement,
the signal-to-noise ratio must be favorable,27 the PDF peaks
must be apparent, and the fit range must be such that the
structural features one is seeking to model are accessible. In
addition to this, we recommend using Rietveld refinement
guidelines when refining the PDF, which advise that the ratio
of independent observations to the number of refinement pa-
rameters should be around three to five, preferring the latter.35

IV. EXPERIMENTAL VERIFICATION

Powder diffraction data were collected from nickel (Ni)
and LaMnO3 (LMO) samples. The nickel data were collected
using the rapid-acquisition pair distribution function (RaPDF)
technique36 with synchrotron x rays on beamline 6-ID-D at the
Advanced Photon Source at Argonne National Laboratory. The
sample was purchased from Alfa Aesar. The powdered sample
was packed in a flat plate holder with thickness of 1.0 mm
and sealed between Kapton tapes. Data were collected at room
temperature in transmission geometry with an x-ray energy
of 98.001 keV (λ = 0.12651 Å). An image plate camera
(Mar345) with diameter of 345 mm was mounted orthogonally
to the beam with a sample-to-detector distance of 178.4 mm.

The raw 2D data were reduced to 1D integrated in-
tensity profiles using the FIT2D program.37 Corrections for
environmental scattering, incoherent and multiple scattering,
polarization and absorption were performed according to the
standard procedures27 using PDFGETX218 to obtain the PDF
with Qmax = 29.9 Å

−1
. This corresponds to drN = 0.105 Å.

The LMO data were collected using time-of-flight neutron
diffraction at the NPDF instrument at the Los Alamos Neutron
Scattering Center at Los Alamos National Laboratory. The
LMO sample preparation and data collection have been de-
scribed in detail elsewhere.38 The LMO PDFs were produced
with PDFGETN20 using Qmax = 32.0 Å

−1
. This corresponds to

drN = 0.0982 Å. Note that PDF sampling intervals coming
from the NS theorem are around drN = 0.1 Å, which is ten
times larger than the value of dr = 0.01 Å, which is default in
PDFGETN20 and PDFGETX2.18

In each case, experimental PDFs were generated with
rmax = 20 Å using dr = 0.01 Å. PDF data on sparser grids
were created by removing points from this PDF in order to get
the desired sampling interval. Pruning the data in this way is
equivalent to recalculating the PDF from F (Q) on the sparser
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grid. We produced 31 data sets with varying dr against which
models were refined.

We took as a reference data set the PDF generated on
the default grid of dr = 0.01 Å and structural models were
refined to the data. We then refined the same models to data
sets on sparser grids. We define �p(dr) for a parameter p

as the absolute difference between the value of the parameter
p refined for the data set sampled at interval dr and that
refined for the reference data set. The accuracy of the refined
parameters becomes unacceptable when �p(dr) exceeds the
statistical uncertainty on the difference, σ [�p(dr)]. This
is given by σ [�p(dr)] =

√
σ 2[p(dr)] + σ 2[p(0.01)], where

σ [p(dr)] and σ [p(0.01)] are the estimated uncertainties on
parameter p taken from the refinement for the data set sampled
at interval dr and the reference data set, respectively. To
determine if a refined parameter extracted from a sparse
data set is accurate, we define a parameter quality factor
Qp(dr) = �p(dr)/σ [�p(dr)]. If Qp(dr) is less than or equal
to one, the parameter value refined from the data set sampled
at interval dr is within the expected uncertainty of the best
estimate and is considered accurate. If Qp(i) is greater than
one, the change in the parameter’s value is greater than the
expected uncertainty, and the result is considered unreliable.

The parameter quality measure Qp(i) is biased due to a
couple of assumptions. First, by comparing all results with
the refinement of the undiluted data, we assume that this
refinement gives the best estimate for each parameter. The
validity of this assumption is dependent on the systematic bias
of the refinement results due to the quality of the data and the
suitability of the refinement model. Since this bias is present
in the diluted data as well, its effects should be negligible.
Second, we assume that the uncertainty value derived from
the refinement results is accurate. We discuss later that the
uncertainty values derived from refinements of oversampled
data sets are too small. This inflates the estimated quality
factor when the data are oversampled, but does not invalidate
the accompanying results.

The refinements from unaltered and sampled data sets
were performed identically over a range from rmin = 0.01 Å
to rmax = 20.0 Å using the program PDFGUI.17 For the Ni
data, the lattice parameter, isotropic atomic displacement
parameter (ADP), dynamic correlation factor, scale factor,
and resolution factor were varied in the refinements. In the
LMO fits, three lattice parameters, four isotropic ADPs (one
for each of the La, Mn, and axial and planar oxygen atoms),
and seven fractional coordinates were varied along with the
scale and correlation factors (see Ref. 39 ). From Eq. (5),
we get that refinements over this range, �r = 19.99 Å, yield
NNi = 191 and NLMO = 203. For the Ni data set, we have
an observation-to-parameter ratio (OPR) greater than 30 and
for LMO, the OPR is greater than 10. The refinements are
therefore comfortably overconstrained and the optimization
problem is well conditioned.

Various refinements were timed to measure the speedup in
the program execution due to sampling.

V. RESULTS

When the Ni and LMO data are made sparser, the PDF
profiles appear less smooth and the detailed shape of the peak

FIG. 2. (Color online) Fits to sampled Ni PDFs. (a) Unaltered data
with dr = 0.01 Å. (b) Sampled data with dr = 0.1 Å. (c) Sampled
data with dr = 0.3 Å. The data are shown as circles, the fits are the
lines through the data, and the difference is shown offset below. All
fits are of similar quality, despite the poor visual quality of the data in
panels (b) and (c). The data shown in panel (c) are undersampled and
produced unacceptably uncertain results, though this is not apparent
from the difference curve.

profiles becomes less apparent. This is shown in Figs. 2 and
3. The data in panel (a) in both figures are on the reference
grid (dr = 0.01 Å) and are both smooth and have well defined
Gaussian-like peaks.27 The data in panel (b) are sampled with
dr = 0.1 Å, close to the Nyquist interval, and are not nearly
as smooth, though the peaks are still well defined. Lastly, the
data in panel (c) are sampled with dr = 0.3 Å, where there
is apparent loss of information. The refined parameters from
these fits are given in Tables I and II. Note that the uncertainty
in the refined parameters increases from dr = 0.01 Å to dr =
0.1 Å, although each of these data sets produce acceptable
results.

In Fig. 4, we show the parameter quality values Qp(i)
plotted against the sampling interval. The quality factor is
satisfactory for data sets that are sampled with grids close to
the reference data set. This indicates that these refinements
are producing the same parameter values. As the Nyquist
interval is crossed (indicated in each case by the vertical dashed
line), various quality factors rapidly become unacceptable. The
figures dramatically show how well the NS theorem is obeyed.
Identical refinements (within the uncertainties) are obtained
on all sampling grids finer than drN , but the refinements
rapidly degrade on coarser grids. The computation time of
the refinements decreases rapidly with increasing sampling
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FIG. 3. (Color online) Fits to sampled LaMnO3 PDFs. (a) Un-
altered data with dr = 0.01 Å. (b) Sampled data with dr = 0.1 Å.
(c) Sampled data with dr = 0.3 Å. The data are shown as circles, the
fits are the lines through the data, and the difference is shown offset
below. All fits are of similar quality, despite the poor visual quality
of the data in panels (b) and (c). The data shown in panel (b) and (c)
are undersampled, and the data in panel (c) produced unacceptably
uncertain results. Note that in panel (c) several peaks are not resolved.

interval following a 1/dr law, as evident by the green line in
the figure.

VI. DISCUSSION

Figure 4 verifies that the onset of unreliable refinements
coincides with the Nyquist interval. The refined parameter
values are all acceptable, and largely independent of the
sampling interval in the oversampling region (dr < drN ).

TABLE I. Parameters from Ni refinements using data with various
dr . The Nyquist interval drN is 0.105 Å. Here, a denotes the lattice
parameter, Uiso the isotropic ADP, δ2 the vibrational correlation
parameter, “scale” the data scale, and Qdamp the experimental
resolution factor.

dr (Å) 0.01 0.10 0.12 0.30

Rw 0.112 0.120 0.119 0.084
a (Å) 3.53159(2) 3.53158(6) 3.53158(6) 3.53186(10)

Uiso (Å
2
) 0.005446(7) 0.00545(2) 0.00543(2) 0.00570(4)

δ2 (Å
2
) 2.25(2) 2.20(5) 2.15(5) 2.2(2)

scale 0.7324(7) 0.733(2) 0.734(3) 0.761(4)

Qdamp (Å
−1

) 0.06307(11) 0.0632(4) 0.0634(4) 0.0653(7)

TABLE II. Parameters from LaMnO3 refinements using data with
various dr . The Nyquist interval, drN , is 0.0982 Å. Here, a, b, and c

denote the lattice parameters, Uiso is the isotropic ADP (one for each
primitive atom), x, y, and z are the fractional atomic coordinates, δ2

is the vibrational correlation parameter, and “scale” the data scale.

dr (Å) 0.01 0.10 0.12 0.30

Rw 0.135 0.138 0.143 0.103
a (Å) 5.5394(2) 5.5394(6) 5.5393(7) 5.5362(14)
b (Å) 5.7441(2) 5.7443(7) 5.7442(8) 5.7536(13)
c (Å) 7.7059(2) 7.7059(9) 7.7054(10) 7.697(2)

δ2 (Å
2
) 2.44(3) 2.38(9) 2.35(9) 2.49(14)

scale 0.7941(11) 0.794(3) 0.795(4) 0.803(6)
La
x 0.99234(10) 0.9923(3) 0.9926(4) 0.9917(6)
y 0.04828(8) 0.0482(2) 0.0481(3) 0.0469(5)

Uiso (Å
2
) 0.00508(4) 0.00506(13) 0.0052(2) 0.0055(2)

Mn
Uiso (Å

2
) 0.00376(7) 0.0038(2) 0.0038(2) 0.0024(3)

O1

x 0.07300(11) 0.0730(4) 0.0730(4) 0.0739(7)
y 0.48625(10) 0.4862(3) 0.4864(4) 0.4874(7)

Uiso (Å
2
) 0.00682(8) 0.0067(3) 0.0068(3) 0.0075(3)

O2

x 0.72515(8) 0.7251(2) 0.7252(3) 0.7247(5)
y 0.30682(8) 0.3068(3) 0.3069(3) 0.3072(5)
z 0.03876(6) 0.0388(2) 0.0389(2) 0.0399(3)

Uiso (Å
2
) 0.00689(4) 0.0069(2) 0.0068(2) 0.0062(2)

Figures 2–4 indicate that visual appearance alone is not a
good indicator of data quality. From Tables I and II, we see a
decrease in Rw, the goodness of fit parameter, for the largest
sampling interval. This apparent improvement in fit quality
is a consequence of having fewer points to fit with the same
number of fitting parameters. It is important to note that even at
the extreme sampling interval of dr = 0.3 Å the refinements
are evidently overconstrained, with an OPR near 11 for the
Ni refinement and near four for the LMO refinement. These
subtle contradictions emphasize the importance of observing
the Shannon-Nyquist sampling theorem in PDF analysis.

The sampling theorem tells us that the information content
in the data does not change as long as we sample on a
grid finer than the Nyquist interval. We expect to and do
refine the same parameters from such samples. As the data
are sampled onto grids coarser than the Nyquist interval, we
expect to lose structural information gradually. In contrast,
refined values of the parameters become unreliable quickly as
the Nyquist interval is exceeded. This is somewhat surprising,
since the refinements are overconstrained even when sampled
at three times the Nyquist interval. In Fig. 4, we see the
quality of the refined parameters diverge well before this point.
Intuition would tell us that it is possible to lose a considerable
quantity of information by undersampling before refinements
become unstable. This is not observed. The degradation of the
refinements is not caused solely by information loss, but by
information corruption due to aliasing and the current results
show that this has a dramatic effect on the quality of the refined
parameters.
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FIG. 4. (Color online) Refined parameter quality (open symbols)
and refinement times (solid circles) measured using sampled Ni (top)
and LaMnO3 (bottom) data. The dotted horizontal line shows the
cutoff between acceptable and unacceptable parameter quality. The
dashed vertical line shows the value of drN predicted by the sampling
theorem. For dr values larger than this, the quality of some parameters
transition into the unacceptable region. The time values demonstrate
the decrease in refinement time with increasing dr with more than a
seven-fold speedup near drN . The solid curve through the time values
is fit to the form a + b/dr .

Aliasing has two effects on a PDF signal, as described in
Sec. III A. Foremost, aliasing lowers the effective maximum
Q value in F (Q) from Qmax to Q′ = π/dr . This creates the
obvious effect of lower resolution in the PDF, as seen in Figs. 2
and 3. In extreme cases, this will lead to poorly defined peaks
in the PDF. Less obviously, sampling on a grid coarser than
the Nyquist interval allows for the possibility that the PDF has
originated from a different, aliased, F (Q) as shown in Fig. 1.
When calculating the model PDF, we enforce F (Q > Qmax) =
0. When there is aliasing, the structure function resulting from
G(r) has F (Q > π/dr) = 0 and extra intensity below π/dr .
Thus, aliasing results in finding biased parameters that describe
the corrupted structural information. This is true regardless of
the optimization algorithm used.

The estimated uncertainties on the fitting parameters for
dr in the region of stable refinements are dependent on
the sampling interval. We see from Tables I and II that
the uncertainties on the parameters increase when estimated
from the data sampled near the Nyquist interval compared to
the reference data. The sampling theorem gives the number
of data points necessary to fully represent the PDF. Any
data sampled on a grid finer than the Nyquist interval are
necessarily redundant. If a set of fitting parameters reproduces
a particular set of points well on an optimal grid, those
parameters will also reproduce the associated redundant points

well. By not taking into account the statistical correlations
between data points,26 as in this study, this results in the fitting
program underestimating uncertainty values on parameters. In
principle, this can be overcome by propagating a full N × N

variance-covariance matrix through the Fourier transform,26

accounting for the statistical correlations between all points.
This is computationally expensive and is not generally done.
As the sampling interval increases (or equivalently as Qmax

increases for a given sampling grid) the variance-covariance
matrix becomes more banded around the diagonal, with
significant correlations appearing only between points near
to each other in the PDF. A larger sampling grid therefore
reduces the statistical correlations between points in the PDF.
Refining optimally sampled data at just below drN , therefore,
not only results in correctly refined parameters, but also the
best uncertainty estimates possible, in the absence of a full
treatment of the covariances.

A fortunate side effect of refining optimally sampled data
is a decreased refinement time. Shown in Fig. 4 is a plot of
refinement times for some chosen sampling intervals. The
trend in the plot shows that refinement time is proportional
to the inverse of dr (shown as the broad solid line), or directly
proportional to the number of data points, with a constant
offset. This trend reflects the fact that the calculation of the PDF
grows linearly with the number of sample points. Carrying
out refinements on optimally sampled data gives a significant
speed increase compared to the reference data; in this case, the
speed increases by more than a factor of seven.

These observations indicate that PDF refinements should be
performed on the sparsest grid possible with sampling interval
less than the Nyquist interval. To produce an esthetically
pleasing presentation of the PDF, one can always interpolate
onto a finer grid using the Whittaker-Shannon interpolation
formula [see Eq. (4)].

VII. CONCLUSIONS

The purpose of this research was to demonstrate the
consequences of the Nyquist-Shannon sampling theorem as
they apply to the PDF. We show that the quality of refined
parameters diverges when sampling the PDF at intervals
larger than the Nyquist interval, which is the result of
aliasing. Furthermore, we show that the estimated uncertainties
of refined parameters are more reliable when the PDF
is optimally sampled. Statistically reliable uncertainties on
refined parameters can be obtained by taking into account the
correlations between all the points in G(r),26 but this comes at
the computational expense of inverting a large error matrix.
By optimally sampling the PDF, the correlations among
points in the PDF are minimized, while preserving all the
available structural information. This gives improved uncer-
tainty estimates without costly computation, and may expedite
refinements when the PDF can be computed over fewer points.

The Nyquist-Shannon sampling theorem gives an upper
bound on the amount of structural information contained in
an experimental PDF. This determines the Q and r extents
that are required for a model refinement to be overconstrained.
Oversampling the PDF does not add more information to a
refinement, and therefore provides no benefit other than an
esthetically pleasing visualization. This result emphasizes the
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importance of collecting diffraction data to high Q when it is
to be used for PDF modeling, since a larger Qmax decreases the
Nyquist interval and makes accessible more structural details.
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