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Model for large arrays of Josephson junctions with unconventional superconductors
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We study large arrays of mesoscopic junctions made out of gapless unconventional superconductors where the
tunneling processes of both particle-hole and Cooper pairs give rise to a strongly retarded effective action which,
contrary to the standard case, cannot be readily characterized in terms of a local Josephson energy. This action
can be relevant, for example, to grain boundary and c-axis junctions in layered high-Tc superconductors. By
using a particular functional representation, we describe emergent collective phenomena in this system, ascertain
its phase diagram, and compute electrical conductivity.
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Quantum dynamics of ultrasmall, normal, and supercon-
ducting (Josephson) junctions (JJ) has long been a field
of active theoretical1 and experimental2 research. Recently,
interest in this topic has been rekindled by a number of fresh
ideas, such as the proposal of a “floating” phase in which
context the effects of (spatially) long-range correlations were
investigated at a greater length.3

Notably, though, most of the previous theoretical studies
were limited to the JJs between conventional, fully gapped,
s-wave superconductors. Although the case of the d-wave
superconducting cuprates, such as biepitaxial grain boundary
(in-plain) JJs in Yttrium Barium Copper Oxide (YBCO) or
intrinsic c-axis (vertical) ones in Bi2212, has been rather
extensively studied as well, all such analyses would routinely
resort to a phenomenological description similar to that of the
gapped (s-wave) superconductors.4

In contrast, the microscopic analysis of a single d-wave
JJ carried out in Refs. 5 and 6 showed that the processes
of both particle-hole and Cooper pair tunneling can give
rise to equally nonlocal (in the time domain) terms in the
effective action, thereby invalidating the very notion of a local
Josephson energy.

In the present work we consider large arrays of such JJs
and study possible effects of the previously ignored strong
retardation intrinsic for this system. In particular, we analyze
its phase diagram and transport properties, thereby predicting
the possible existence of a new phase and demonstrating the
need for using this microscopically justified as opposed to
the phenomenological description of the unconventional JJs,
including the experimentally relevant high-Tc ones.

The partition function of a generic JJ array reads (hereafter
h̄ = kB = 1)1
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dτ ′{α(τ − τ ′) cos t[φij (τ ) −φij (τ ′)]

+β(τ − τ ′) cos[φij (τ ) + φij (τ ′)]}, (1)

where φij (τ ) = φi(τ ) − φj (τ ) is the phase difference across
the link 〈ij 〉, while the first two terms represent the effects of
self- and mutual capacitances.

The double time integrals in (1) are governed by the kernels
α(τ ) and β(τ ), corresponding to the particle-hole and Cooper

pair tunneling processes, respectively. To the leading order in
the tunneling matrix element T (k,k′) they are given by the
expressions1

[
α(τ )

β(τ )

]
= −2

∫
dDkdDk′

(2π )2D
|T (k,k′)|2

[ Gk(τ )Gk′(−τ )

Fk(τ )Fk′(−τ )

]
,

(2)

where G and F are the normal and anomalous electron Green
functions, correspondingly.

In a grainy superconductor the applicability of the effective
“phase-only” model (1) can generally be justified once the
superconducting phase coherence length becomes large as
compared to the grain’s size, which happens to be the case,
e.g., in the vicinity of a phase transition.

However, considering that the coherence length of the su-
perconducting gap’s amplitude (which might be quite different
from that of the phase) can be quite small (as it is in, e.g.,
the high-Tc materials), Eq. (2), derived under the assumption
of a spatially homogeneous amplitude, may be affected by
disorder and/or boundary roughness. In this case a more
detailed analysis of the quasiparticle dynamics near a tunneling
interface in the framework of, e.g., the Usadel equation (see
Ref. 1) might be required for properly computing the kernels
α(τ ) and β(τ ). Nonetheless, the long-time asymptotic behavior
of these kernels is determined by the scaling properties of the
Green functions at small energies and is expected to remain
robust against the gap’s inhomogeneity.

The α term describes (non-Gaussian) dissipation due to
the Andreev quasiparticle tunneling whose effects have been
extensively discussed in the previous works,1 while the β

term represents the processes of (in general, nonsynchronous)
pair tunneling. In the “gapful” conventional (s-wave) super-
conductors, it decays as β(τ ) ∝ e−�|τ |, thereby effectively
reducing the last term in (1) to a single time integral
EJ

∫ 1/T

0 dτ cos 2φij (τ ) of what can then be identified as the

local Josephson energy EJ = ∫ 1/T

0 dτβ(τ ).
By contrast, in the case of an unconventional (necessarily,

“gapless”) superconductor one generally obtains strongly
retarded kernels,

α(τ )/α = β(τ )/β = 1/τ 2D−η, (3)

although the prefactor in the β kernel still vanishes for
any factorizable matrix element, |T (k,k′)|2 = f (k)f (k′), if
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symmetry of the function f (k) under the lattice group is
different from that of the gap. Nonetheless, one can obtain
a nontrivial result (3) for β(τ ) in the presence of a nonfactor-
izable term |T (k,k′)|2 = g(�k − �k′), the exponent η being its
scaling dimension [g(λ�q) = g(�q)/λη].

In the two-dimensional case (D = 2) and under the con-
ditions of momentum conservation implying η = D, both
the tunneling terms decay as ∝1/τ 2, as found previously.5,6

A short-time divergence can be naturally regularized by
substituting τ → √

τ 2 + �−2, where the cutoff scale � is set
by the maximal superconducting gap in the bulk.

Conceivably one can encounter even longer-ranged corre-
lations (2D − η < 2) due to, e.g., resonant tunneling through
zero energy states supported by certain tunneling configura-
tions, such as that of the d0/dπ/4 in-plane grain boundary.7

However, for the sake of concreteness, in this work we focus
on the above case of 2D − η = 2, where the coupling constants
α and β appear to be dimensionless numbers of order unity,
the former being proportional to the normal state conductance.

Turning now to the effective action (1), we find that the
strongly retarded nature of the tunneling terms renders a cus-

tomary dual representation based on the Villain transformation
of the local Josephson term inapplicable, thereby making this
model unsuitable for the standard mapping onto an effective
vortex plasma.1 Therefore a well-known description of the
different phases in terms of bound vortex-antivortex complexes
(dipoles, quadrupoles, etc.) also cannot be readily generalized
to the problem at hand, thus forcing one to take a different
approach.

To that end we introduce a bosonic field ψi(τ ) alongside
an associated Lagrange multiplier field enforcing the local
constraint ψi(τ ) = eiφi (τ ). This approach should be contrasted
with the previously developed treatments of the conventional
(local) Josephson term (see, e.g., Ref. 8) where a constrained
bosonic variable would be used to represent the pair field
e2iφi (τ ). Indeed, an attempt to implement this technique in
the present (nonlocal) case would require one to work with a
technically intractable bilocal composite operator ψi(τ )ψi(τ ′).

By integrating out the phase variable φi , keeping the leading
terms of the corresponding cluster expansion (cf. with Ref. 8),
and then integrating out the Lagrange multiplier field, one
arrives at the partition function

Z =
∫

Dψ
†
i (τ )Dψi(τ )Dλi(τ ) exp

(
−

∑
〈ij〉

∫ 1/T

0
dτ1

∫ 1/T

0
dτ2ψ

†
i (τ1)

[
W−1

ij (τ1 − τ2) + δijλi(τ1)δ(τ1 − τ2)
]
ψj (τ2)

+α(τ1 − τ2)ψ†
i (τ1)ψ†

j (τ2)ψi(τ2)ψj (τ1) + β(τ1 − τ2)ψ†
i (τ1)ψ†

i (τ2)ψj (τ2)ψj (τ1) + H.c.

)
, (4)

where λi(τ ) is an additional Lagrange multiplier enforcing
the auxiliary constraint ψ

†
i (τ )ψi(τ ) = 1. (The latter is not

automatically satisfied unless the integration over φi(τ ) is
performed exactly.)

The correlation function appearing in Eq. (4),

Wij (τ ) = 〈eiφi (τ )e−iφj (0)〉

= exp

[
−

∫
dωdDk

(2π )D+1

1 − cos(ωτ − �k �Rij )

ω2C(k)

]

= δij e
−Ec |τ |, (5)

is governed by the effective Coulomb energy Ec = ∫
dDk

2(2π)D+1Ck

proportional to the integral of the inverse capacitance Ck =∑
<ij> Cij e

i�k �Rij which converges, provided that the capac-
itance matrix progressively decreases with the separation
between the sites.

The frequency integral in Eq. (5) diverges for any �Rij 	= 0,
which dictates that the correlation function Wij (τ ) remains
strictly local in the real space. Also, Eq. (5) is written in
the limit of vanishing temperature, while at finite T a proper
account of large phase fluctuations with nontrivial winding
numbers makes this (as well as any bosonic) function periodic
with a period 1/T by virtue of the substitution τ → τ − T τ 2

(see Ref. 1).
At α = β = 0 one then obtains a bare (normal) Green

function

G
(0)
ij (ω) = 2δij

ω2/Ec + Ec

, (6)

while for finite α and β the quantum charge fluctuations
give rise to the corrections which can be incorporated into
the normal Gij = 〈ψiψ

†
j 〉 and anomalous Fij = 〈ψiψj 〉 Green

functions obeying the usual Dyson’s equations(
Gij

Fij

)
=

(
G

(0)
ij

0

)
+ G

(0)
ik

∑
kl

(
�kl �kl

�kl �kl

) (
Glj

Flj

)
, (7)

where both the normal �ij and anomalous �ij self-energies
can be computed as series expansions in powers of α and β.

The analysis of these expansions shows that they can be
organized according to the powers of the inverse coordination
number z (e.g., z = 2D for a simple cubic lattice). In the
leading approximation for z 
 1, the self-energies are given
by the equations

�ij (ω) =
∫

dω′

2π

{
δij

∑
l

α(ω − ω′)Gll(ω
′)

+ [α(0) + β(0) + β(ω − ω′)]Gij (ω′)

}
,

(8)

�ij (ω) =
∫

dω′

2π

[
α(ω − ω′)Fij (ω′)

+ δij

∑
l

β(ω − ω′)Fll(ω
′)

]
.

When ascertaining a general layout of the phase diagram of
the JJ array, different components of the self-energy can serve
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as emergent order parameters. As such, one can distinguish
between the local, �0 = �ii , and nonlocal, �1 = 1

z

∑
μ �i,i+μ

(here the sum is taken over the z nearest neighbors), normal,
as well the corresponding anomalous, �0 = �ii and �1 =
1
z

∑
μ �i,i+μ, self-energies.

Specifically, �1 signals the onset of a metallic behavior
(hopping between neighboring sites), �0 manifests an incipi-
ent local ψ-field pairing, �1 serves as a precursor of the pairing
coherence setting in across the entire JJ network, while a
frequency-dependent part of the �0 indicates the development
of local time correlations.

With the on-site and nearest-neighbor terms taken into
account, the spatial Fourier harmonics read(

�(ω,k)

�(ω,k)

)
=

(
�0(ω)

�0(ω)

)
+

(
�1(ω)

�1(ω)

)
γ (k) + · · · , (9)

where γ (k) = ∑
μ eikμ.

Equations (8) can be further improved by adding polariza-
tion corrections to the effective coupling terms(

α̃

β̃

)
=

(
α

β

)
+

(
�E �O

�O �E

) (
α β

β α

)(
α̃

β̃

)
, (10)

where the polarization functions �E,O(ω) =∫
dω′
2π

�E,OG(ω′)G(ω − ω′) include the vertex corrections
�E,O arising from the even and odd numbers of noncrossing
β couplings,(

�E

�O

)
=

(
1

β

)
+

(
β2 0

0 β2

) (
�E

�O

)
. (11)

With the vertex and polarization corrections included and in the
absence of any emergent order parameters, the self-consistent
equation for �0(ω) reads

�0(ω) = z

∫
dω′

2π
�̄(ω′)

α̃(ω − ω′)
G−1

0 (ω′) − �0(ω′)
. (12)

The (static and spatially uniform) expectation value of the
Lagrange multiplier λ = 〈λi(τ )〉 can then be determined from
the normalization condition

∫
dωdDk
(2π)D+1 G(ω,k) = 1.

In order to find the phase boundaries we include a
constant term �0(0) + λ into the definition of the renormalized
Coulomb energy Ẽc and expand Eqs. (8) to the first order
in the emergent self-energies �1, �0, �1, as well as the
derivative of the (linear) frequency-dependent part of �0(ω).
Threshold values of the couplings, beyond which such self-
energy components develop, are then given by the following
eigenvalue equations:

�1(ω) =
∫

dω′

2π
�[α̃(0) + β̃(0) + β̃(ω − ω′)]G2

0(ω′)�1(ω′),

�0(ω) = z

∫
dω′

2π
�β̃(ω − ω′)G2

0(ω′)�0(ω′),
(13)

�1(ω) =
∫

dω′

2π
�α̃(ω − ω′)G2

0(ω′)�1(ω′),

d�0(ω)

dω
= z

∫
dω′

2π
�α̃(ω′)G2

0(ω′)
d�0(ω′)

dω′ .

In the case of marginal (ohmic) dissipation corresponding to
2D − η = 2, the Fourier transforms of the (regularized) cou-

FIG. 1. Left panel: Onset of the intersite self-energy �1 and both
on-site and intersite anomalous self-energies �0 and �1. Right panel:
phase diagram (see text).

pling functions behave as α(ω)/α = β(ω)/β = π�e−|ω|/�,
thus resulting in only a weak frequency dependence of the
self-energy at ω � �.

The first three of the eigenvalue equations (13) then reduce
to the algebraic ones,

1 = (
�2

E + �2
O

)
(2β̃ + α̃) + 2�E�O(2α̃ + β̃),

1 = z
(
�2

Eβ̃ + 2�E�Oα̃ + �2
Oβ̃

)
, (14)

1 = �2
Eα̃ + �2

Oα̃ + 2�E�Oβ̃,

from which one determines putative locations of the critical
lines in the α − β plane (see Fig. 1).

Interestingly enough, Eqs. (14) suggest that for small α and
large z the onset of local (on-site) pairing upon increasing β

signaled by the emergent order parameter �0 	= 0 may precede
that of the metallic behavior signified by �1, while for small β

the intersite (bond) pairing �1 can only emerge at sufficiently
large α.

These observations suggest a general layout of the phase
diagram presented in Fig. 1. The region of small α and β

with �1 = �0 = �1 = 0 is interpreted as uniformly insulating
(I), while at β ∼ 1/z one expects the onset of local pairing
(LP). The latter is a potential “pseudogap” phase where the
classical Josephson effect remains suppressed by the Coulomb
blockade. At still higher values of β ∼ 1 one expects to
enter a Josephson-like phase (J) with �0,�1 	= 0 but without
global coherence. On the other hand, at α ∼ 1 the insulator
gives way to the resistive phase (R) with �1,�1 	= 0, which
supports both pair and single quasiparticle transport. Lastly,
the uniformly superconducting phase (SC) with �1,�0,1 	= 0
would be attained at α,β � 1. It should be noted, though, that
these predictions are based on the approximate analysis and
therefore not all the putative phase boundaries may actually be
present in the real system. In particular, there may or may not
be a physical distinction, other than a crossover, between the J
and LP phases, or the latter regime might be absent altogether
(as it is for z = 2).

Such caveats notwithstanding, the overall behavior appears
to be somewhat reminiscent of that in the standard (s-wave)
case: the system can be nudged closer to the superconducting
state by increasing either the Cooper pair or particle-hole
tunneling, the latter providing a mechanism for intrinsic
dissipation which quenches phase fluctuations and promotes
the classical Josephson effect.
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However, should the tunneling β term happen to decay even
more slowly (2D − η < 1), the analog of the effective Joseph-
son energy would then diverge at large τ , thus making the
infrared behavior essentially singular and possibly allowing
for some drastic changes in the phase structure.

Conducting properties of the JJ array allow one to dis-
criminate between the different phases. In particular, electrical
conductivity can be computed as σμν(ω) = 1

iω

δ2S[A]
δAμδAν

with the
use of the action of Eq. (1) in the presence of an external vector
potential Aμ, resulting in

σμν(ω) =
∫ 1/T

0
dτ

{
α(τ )

1 − eiωτ

ω
〈cos[∇μφ(τ ) − ∇νφ(0)]〉

+β(τ )
1 + eiωτ

ω
〈cos[∇μφ(τ ) + ∇νφ(0)]〉

}
+ . . . ,

(15)

where the dots stand for paramagnetic terms containing
higher powers of α and β, which are small compared to the
above (diamagnetic) contributions for α,β � 1 (cf. with the
discussion of a normal granular metal, β = 0, in Ref. 9).

The thus-obtained longitudinal conductivity reads

σμμ(ω) ≈
∫ 1/T

0
dτ

{
α(ω)

1 − eiωτ

ω

[
G2

1(0) + G2
0(τ ) + F 2

1 (τ )
]

+β(ω)
1 + eiωτ

ω

[
G2

1(0) + G2
1(τ ) + F 2

0 (τ )
]}

, (16)

and upon performing the frequency integrations, one obtains

σμμ(ω) ≈ α

[
Ec

T
e−2Ec/T

(
1 + �2

1

E2
c

)
+ �2

1

E2
c

]

+βδ(ω)
�2

1 + �2
0

Ec

, (17)

where, for the sake of simplicity, we chose T � Ec = �.
At �1 = �1 = 0 the first term in Eq. (17) reproduces the

result obtained for a granular metal.9 The emergent metallicity
order parameter �1 promotes a metal-like (temperature-
independent at T → 0) conductivity, thereby distinguishing

it from the activation-type behavior characteristic of the
insulating regime. Interestingly enough, it also contributes to
the superfluid density, alongside the local pairing �0, while
the nonlocal one �1 does not (at least, to the lowest order
in β).

It is conceivable, though, that there might be a (partial)
cancelation between the diamagnetic and paramagnetic terms
at α,β ∼ 1, as a result of which the conductivity could remain
universal along the critical lines, akin to the situation in the
conventional, s-wave, JJ networks.10 (It is worth reiterating
that in the present case that one cannot readily invoke the
charge-vortex duality on which the universality argument is
based1 due to the inapplicability of the underlying Villain
transformation.)

To summarize, in the present work we study large arrays
of unconventional JJs with effective long-range (in the time
domain) interactions resulting from the presence of gapless
quasiparticle excitations. On the technical side, the problem
presents a challenge by not being amenable to any standard
approach which exploits the intrinsic locality of the standard
Josephson effective action (see Ref. 1).

By using an alternative representation we ascertain this
system’s phase diagram which can feature all or some of the
following: insulating, uniformly superconducting, Josephson,
local pairing (pseudogap), and metallic phases, all being
associated with the corresponding emergent order parameters.
We also predict that this picture might be further altered in
the presence of resonant tunneling between zero energy states
where the phase fluctuations appear to be even longer-range
correlated in time.

Given the relevance of our work to such practically
important examples as large assemblies of high-Tc JJs,2 also
envisioned as a suitable platform for quantum computations,4

we conclude with a hope that this exploratory analysis
will prompt a further investigation into (and provide an
alternative means for interpreting the experimental data on)
such systems beyond the scope of the customary phenomeno-
logical approach adapted from earlier studies of s-wave
superconductors.
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