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Influence of impurities and surface defects on the flux-induced current in mesoscopic d-wave
superconducting loops
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We investigated the magnetic flux dependence of the supercurrent in mesoscopic d-wave superconducting
loops, containing impurities and surface defects, by numerically solving the Bogoliubov–de Gennes equations
self-consistently. In the presence of impurities, bound states arise close to the Fermi energy. In the case of a
single impurity, the flux-induced current is found to be suppressed. This can be different when more impurities
are introduced in the sample due to the quantum interference effect, which depends sensitively on the relative
position between the impurities. We further analyze the effect of small surface defects at the inner or outer edge of
the loop, and show that indentation and bulge defects have pronounced and different effects on the supercurrent.
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I. INTRODUCTION

The hc/e periodicity of the circulating supercurrent in
superconducting flux-threaded mesoscopic systems has been
numerically investigated recently1–9 based on different mod-
els. For nodal superconductors, such as d-wave superconduct-
ing square loops, it is known that the ground-state energy
is generically hc/e periodic due to the lifted degeneracy in
energy of two distinct supercurrent-carrying states.1,8

The effect of impurities on conventional and unconven-
tional superconductors has also attracted considerable interest
both experimentally and theoretically for many years as it may
be a valuable probe of the mechanism of superconductivity.10

In addition to the traditional investigations of the effect of
impurities on bulk properties, a recent study has shown that
nonmagnetic impurities as well as pairing correlations strongly
affect the superconducting properties of an s-wave nanoring,
and the actual impurity configuration is of vital importance
for the magnitude of the persistent current.11 However, it
has remained unaddressed as to how impurities influence
the properties of nanosized d-wave superconductors and, in
particular, the magnetic flux periodicity of hc/e in nanorings,
because scattering of nodal quasiparticles on impurities is
drastic. On the other hand, it is known that imperfections
and defects of the mesoscopic samples have strong impact
on, e.g., vortex entry and exit in mesoscopic disks,12 or
symmetry-induced vortex states in superconducting squares13

and squares with holes.14 Although bound to be interesting,
phenomena related to impurities and defects in magnetic
flux-threaded d-wave loops have not been considered to date.

In this Brief Report, we systematically investigate the
flux-induced supercurrent in mesoscopic d-wave loops by
solving the Bogoliubov–de Gennes (BdG) equations in a
self-consistent manner. We generalize the method of Ref. 8
for clean systems and consider the presence of impurities
and surface defects. Our numerical analysis concerns the
supercurrent as a function of the magnetic flux in the presence
of a single nonmagnetic impurity when the impurity scattering
strength and the impurity site are varied. We also discuss the
effect of interference due to scattering on many impurities
on the supercurrent, where interference is clearly sensitive on
the exact position of the impurities. Finally, we address the

influence of defects in the inner or outer edge of the d-wave
loop on the persistent supercurrent in the sample.

II. THEORY

We start with the pairing Hamiltonian by assuming nearest-
neighbor attraction V for d-wave superconducting (DSC)
pairing:

H = −
∑
〈ij 〉,σ

tij exp(iϕij)c
†
iσ cjσ +
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Here, tij = t are the nearest-neighbor hopping integrals, ciσ

(c†iσ ) are destruction (creation) operators for electron of
spin σ , niσ = c

†
iσ ciσ is the number operator, and μ is the

chemical potential determining the averaged electron density.
im denotes the position of the impurity site, and V0 is the
single-site potential describing the scattering from nonmag-
netic impurities. The Peierl’s phase factor is given by ϕij =
2π/�0

∫ rj

ri
A(r) · dr with the flux quantum �0 = hc/e. Using

the Bogoliubov transformation ciσ = ∑
n[un

iσ γnσ − σvn∗
iσ γ

†
nσ̄ ],

the Hamiltonian in Eq. (1) can be diagonalized by solving the
resulting BdG equations self-consistently:
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where Hijσ = −tij + [V0δi,im − μ]δij . Note that, with respect
to bulk superconductors, the translational symmetry is broken
for finite mesoscopic systems. With the open boundary
conditions, we can get the eigenvalues {En} with eigenvectors
{un,vn}. The current density Jij from lattice site i to j is given
by
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et

h̄c

∑
n
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FIG. 1. (Color online) Total supercurrent (in units of J0 = et/h̄c)
as a function of the magnetic flux � in units of �0 = hc/e for different
impurity scattering strength V0 with V = 0.6 (a) and V = 1.2 (b) in a
square Nx × Ny = 40 × 40 loop with a centered Nxx × Nyy = 12 ×
12 hole. The inset in (a) shows schematically the two-dimensional
square loop, which is threaded by a magnetic field � in the hole.
The nonmagnetic impurity is placed at the site im(7,20). (c) Total
supercurrent as a function of magnetic flux for different impurity
sites im with V = 0.6 and V0 = 100 in the same square loop.

where f (E) = (eE/kBT + 1)−1 is the Fermi-Dirac distribution
function. For more details on the numerical and analytical ap-
proaches used in this Brief Report, we refer the reader to Ref. 8.

III. SINGLE IMPURITY

First, we consider a symmetric square d-wave loop as
schematically shown in the inset of Fig. 1(a) with a size of
Nx × Ny = 40 × 40 and a centered hole of size Nxx × Nyy =
12 × 12, which is threaded by a magnetic flux � in the
hole. We introduce a nonmagnetic impurity such as Zn into
our system at site im(7,20) and investigate its effect on the
flux-induced current. Figure 1(a) plots the total supercurrent
as a function of magnetic flux for different impurity scattering
strength V0 = 0 (black solid line), 5 (red dashed line), and
100 (dashed-dotted line). The pairing interaction is chosen as
V = 0.6. One can easily see that the circulating supercurrent
oscillates as a function of the magnetic flux with an observable
period of �0 = hc/e. For different V0, we find that a single
impurity always reduces the persistent current. The zigzaglike
behavior of the flux-dependent current due to the nodal
character of the d-wave order parameter is dramatically
suppressed with increasing impurity strength. In contrast to
conventional s-wave superconductors, in d-wave systems, a
finite nonmagnetic impurity potential acts as a pair breaker
that can modify dramatically the density of states close to
the Fermi level and induce a virtual bound state.10 Therefore,
the activation behavior in the supercurrent is replaced by a
more linearlike behavior. In Fig. 2, the eigenenergies below
the Fermi energy EF = 0 in the gap region corresponding to
the impurity scattering strength V0 = 5 and 100 are shown.
Some well-separated discrete states are present due to the
nodal character of the order parameter. As a result of the
reconstruction of the energy spectrum of the condensate for
different winding numbers q of the order parameter and the
flux-driven change in the quasiparticle subgap states, in both
cases we find a �0 = hc/e periodicity. In the presence of
impurities, the bound state close to EF arises, which is not

FIG. 2. (Color online) The eigenenergies (in units of the average
superconducting order parameter �0 at � = 0) in the gap region as a
function of the magnetic flux are shown for an impurity with V0 = 5
(a) and V0 = 100 (b) in a square loop. The other parameter values are
the same as those in Fig. 1(a). q is the winding number of the order
parameter, and there is a clear difference between condensate states
with q = 0 and 1.

present in the case without impurities (see Fig. 1 in Ref. 8).
Moreover, we notice that the highest bound state is pushed
toward the Fermi energy as the impurity potential strength is
increased.

For a larger d-wave pairing interaction V = 1.2, the
corresponding evolution of the supercurrent with magnetic
field is plotted in Fig. 1(b). It is shown that the system
evolves toward a state where the supercurrent exhibits �0/2
periodicity for an enlarged gap regime (black solid line), and
almost shows a �0/2-periodic behavior in the presence of
a strong nonmagnetic impurity (dashed line). Note that the
current is not exactly �0/2 periodic, which is a mesoscopic
effect corresponding to the not exact �0 periodicity in s-wave
loops.15 In addition, the flux dependence of the supercurrent
for different impurity sites im is displayed in Fig. 1(c). We note
that, compared to a single impurity placed at the midway point
of the arm (black solid line), an impurity near the loop’s edge
(dashed line) or in the diagonal (dashed-dotted line) can play a
stronger or weaker role in the flux dependence of the current,
and the zigzag feature vanishes or remains present.

IV. MANY IMPURITIES

Next, we extend the analysis to the effect of many
nonmagnetic impurities. More systematical investigations are
given in this section in comparison to the s-wave system.11

In the presence of many impurities, the wave function of
electrons bound to the separate impurities interfere at long
distances, leading to a collective behavior that can no longer
be described as independent additions of single independent
impurities. Figure 3 presents the flux dependence of the
persistent supercurrent for several configurations of two
impurities (a) as well as many random impurities (b) with
V0 = 5. In the d-wave case, the overlapping and interference
of many impurity states can lead to a splitting of bound-state
energies and an accumulation of low-energy impurity-induced
energy eigenvalues, i.e., the so-called “impurity band.”16 The
formation of the impurity band is strongly influenced by the
fact that significant overlaps between two impurity states
can take place only if the impurities are “oriented” with
respect to one another such that the nodal quasiparticle wave
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FIG. 3. (Color online) Total supercurrent as a function of the
magnetic flux for different situations where (a) two impurities and
(b) many random impurities are placed in a square 40 × 40 loop
with a centered 12 × 12 hole. The calculation is performed with
V = 0.6 and V0 = 5. “nn,” “nnn,” and “nnnn” denote an additional
impurity placed at the nearest-neighbor, next-nearest-neighbor, and
third-nearest-neighbor site of a single impurity at site im(7,20),
respectively.

functions overlap along the [110] direction.17 In Fig. 3(a),
for two impurities located at the nearest neighbor (nn), the
persistent current shows more pronounced zigzag oscillations
than in the case of a single impurity at site im(7,20), due
to the cancellation effect of the two nn impurities (see the
dashed-dotted line). Figure 4(a) depicts the corresponding
energy spectrum. We notice a clear large jump in the energy
spectrum close to � = hc/4e when q changes from q = 0
to 1, which is similar to the spectrum of the clean frame
discussed in Ref. 8 (Fig. 1). This however, depends on the
relative position of the impurities. For two impurities placed
at the next-nearest-neighbor (nnn) and third-nearest-neighbor
(nnnn) sites, the oscillations of the persistent current are
slightly increased and decreased due to the destructive and
constructive interference effect, respectively [see the dotted
and dashed lines in Fig. 3(a)].

With the addition of few random impurities, the su-
percurrent becomes smaller with increasing the impurity
concentration, as shown in Fig. 3(b). This figure also shows
the disappearance of the zigzag features of the supercurrent as
a function of the flux for sufficiently large impurity concen-
trations. In Fig. 4(b), the corresponding energy spectrum for
12 random impurities is displayed. Note that the empty energy
gap in the q = 1 regime almost disappears due to a population

FIG. 4. (Color online) The eigenenergies in the gap region as a
function of the magnetic flux are shown for (a) 2 nn impurities, and (b)
12 random impurities, placed in a square loop. The other parameter
values are the same as those in Fig. 3.

FIG. 5. (Color online) Total supercurrent as a function of the
magnetic flux for a square 40 × 40 loop with a centered 12 × 12 hole
and (a) an indentation with different sizes d and h at the middle of
the outer edge, (b) an indentation or a bulge with the same d and
h at the middle of the inner or outer edge. The insets in (b) show
schematically two-dimensional square loops with different kinds of
defects, with the same colors as those of the corresponding curves.

of the low-energy excitations, and the �0 periodic behavior
becomes less pronounced.

V. SURFACE DEFECTS

Finally, we examine the influence of surface defects on the
flux-induced current in mesoscopic d-wave superconducting
loops. In this study, we restrict ourselves to defects that are
small indentations and bulges at the surface of the sample.
It is known that such defects may influence the penetration
and expulsion of magnetic flux as was demonstrated experi-
mentally by Geim et al. in Ref. 18. The defect under study
is first placed at the center of the edge of the square loop
and is taken to be of rectangular shape with size d × h. The
results for a square 40 × 40 loop with a centered 12 × 12
hole are shown in Fig. 5. In Fig. 5(a), the corresponding
evolution of supercurrent with magnetic flux for a square loop
with indentations of different sizes is shown. The flux-induced
supercurrent is clearly sensitive to an indentation. For defects
with fixed width h but different length d, the activationlike
zigzag feature is depressed when the side d is increased.
Interestingly, enlarged h can lead to opposite directions of the
current around � = 0 when d is fixed (see the dashed-dotted
line), which indicates that the occupied level closest to EF

with an orbital moment opposite to the applied magnetic field
that starts to dominate.

For other kinds of defects with the same sizes, such as
a indentation at the inner boundary as well as a bulge at
either the inner or outer boundary, the results are shown in
Fig. 5(b). We conclude that the supercurrent is more sensitive
to an indentation at the inner edge (see the dashed line) than
one at the outer boundary of the sample. However, bulge
and indentation defects do not have a similar effect on the
flux-induced current. By contrast, bulge defects at inner and
outer edges both have weak effect (see the dashed-dotted and
dotted lines, respectively), and the corresponding evolution of
supercurrent with flux is very similar to that of the case without
defects (solid line).

Aside from the defect located exactly in the center of the
sample edge, we also investigated defects that are displaced
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FIG. 6. (Color online) Total supercurrent as a function of the
magnetic flux for a square 40 × 40 loop with a centered 12 × 12 hole
and an indentation defect with different distances pd from the edge
center.

to an off-center location. Precisely, we studied the influence
of the position of an edge indentation defect with d = 3 and
h = 2 on the supercurrent, depending on the defect’s distance
pd from the edge center. The result is shown in Fig. 6 with
the dashed-dot-dotted line for pd = 10 and the dashed-dotted
line for pd = 20 (i.e., a defect at the corner). As the defect
is shifted further from the center of the sample edge, we
observed an increase of current in the q = 1 state, while
for the q = 0 state the zigzag oscillatory behavior appears
again.

VI. CONCLUSIONS

In summary, we have investigated the magnetic flux depen-
dence of supercurrent in mesoscopic d-wave superconducting

loops with impurities and surface defects by numerically
solving the BdG equations self-consistently. In the presence of
impurities, we have demonstrated the existence of bound states
close to the Fermi energy. The flux-induced current is generally
suppressed for the single impurity case. However, the opposite
can be found when many impurities are introduced, depending
on the relative position of impurities and their quantum
interference. Furthermore, we find that small surface defects
strongly affect the current. The flux-induced supercurrent is
generally more sensitive to an indentation than to a bulge.
Notice that in real d-wave superconductors, the surface rough-
ness is on atomistic length scale but nevertheless modifies
the properties of the quasiparticles since the coherence length
of the samples is comparable to the lattice constant of the
material. The BdG equations in a two-dimensional lattice
have been used to study the effect of surface roughness in
Ref. 19, and the results of the numerical calculations with
rough surfaces are consistent with experiment. We expect that
our theoretical results will be useful for future experiments,
where rough surfaces, which can be modeled by randomly
placing strong impurities near the surface, are inevitable. We
also would like to emphasize that the chosen grid size in
our self-consistent calculation is optimal to obtain reliable
results in minimal time. We checked other grid sizes, and no
significant variations are found for the effect of impurities for
different sample sizes.
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