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Squeezing the crystalline lattice of the heavy rare-earth metals to change their magnetic order:
Experiment and ab initio theory
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Ab initio electronic structure theory finds the type of magnetic order of the heavy rare earths to be correlated
directly with the a and c lattice parameters of their hexagonal-close-packed crystal lattices. We refine our
experimental data and obtain magnetic phase diagrams showing magnetic state and transition temperatures
versus a and c for Tb and for the alloy Ho0.4Gd0.6. For both systems we mark out the boundaries in a and c

space between incommensurate (helical) antiferromagnetic order and ferromagnetic states and find that these
agree very well with the theoretical prediction as well as with each other. These data support the proposition of
a universal “crystallomagnetic” phase diagram for the heavy rare earths.

DOI: 10.1103/PhysRevB.84.132401 PACS number(s): 75.25.−j, 71.18.+y, 75.30.Kz, 75.50.Ee

The heavy rare-earth hexagonal-close-packed (hcp) metals,
either as elements, or alloyed with each other and their
transition-metal relative yttrium, are believed to be examples
of solids where the geometry of the Fermi surface (FS)
determines the type of the magnetic structure via “nesting,”
as first proposed for Cr by Lomer1 and for rare-earth metals
by Dzyaloshinski.2 There is a variety of magnetic structures,
i.e., helical, sinusoidal, cycloid, fan, etc., which occur under
different circumstances in these materials.3 The characteristic
common to all these complex structures is a magnetic wave
vector q, which is approximately an order of magnitude
smaller than the Brillouin zone size, always directed along the
hexagonal c axis. The standard model of rare-earth electronic
structure gives a good qualitative description of the formation
and magnitude of the magnetic moments. It has long been
understood that these local moments, formed predominantly
by the localized f electrons, interact with each other by spin
polarizing the sea of conduction electrons in which they sit.
The Ruderman-Kittel-Kasuya-Yoshida (RKKY) exchange in-
teraction mediated by these conduction electrons is responsible
for the magnetic ordering in these metals, and so changes in
the shape of the FS are inevitably reflected in the modification
of the magnetic exchange and hence affect the type of the
resulting magnetic order. Moreover, small changes in the c

and a lattice parameters have a profound effect on the FS and
consequent magnetic structure.

Recently, using gadolinium as a prototype for all the heavy
rare-earth elements, some of us applied an ab initio electronic
structure theory to generate a unified magnetic phase diagram,
which links unequivocally the magnetic structures that the
heavy rare earths form to their lattice parameters.4 As well as
verifying the importance of the c/a ratio, we also discovered
that the atomic unit-cell volume plays a separate, completely
distinct role in determining the magnetic properties. We
showed that the trend from ferromagnetism to incommensurate
ordering as the atomic number increases across the series is

connected to the concomitant decrease in unit-cell volume
caused by the well-known “lanthanide contraction.” The
comparison with experimental data on the rare-earth elements
is very good. Gd is placed in the region of diagram where
ferromagnetic ordering is favored, whereas Tb, Dy, Ho, Er,
Tm, and Yb are positioned where the magnetic wave vector q
is incommensurate with the lattice so that helical-like magnetic
structures form below a transition temperature. Moreover,
estimates of both the values of these wave vectors and the
corresponding magnetic transition temperatures agree well
with experiment.

The theoretical diagram indicates a region in c and a space
where ferromagnetic and incommensurate magnetic order are
nearly degenerate. Tb lies close to this area and a number of Gd
alloys such as Ho0.4Gd0.6 are also predicted to be nearby. This
suggests that, by applying uniaxial strain and/or hydrostatic
pressure to these materials, a magnetic transition can be
triggered. Prior to this theoretical work the experimentalists
amongst us had carried out and published experimental data
for a Tb single crystal5,6 and also the rare-earth solid solution
Ho0.4Gd0.6 (Refs. 7 and 8) under uniaxial compression tension
and hydrostatic compression following on from earlier uniaxial
stress experiments on the rare earths, e.g., Ref. 9. In this
Brief Report we present a further detailed analysis of this
experimental data and compare them carefully with the theory.
The good agreement we find is further striking experimental
confirmation of this phase diagram and the magnetostructural
connection it summarizes.

Our ab initio theory includes the effects of thermally
induced “local moment” fluctuations on the underlying elec-
tronic structure. For low temperatures, calculations of a
magnetic material are typically based on an electronic band
structure which has a fixed spin polarization. This can be a
uniform spin polarization for a ferromagnet or fixed sublattice
spin polarizations for an antiferromagnet. With increasing tem-
perature, spin fluctuations must be described which eventually
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FIG. 1. (Color online) The Bloch spectral function for the �LM plane at the Fermi energy for the theoretical paramagnetic rare-earth
prototype for a and c values, where the theory indicates (a) ferromagnetic ordering (Gd) and (b) incommensurate magnetic order (Dy). The
quantity q0 indicates the nesting wave vector of the Fermi surface and the shading represents the broadening from the thermally induced local
moment disorder.

destroy the long-range magnetic order and the overall spin
polarization. For many materials, such as the rare earths,
these magnetic excitations can be modeled by associating local
spin-polarization axes with all lattice sites and allowing the ori-
entations to vary very slowly on the time scale of the electronic
motions. These “local moments” affect the electronic motions
and are self-consistently maintained by them. By taking
appropriate ensemble averages over their orientational config-
urations, the system’s magnetic properties can be determined.
This “disordered local moment” (DLM) density functional
theory (DFT)-based theory describes the onset and type of
magnetic order ab initio in many magnetic systems10–12 and
including an appropriate description of the strongly correlated
f electrons13,14 into this theory enables the studies of Gd and
other heavy rare-earth systems to be carried out.4 An important
property of this theory is that a FS can be defined for the para-
magnetic state of a metal described in this way. FS nesting can
be evident but complicated nonetheless by the local moments
which can introduce disorder broadening to the features.

Positron annihilation15,16 studies of Y and recent angle-
resolved photoemission spectroscopy (ARPES) data on Gd,
Tb, and Dy (Refs. 17 and 18) have shown further exper-
imental support for the importance of FS nesting for the
development of incommensurate antiferromagnetic order. So
in this Brief Report we first show from the DLM theory
the finite temperature FS of our paramagnetic rare-earth
prototype and compare with the experimental data. For a
given configuration of local moments this Fermi surface can be
defined in the usual way. However, when considering the whole
ensemble of moment orientations for a finite temperature
description, the “Fermi surface” is a smeared-out average
of itself over all moment configurations. A useful tool for
defining this surface is the Bloch spectral function (BSF),4,19

ĀB(k,E), which is periodic in reciprocal wave vector k
space and is given by in terms of an ensemble average of
the electronic real-space Green’s function. In this case the
ensemble average is taken over local moment configurations.10

For ordered systems ĀB(k,E) consists of a set of δ-function
peaks,

ĀB(k,E) =
∑

n

δ(E − En(k)), (1)

where En(k) is the Bloch energy eigenvalue for the wave vector
k and band index n. With disorder (here the local moment spin
fluctuation disorder) these peaks broaden, but their positions
can be regarded as an effective band structure, with their width
in energy interpreted as an inverse lifetime. The Fermi surface
of a disordered system is defined as the locus of these peaks at
the constant energy E = EF .

Figure 1 shows the Fermi surface for the rare-earth pro-
totype which orders (a) ferromagnetically (lattice parameters
of Gd) and (b) with incommensurate magnetic order (lattice
parameters of Dy). Figure 1(a) shows no FS nesting whereas a
local moment disorder-broadened nesting feature is evident
in Fig. 1(b). There is a strong resemblance between our
calculations and the ARPES data shown by Dobrich et al.17,18

for paramagnetic states of Gd, Tb, and Dy. [Compare our
Figs. 1(a) and 1(b) with Dobrich et al.’s Figs. 2(a) and 2(c),18

respectively.] Both experiment and theory show a prominent
nesting structure evident along the L-to-A direction in the
Brillouin zone in Dy which is absent in Gd.

In our earlier experimental work we obtained two magnetic
phase diagrams for a single crystal of Tb under hydrostatic
compression5 and under uniaxial compression/tension along
the hexagonal axis c.6 We found the values of the a and c

crystalline lattice parameters that correspond to the pressures
and strains and combined the data into a three-dimensional
(3D) plot of the magnetic transition temperature versus a and
c. We found the magnetic transition temperature at which the
paramagnetic material orders into a helical antiferromagnetic
(HAFM) or simple ferromagnetic (FM) phase. We also
found where the HAFM transforms into a FM phase at a
lower temperature. There is a “triple line” that separates
paramagnetic (PM), simple ferromagnetic (FM), and helical
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FIG. 2. (Color online) The pressure dependence of the magnetic
transition temperatures (a) under uniaxial compression along c axis
(squares) and (b) under hydrostatic pressure for Ho0.4Gd0.6 (circles).
Open dots correspond to the magnetic ordering temperatures Tord,
and solid dots to the transition from the helical antiferromagnetic
phase to the ferromagnetic one at T1. Dashed lines are linear fits for
Tord and square-root fits for T1. Abbreviations: PM, paramagnetic;
HAFM, helical antiferromagnetic; FM, simple ferromagnetic phases.
The pressure scales are adjusted in such a manner that the temperature
range where the HAFM phase occurs is the same in both (a) and (b)
in the any vertical section with the vertical dotted line as an example.
Bold-dashed vertical line marks on both figures indicate the triple
points where PM, HAFM, and FM phases meet.

antiferromagnetic (HAFM) phases. Its projection onto the a-c
plane provides the boundary between the lattice parameters
corresponding to the helical and ferromagnetic magnetic
ordering.

Here we show a similar analysis of our data for the
single-crystalline rare-earth alloy Ho0.4Gd0.6. In contrast with
Tb, however, this material orders ferromagnetically at ambient
pressure, hence compression was required instead of tension
to change the type of the magnetic ordering. A transition
from simple ferromagnetic to helical antiferromagnetic order
is observed under both uniaxial7 and hydrostatic8 pressure. To
illustrate this analysis, in Fig. 2 we show the magnetic phase
diagrams for uniaxial [Fig. 2(a)] and hydrostatic [Fig. 2(b)]
compression. Figure 2(a) is obtained from data in Ref. 7 while
Fig. 2(b) is produced from Ref. 8. The pressure dependences
of the magnetic ordering temperature Tord are quite linear, its
pressure derivatives are −1.05 and −0.88 K/kbar for uniaxial
and hydrostatic pressure, respectively, similar to the values
for Tb.5 The pressure dependences of the HAFM-FM “helical
phase–ferromagnetic phase” transition temperature T1 are, in
contrast, essentially nonlinear, well described by a square-root
dependence (dashed curves).

In Figs. 2(a) and 2(b) the two pressure scales are adjusted
in such a manner that the temperature range where the helical

phase occurs is the same in both figures in any vertical section.
An example is indicated by the dotted vertical line. This
distinct presentation highlights the critical pressure values
for the both cases (marked by the dashed vertical line).
The respective values for the critical uniaxial and hydrostatic
pressures are p∗

u = 0.2 kbar and p∗
h = 1.9 kbar, respectively,

corresponding to magnetic triple points where paramagnetic,
helical and ferromagnetic phases match together.

To obtain the lattice parameters a and c at any given
pressure, we require their values at ambient pressure as well
as elastic moduli values. These moduli for Ho0.4Gd0.6 are
calculated assuming a linear dependence on the values for pure
Ho and Gd:20 c11 = 0.71, c12 = 0.25, c13 = 0.21, and c33 =
0.75 × 1012 dyn/cm2. The accuracy of these interpolations is
acceptable because the values for pure Ho and Gd differ by
just ±10%. The hcp lattice parameters of Ho0.4Gd0.6 at the
ambient pressure and at the Curie temperature 220 K were
taken from x-ray data for pure Ho and Gd (Ref. 21) linearly
extrapolating from the paramagnetic range as a = 3.608 Å,
c = 5.716 Å. Accuracy of these values is believed to be within
±0.002 Å.

Using these values for ambient pressure and assuming
linear stress-strain dependences in the paramagnetic area, we
calculate lattice parameters a and c for any given pressure
at the magnetic ordering temperature—see Ref. 5 for the
details. We compile the 3D “crystalomagnetic” phase diagram
by plotting the magnetic transition temperatures versus the
corresponding lattice parameters. In this presentation the cases
of uniaxial and hydrostatic pressure appear as two cut sets
of the single 3D magnetic phase diagram formed by two
sheets—one, almost flat, for Tord(a,c) and another nonlinear
one for T1(a,c). These two sheets merge at the “triple line,”
where paramagnetic, ferromagnetic, and helical phases meet
together. The “uniaxial” and “hydrostatic” cut sets coincide
when viewed along this “triple line.”

We now combine the two sets of data for Tb and Ho0.4Gd0.6

to test the theoretical phase diagram. Figure 3 shows the two 3D
magnetic phase diagrams on the same plot, viewed in between
the two triple lines for each substance. As the directions of
these two triple lines are slightly different, the coincidence of
the hydrostatic and uniaxial cut sets although not perfect is
nevertheless close. We see that these two materials of different
chemical content behave remarkably similarly.

By projecting these triple lines onto the a-c plane, we
obtain the two boundaries between the lattice parameters
corresponding to the helical and ferromagnetic magnetic
order—one for Tb and one for Ho0.4Gd0.6 (see Fig. 4). The
initial values at the ambient pressure and directions of variation
of the lattice parameters under respective pressures are added
for clarity as well as the triple points for hydrostatic and
uniaxial pressures. The positions of these two boundaries
coincide within 0.1% accuracy and their slopes are of the
same sign and have similar values.

The location of these boundaries is compared di-
rectly with the theoretical DLM predictions4 and is the
principal result of this Brief Report. The position of
the theoretical boundary is shown in Fig. 4 as green
(dash-dot-dot) and yellow (dash-dot) lines, corresponding
to the same pseudocolors as in Fig. 3 from the theoretical
paper.4 We see a rather good agreement for Tb and acceptable
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FIG. 3. (Color online) The magnetic phase diagrams of Fig. 2
replotted as magnetic transition temperature vs a and c hcp crystalline
lattice parameters for Ho0.4Gd0.6 (blue hereafter) and the same for Tb
(red hereafter, from Ref. 5), viewed in between their triple lines. Open
dots correspond to the magnetic ordering temperatures Tord, and solid
dots to the transition from the helical antiferromagnetic phase to the
ferromagnetic one at T1. Squares represent the uniaxial pressure data,
and circles for the hydrostatic ones. Dashed lines (guides to the eye)
indicate boundaries between magnetic phases. Bold colored arrows
indicate the triple points for both substances at both hydrostatic and
uniaxial pressures. Bold-dashed lines are projections of triple lines
for Ho0.4Gd0.6 and Tb onto the a-c plane; arrows mark the projection
of the view direction onto the same plane. Note: The angle between
these triple lines is exaggerated in this view; see Fig. 4. Abbreviations:
PM, paramagnetic; HAFM, helical antiferromagnetic; FM, simple
ferromagnetic phases.

agreement for Ho0.4Gd0.6 (note that the result for Tb is
more reliable because of the less spread of the initial
experimental data and the fewer interpolations made.) We
therefore find that two chemically different rare-earth systems
can be squeezed to mark out the same boundary between
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FIG. 4. (Color online) Crystallomagnetic phase diagram for
Ho0.4Gd0.6 (blue hereafter) and Tb (red hereafter), a projection of
Fig. 3 onto the the a-c plane. Solid circles show Ho0.4Gd0.6 and Tb
at ambient pressure and the magnetic ordering temperature. Straight
colored arrows indicate the behavior of the lattice parameters under
uniaxial and hydrostatic compression calculated employing elastic
moduli. Open circles correspond to the magnetic triple points under
uniaxial and hydrostatic compression. The bold-dashed lines are
projections of the triple lines (the same as in Fig. 3) that separate
the ranges of ferromagnetic (FM) and helical antiferromagnetic
(HAFM) ordering. Arrows mark the projection of the view direction
of Fig. 3. Dash-dot-dot and dash-dot lines present the boundary
between these types of the magnetic ordering predicted by ab initio
theory calculations.

ferromagnetic and incommensurate antiferromagnetic order in
a and c space as each other and as the Gd prototype follows
in the theoretical calculations. This is strong evidence for a
universal crystallomagnetic phase diagram for the heavy rare
earths which is set up by the subtle changing topology of their
finite temperature conduction electronic structure.
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