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Chiral states in bilayer graphene: Magnetic field dependence and gap opening

M. Zarenia,1 J. M. Pereira Jr.,2 G. A. Farias,2 and F. M. Peeters1,2

1Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
2Departamento de Fı́sica, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brazil

(Received 19 May 2011; published 30 September 2011)

At the interface of electrostatic potential kink profiles, one-dimensional chiral states are found in bilayer
graphene (BLG). Such structures can be created by applying an asymmetric potential to the upper and the
lower layers of BLG. We found the following: (i) due to the strong confinement by the single kink profile,
the unidirectional states are only weakly affected by a magnetic field; (ii) increasing the smoothness of the
kink potential results in additional bound states, which are topologically different from those chiral states; and
(iii) in the presence of a kink-antikink potential, the overlap between the oppositely moving chiral states results
in the appearance of crossing and anticrossing points in the energy spectrum. This leads to the opening of tunable
minigaps in the spectrum of the unidirectional topological states.
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I. INTRODUCTION

Carbon-based electronic structures have been the focus of
intense research since the discovery of fullerenes and carbon
nanotubes.1 More recently, the production of atomic layers of
hexagonal carbon (called graphene) has renewed that interest,
with the observation of striking mechanical and electronic
properties, as well as ultrarelativisticlike phenomena in this
condensed matter system.2,3 In that context, bilayer graphene
(BLG), which is a system with two Van der Waals coupled
sheets of graphene, has been shown to have features that
make it a possible substitute of silicon in microelectronic
devices. The carrier dispersion of pristine BLG is gapless
and approximately parabolic at two points in the Brillouin
zone (K and K ′).4 However, it was found that the application
of perpendicular electric fields produced by external gates
deposited on the BLG surface can induce a gap in the spectrum
by creating a charge imbalance between the two graphene
layers.5,6 The tailoring of the gap by an external field may
be particularly useful for the development of devices.7,8 It was
recently recognized that a tunable energy gap in BLG can allow
the observation of new confined electronic states, which could
be obtained by applying a spatially varying potential profile to
create a position-dependent gap analogous to semiconductor
heterojunctions.

An alternative way to create one-dimensional (1D) local-
ized states in BLG has recently been suggested by Martin et al.9

and relies on the creation of a potential kink by an asymmetric
potential profile (see Fig. 1). Such kink potential can also be
realized in p-n junctions. They showed that localized chiral
states arise at the location of the kink, with energies inside
the energy gap. These states correspond to unidirectional
motion of electrons, which are analogous to the edge states
in a quantum Hall system. From a practical standpoint, the
kinks may be envisaged as configurable metallic nanowires
embedded in a semiconductor medium. Moreover, the carrier
states in this system are expected to be robust with regard to
scattering and may display Luttinger liquid behavior.10

An additional tool for the manipulation of charged states
in BLG is the use of magnetic fields. The application of an
external magnetic field perpendicular to the BLG sheet causes
the appearance of Landau levels, which can be significantly
modified by the induced gap, leading to effects such as the

lifting of valley degeneracy caused by the breaking of the
inversion symmetry by the electrostatic bias.11–13 Recently the
transport properties of p-n-p junctions in bilayer graphene
were experimentally investigated in the presence of a perpen-
dicular magnetic field.14

In this paper, we generalize previous work on topological
confinement in bilayer graphene on three levels: (i) we
investigate the effect of smoothing the kink potential on the
topological states; (ii) the effect of a perpendicular magnetic
field is studied; and (iii) we investigate a new system that
consists of a coupled kink-antikink structure. We demonstrate
that the latter opens a gap in the 1D electron states. The paper
is organized as follows. In Sec. II, we present the theoretical
formalism. The results for a single kink potential profile are
discussed in Secs. III A and III B. In Secs. IV A and IV B, we
show the results for the kink-antink potential, respectively, for
zero and nonzero magnetic fields. Finally, we conclude the
remarks of the paper in Sec. V.

II. MODEL

We employ a two-band continuum model to describe the
BLG sheet. In this model, the system is described by four
sublattices, two in the upper (A, B) and two in the lower
(A′ and B ′) layer.7 The interlayer coupling is given by the
hopping parameter t ≈ 400 meV between sites A and B ′. The
Hamiltonian around the K valley of the first Brillouin zone
can be written as

H = −1

t

[
0 (π †)2

(π )2 0

]
+

[
U (x) 0

0 −U (x)

]
, (1)

where π = vF (px + ipy), px,y = −ih̄∂x,y + eAx,y is the mo-
mentum operator in the presence of an external magnetic field
with Ax,y being the components of the vector potential A,
vF = 106 m/s is the Fermi velocity, U (x) and −U (x) are
the electrostatic potentials, respectively, applied to the upper
and lower layers. The eigenstates of the Hamiltonian Eq. (1)
are two-component spinors �(x,y) = [ψa(x,y),ψb(x,y)]T ,
where ψa,b are the envelope functions associated with the
probability amplitudes at sublattices A and B ′ at the respective
layers of the BLG sheet. Since [H,py] = 0, the momentum
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FIG. 1. (Color online) (a) Schematic illustration of the nonuni-
formly gated bilayer graphene device for the creation of a kink
potential. Applied gated voltage to the upper and lower layers with
opposite sign induces an electric field Ee, with preferential direction.
An external magnetic field B = Bẑ is applied perpendicular to the
bilayer graphene sheets. (b) Electric field between the two graphene
layers. (c) Potential on layer 1 (U1) and layer 2 (U2).

along the y direction is a conserved quantity and, therefore,
we can write

ψ(x,y) = eikyy[ϕa(x),ϕb(x)]T , (2)

where ky is the wave vector along the y direction.
In order to apply a perpendicular magnetic field to the

bilayer sheet, we employ the Landau gauge for the vector
potential A = (0,Bx,0). The Hamiltonian (1) acts on the wave
function of Eq. (2), which leads to the following coupled
second-order differential equations:[

∂

∂x ′ + (k′
y + βx ′)

]2

ϕb = [ε − u(x ′)]ϕa, (3a)

[
∂

∂x ′ − (k′
y + βx ′)

]2

ϕa = [ε + u(x ′)]ϕb, (3b)

where, in the above equations, we used dimensionless units
x ′ = x/l, k′

y = kyl, ε = E/t , and u(x ′) = U (x)/t , where l =
h̄vF /t = 1.6455 nm, β = (eB/h̄)l2(= 0.0041 for B = 1) T.
The steplike kink [see Fig. 1(c)] is modeled by

u(x ′) = ub tanh(x ′/δ), (4)

where ub is the maximum value of the gate voltage, in
dimensionless unit, in each BLG layer. Here, δ denotes the
width of the region in which the potential switches its sign
in each layer. This parameter is determined by the distance
between the gates used to create the gap. Next, we numerically
solve Eqs. (3) to obtain the dependence of the energy levels on
the magnetic field and potential parameters. For the case of a
sharp kink potential δ → 0 and in the absence of a magnetic
field, i.e., B = 0, Eqs. (3) reduce to[

∂

∂x ′ + k′
y

]2

ϕb = [ε − u(x ′)]ϕa, (5a)

[
∂

∂x ′ − k′
y

]2

ϕa = [ε + u(x ′)]ϕb, (5b)

where u(x ′) = ub[
(x ′) − 
(−x ′)]. We simply decouple
Eqs. (5) and obtain[

∂2

∂x
′2 + λ2

±

]
ϕa = 0, (6)

(a)

(b)
(c)

FIG. 2. (Color online) (a) Energy levels for a single kink profile
on bilayer graphene with ub = 0.25. Dotted curves are the numerical
results for δ = 1 and dashed curves are the analytical results for δ = 0
using Eq. (8). The solid red curves are the energy levels of a biased
BLG. The solid green curve [indicated by the symbol (1)] shows a
fitted function to the numerical results. The lower panels show the
wave spinors and probability density corresponding to the states that
are indicated by the arrows b and c in panel (a).
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where λ± = [−k
′2
y ±√

ε2−u2
b]1/2, which can be a complex

quantity. The solutions for x ′ < 0 (ψ<) and x ′ � 0 (ψ>) are
given by

ψ(x ′)<± =
(

eiλ±x ′

f±eiλ±x ′

)
, (7a)

ψ(x ′)>± =
(

e−iλ±x ′

g±e−iλ±x ′

)
, (7b)

where f± = (iλ± − k′
y)2/(ε − ub) and g± = (iλ± +

k′
y)2/(ε + ub). The above solutions should satisfy the

asymptotics ϕ>
a,b(x ′ → ∞) = 0 and ϕ<

a,b(x ′ → −∞) = 0.
Matching the solutions and the first derivatives at x ′ = 0 gives
a homogeneous set of algebraic equations, which in matrix
form become

⎛
⎜⎜⎜⎝

1 1 −1 −1

f+ f− −g+ −g−
λ+ λ− λ+ λ−

f+λ+ f−λ− g+λ+ g−λ−

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎟⎠ = 0. (8)

Solutions are found when the determinant of the matrix is set
to zero, from which we obtain the energy spectrum. Notice that
Eq. (8) leads to four solutions, of which two of them, i.e., ±ub,
do not satisfy Eqs. (5) and are not acceptable. In the limiting

case ε � ub, we are able to obtain an analytical expression for
the energy

ε± = ub

α

{
4k′

y

√
ε0

[
ub sin(θ/2) + k

′2
y cos(θ/2)

]
±[

56k
′8
y + 14u4

b + 70u2
bk

′4
y − k

′2
y ε0

(
40k

′4
y + 46ub

2
)]1/2}

,

(9)

where ε0 =√
k

′4
y +ub

2, α = 6k
′4
y + 7u2

b − 6k
′2
y ε0, and θ =

tan−1(ub/k
′2
y ). Solving the above equation for ε = 0, we find

that k′
y = ±√

ub/
√

8 (≈ 0.3 for ub = 0.25).
Next, we consider a sharp kink potential in parallel with an

antikink potential that are located at x ′ = −d and x ′ = +d.
In this case, we have to consider three regions, i.e., x ′ > d

[ψI(x ′)], −d � x ′ � −d [ψII(x ′)], and x ′ > d [ψIII(x ′)], and
the solutions are given by

ψI(x
′)± =

(
eiλ±x ′

g±eiλ±x ′

)
, (10a)

ψII(x
′)± =

(
e±iλ±x ′

f±eiλ±x ′

)
, (10b)

ψIII(x
′)± =

(
e−iλ±x ′

g±e−iλ±x ′

)
. (10c)

Matching the solutions and their first derivatives at x ′ = ±d

leads to a set of eight algebraic equations, which in matrix
form becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ−
+ κ−

− −κ−
+ −κ−

− −κ+
+ −κ+

− 0 0

h+κ−
+ h−κ−

− −f+κ−
+ −f−κ−

− −l+κ+
+ −l−κ+

− 0 0

λ+κ−
+ λ−κ−

− −λ+κ−
+ −λ−κ−

− λ+κ+
+ λ−κ+

− 0 0

h+λ+κ−
+ h−λ−κ−

− −f+λ+κ−
+ −f−λ−κ−

− l+λ+κ+
+ l−λ−κ+

− 0 0

0 0 κ+
+ κ+

− κ−
+ κ−

− −κ−
+ −κ−

−
0 0 f+κ+

+ f−κ+
− l+κ−

+ l−κ−
− −g+κ−

+ −g−κ−
−

0 0 λ+κ−
+ λ−κ+

− −λ+κ−
+ −λ−κ−

− λ+κ−
+ λ−κ−

−
0 0 f+λ+κ+

+ f−λ−κ+
− −l+λ+κ−

+ −l−λ−κ−
− g+λ+κ−

+ g−λ−κ−
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C2

C3

C4

C5

C6

C7

C8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (11)

where, h± = (iλ± − k′
y)2/(ε + ub), l± = (iλ± + k′

y)2/(ε − ub),
κ+

± = exp(iλ±d) and κ−
± = exp(−iλ±d). Setting the determi-

nant to zero gives the energy spectrum.

III. SINGLE KINK

A. Influence of the smoothness of the kink profile

In the general case of δ �= 0, we solve the set of second-
order differential Eqs. 3(a) and 3(b) numerically, using the
finite-difference technique. Figure 2(a) shows the spectrum for
a single potential kink as a function of the wave vector along
the kink for zero magnetic field. We consider a relatively sharp
kink, i.e., δ = 1, and compare the numerical results with the
analytical solution (dashed black curves) from Eq. (9) for the
case of a sharp profile (δ = 0). The shaded region corresponds
to the continuum of free states. The solid red curves correspond
to the energy levels of a biased BLG ,which can be obtained

using Eq. (1) as

ε = ±
√

k
′4
y + u2

b. (12)

The dotted horizontal lines correspond to ε = ±ub = ±0.25
and ε = 0. These results are valid in the vicinity of a single
valley (K) and show that the topological states have a
unidirectional character of propagation, i.e., they are chiral
states9 with positive group velocity. The topological levels can

be fitted to ε = a

√
(k′

y − k0)4 + (ub/a)2 − 1/2 with a = 0.5

and k0 = −0.65 being the fitting parameters (see green solid
curve). For localized states around the K ′ valley, we have
EK ′(ky) = −EK (ky) and the charge carriers move in the
opposite direction. In order to consider the energy levels for
the K ′ valley, u(x) in Eqs. (3) should be replaced with −u(x).
Then, using the transformations ε → −ε and ϕa → −ϕa (or
ϕb → −ϕb) leads to the same equation as for the K valley.
Thus, the EK ′ (ky) = −EK (ky) symmetry remains even in
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FIG. 3. (Color online) The probability densities of the topological
state in k′

y = −0.8, − 0.6,..., which correspond to the state indicated
by (1) in Fig. (2). The inset shows the probability density for k′

y =
0.4,0.6, and 0.8.

the presence of a uniform perpendicular magnetic field (i.e.,
β �= 0). Notice that the wave spinors corresponding to the K

and the K ′ valleys are related to each other by ϕK
a → −ϕK ′

a

(or ϕK
b → −ϕK ′

b ), while the sign of the other component does
not change.

Figures 2(b) and 2(c) present the real parts of the spinor
components and the probability density for the states indicated
by the arrows b and a in Fig. 2(a), corresponding to k′

y = −0.28
[Fig. 2(b)] and k′

y = 0.28 [Fig. 2(c)]. These electron states are
localized at the position of the potential kink. Notice that the
solutions of Eqs. (3) are related by the transformations ϕa →
−ϕb, ϕb → ϕa , k′

y → −k′
y , and ε → −ε and, consequently,

for ε = 0, the solutions in Figs. 2(b) and 2(c) have the same
probability distribution. For the case of k′

y = 0, the solutions

of Eq. (8) are ε± = ±ub/
√

2, which result in the following
wave spinors:

ϕ<
a = (1 ∓

√
2)[e−i(λ+x ′+ π

4 ) ∓ ei(λ−x ′+ π
2 )], (13a)

ϕ>
a = ei(λ+x ′+ π

4 ) ∓ e−iλ−x ′
, (13b)

ϕ<
b = − (1 ∓ √

2)

(ε± − ub)
[λ2

+e−i(λ+x ′+ π
4 ) ∓ λ2

−ei(λ−x ′+ π
2 )], (13c)

ϕ>
b = −1

ε± + ub

[λ2
+ei(λ+x ′+ π

4 ) ∓ λ2
−e−iλ−x ′

], (13d)

where λ± = γ (1 ± i) with γ being
√

ub/8. Notice that, in the
above equations, e±iλ±x ′

leads to an oscillating contribution
e±i
(λ±)x ′

with an evanescent e∓�(λ±)x ′
part. The oscillating

part is strongly damped and, therefore, Eqs. (13) correspond
to localized wave spinors. Expanding Eqs. (13) around x ′ = 0,
we obtain, for the second derivative of the wave spinors,

∂2

∂x ′2 
[ϕ<
a (x ′ → 0)] = (1 ±

√
2)(2 +

√
2)γ, (14a)

∂2

∂x ′2 
[ϕ<
b (x ′ → 0)] = (4 − 2

√
2)γ 3

ε± − ub

< 0. (14b)

This indicates that 
[ϕa] (
[ϕb]) has its maximum value
located at x ′ < 0(x ′ > 0) for ε+ = ub/

√
2, while the opposite

is found for ε− = −ub/
√

2, which is also evident from
Figs. 2(b) and 2(c).

In Fig. 3, we show the probability densities corresponding
to one of the topological branches [for the state that is labeled
by (1) in Fig. 2(a)] at several k′

y values. As shown in the
inset of Fig. 3 for those k′

y values where the topological state
merged with the continuum spectrum, the carries are no longer
confined by the kink potential.

FIG. 4. (Color online) Upper panel: Energy levels for a single
kink profile in bilayer graphene with ub = 0.25 and δ = 10. The
energy states indicated by (a) and (c) are chiral states and those
indicated by (b), (d), (e), and (f) are the extra-bound states. Lower
panels: Real parts of the wave spinors and the corresponding
probability density for the two first electron and hole energy levels at
k′

y = 0 as indicated in the upper panel.
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FIG. 5. (Color online) Upper panels: applied potential profile
u(x) to the upper (solid blue curve) and the lower layer (red dashed
curve) for (a) sharp and (b) smooth kink profiles. Lower panel:
schematic representation of the energy spectrum in (E,ky) space,
corresponding to the solid blue and red dashed potential profiles near
the kink region. Topological states can be found in the yellow region.
For the smooth profile (b), extra bound states can be found in the
orange region.

Next, we increase the smoothness of the kink potential and
investigate how the energy spectrum changes. In Fig. 4, the
energy levels as a function of ky are shown for the smooth kink
profile δ = 10, where, in addition to the chiral states, several
branches are seen that are split off from the continuum. In order
to understand the physical origin of those new states, we show
in the lower panels of Fig. 5 a cartoon of the low-energy spectra
for the (a) sharp and (b) smooth profiles where the chiral
states appear in the yellow regions and those additional states
are found in the orange region. Increasing the smoothness
of the kink potential leads to the creation of a region below
the energy gap, which allows for carriers to be confined near
the kink. Therefore, extra bound states can be created in the
orange region [lower panel in Fig. 5(b)]. The wave functions
for ky = 0 of the two chiral states and the new bound states are
shown in the lower panels of Fig. 4. The new bound states are
also bound in the x direction near x = 0, but the electron states
are more extended and have a clear nodal character near x = 0.

Figure 6 shows the velocity of the carriers for the states that
are indicated by (1),(2), . . . in Fig. 4. The chiral states [(5), (6)]
are only shown for the K valley and they have positive velocity.

The curves (5), (6) can be fitted to v/vF ≈ a
√

(k′
y − k′

0)2 + b2

(see the solid gray curves) with a = 1.8,b = 0.15 being the fit-
ting parameters and k′

0 = ±0.08 corresponds to the minimum
point in the curves (5) and (6). Notice that the extra bound
states [(2),(3),(4)] have a slightly nonzero velocity at k′

y = 0,
which is a consequence of the asymmetric energy dispersion
as seen in Fig. 4. Curve (1) corresponds to the energy spectrum
of a biased BLG, which is given by Eq. (12) and results in the

velocity v/vF = [∂ε/∂k′
y] = 2k

′3
y /

√
k

′4
y + u2

b, which is zero

for k′
y = 0 in a biased BLG (black solid curve in Fig. 6).

FIG. 6. (Color online) The carrier velocity in the single kink pro-
file for the energy levels, which are indicated by (1),(2), . . . in Fig. 4.
The gray solid curves are the fitted functions to curves (5) and (6).

As mentioned before, for smooth kink potentials, additional
1D bound states appear and the number of these bound states
can be related to the height of the gate voltage ub and the
smoothness (δ) at the interface. Figure 7 shows the number of
these extra bound states for three different ub values as function
of the width δ. The first bound state for ub = 0.1,0.25,0.5
appears, respectively, at δ ≈ 6,4,2 in the absence of magnetic
field. Notice also that, for fixed δ, the number of extra bound
states increases with ub in agreement with the qualitative
picture shown in Fig. 5(b).

We also calculate the transmission of an electron through
the kink structure in a system of size −Lx/2 < x < Lx/2 and
−Ly/2 < y < Ly/2. No bias nor magnetic field is assumed in
the x < −Lx/2 and x > Lx/2 regions. We assume that Ly �
Lx and the electrons are free to move in the y direction, whereas
they are confined in the x direction. Associated with each real
λ±, there are two right (left) propagating modes ψ>

± (ψ<
± ),

which are given by Eqs. (7). In the region I (x < −Lx/2), two

FIG. 7. (Color online) Number of additional bound states as a
function of the width of the interface δ for ub = 0.1, 0.25, and 0.5.
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(a) (b)

(c)

FIG. 8. (Color online) (a), (b) Contour plot of the transmission T

(in logarithmic scale) through a single kink structure with Lx = 20
(≈32 nm), ub = 0.25 for (a) δ = 0.1 and (b) δ = 4. (c) Conductance
G/G0 vs Fermi energy of a single kink profile for the same parameters
as (a), (b).

incident right-traveling modes ψ>
± can be reflected into two

left-traveling modes ψ<
±

�I
± = ψ>

± + r+
±ψ<

+ + r−
±ψ<

− , (15)

where t±± (r±
± ) are the transmission (reflection) amplitudes.

The propagating modes in region I can also be transmitted to
region III (x > Lx/2) in the right-traveling modes

�III
± = t+±ψ>

+ + t−±ψ>
− . (16)

The wave functions in regions I and III can be connected by
the transfer matrix M , where at the kink-potential boundaries
we have

�I
±(−Lx/2) = M�III

± (Lx/2). (17)

The transmission (or reflection) amplitude can be found by
substituting Eqs. (15) and (16) in the above equation. The four
transmission amplitudes t± for given ε and ky can be combined
in the transmission matrix

t(ε,ky) =
(

t++ t+−
t−+ t−−

)
. (18)

The total transmission amplitude T is given by15 T = Tr(t t†).
The two-terminal conductance of such an asymmetric potential
profile in bilayer graphene can be calculated using the
Landauer formula, which is given by16,17

G = G0

∫
T (EF ,k′

y)dk′
y. (19)

Here, G0 = (2e2/h)(Ly |EF |/πh̄vF ) is the conductance
unit per valley and per spin. In Figs. 8(a) and 8(b), we show a
contour plot of the transmission probability in logarithmic

scale for the kink structure with Lx = 20 (in dimension-
less unit). The transmission probability has the symmetry
T (ky,E) = T (−ky, − E). The conductance as a function of
the Fermi energy for the single kink profile is shown in Fig. 8(c)
for δ = 0.1 (blue solid curve) and δ = 4 (red dashed curve). For
the case δ = 4, the smoothness of the potential at x = 0 leads to
a higher transmittance and consequently a higher conductance
around ε ≈ ub [see Fig. 8(b) and the dashed curve in Fig. 8(c)].

B. Magnetic field dependence

Dependence of the energies of the 1D bound states on an
external magnetic field is shown in Fig. 9 for (a) k′

y = 0 and
(b) k′

y = 0.15. In order to show the effect of a magnetic field
on the chiral states (blue solid curves) and the other localized
bound states (red dashed curves), we present the results for
a smooth potential (i.e., δ = 10). It is seen that the chiral
states are very weakly influenced by the magnetic field. This
is a consequence of the strong confinement of these states in
the kink potential [see Figs. 3 and Figs. 4(a) and 4(c)]. In a
semiclassical view, the movement of the carriers is constrained
by the kink potential and that, together with the unidirectional
propagation, prevents the formation of cyclotron orbits. For
the energy levels above the chiral states, the energy values
increase as the magnetic field increases because of the weaker
confinement of these states as is apparent from Figs. 4(b), 4(d),
4(e), and 4(f).

(a)

(b)

FIG. 9. (Color online) Energy levels of a single potential kink
profile as a function of the external magnetic field with ub = 0.25
and δ = 10 for (a) kyl = 0 and (b) kyl = 0.15. The full blue curves
are the topological states and the dashed red curves are the extra
bound states.
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(a)

(b) (c)

FIG. 10. (Color online) (a) Energy spectrum of a single kink
profile in bilayer graphene as a function of the cyclotron orbit
coordinate Xc for B = 7 T, ub = 0.25, and δ = 1. The dashed gray
curve shows a fitted function to the numerical results. The solid black
and green curves are, respectively, the potential in the upper and lower
layers. Solid red lines correspond to the Landau levels of a biased
BLG. The solid purple curves show fitted functions (given in the text)
to the position of the resonances. (b), (c) The probability densities for
the indicated points are shown by red full circles in the spectrum.

Figure 10 shows the spectrum of a sharp (δ = 1) single
kink potential in the presence of an external magnetic field
B = 7 T as a function of the orbit center Xc = kyl

2
B/l

where lB = √
h̄/eB is the magnetic length. The solid lines

represents the applied kink potential to upper (black) and
lower (green) layers. The results show that the topological
states are practically not affected by the magnetic field. The
free-energy region (i.e., |ε| > ub) in the absence of magnetic
field now is replaced with Landau levels (the solid red lines
are the Landau levels of a biased bilayer graphene). In some
region, the Landau levels are influenced by the kink potential
and anticrossings appear in the low-energy spectrum. Some
of these anticrossings are situated along the extension of
the topological states into the |ε| > ub region. In addition to
these anticrossings, the Landau levels display some resonances
along the energy levels of a biased BLG [red solid curves
in Fig. 2(a)], which can be linked to the edge effects of the
potential profile. The position of the resonances can be fitted
to ε = a

√
(Xc − X0)4 + (εn/a)2, where a = 0.0006 and X0 =

9.25 are fitting parameters and εn indicates the nth Landau level
of a biased BLG (see solid purple curves). Also, the topological
levels can be fitted to ε = a

√
(Xc − X0)4 + (ub/a)2 (dashed

gray curve) with a = 0.0003 and X0 = −26. Figures 10(b)
and 10(c) show the probability densities for the points that are

FIG. 11. (Color online) The same as Fig. 10 but for δ = 10. The
solid black and green curves are the potential, respectively, in the
upper and lower layers.

indicated by full red circles in the energy spectrum. For the
points on the purple solid curves (2a, 3a), the distribution of
the carriers by the magnetic field is influenced by the small
confinement by the interface potential [see solid and dashed
curves in Fig. 10(b)]. The probability density for the point
on the fitted curve along the topological level (2b) shows a
higher peak at the kink interface (x = 0) indicating that the
kink potential acts as an attractive potential [solid curve in
Fig. 10(c)]. The other probabilities are clearly those of free
electron LL. The result for a smooth kink potential δ = 10 is
shown in Fig. 11, where the energy values of the extra bound
states are increased by the magnetic field and the topological
levels are practically not affected by the magnetic field.

The localization of the states is reflected in the position
dependence of the current. The current in the y direction is
obtained using

jy = ivF [�†(∂xσy − ∂yσx)� + �T (∂xσy + ∂yσx)�∗], (20)

where � = [ψa(x,y),ψb(x,y)]T . By substituting �(x,y) =
eikyy[ϕa(x),ϕb(x)]T , we have

jy = 2vF

[
Re{ϕ∗

a∂xϕb − ϕ∗
b∂xϕa} + 2kyRe{ϕ∗

aϕb}
]
. (21)

The x component of the current vanishes for the confined
states. In Fig. 12, the y component of the persistent current
for a sharp (blue curves) and smooth (black curves) single
potential kink profile is shown as function of the x direction
without magnetic field (solid curves) and in the presence of the
magnetic field (dashed curves). In the absence of a magnetic
field, the current is localized around x = 0 for both sharp (δ =
1) and smooth (δ = 10) potentials. For a smooth profile, the
wave function of the topological states and, consequently, also
the current density profile, is broadened [compare Figs. 2(b)
and 2(c) with Figs. 4(a) and 4(c)]. A magnetic field shifts the
density profile slightly to the right (see the inset of Fig. 12) due
to the Lorentz force, and there is also a very small narrowing
of the current distribution.
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FIG. 12. (Color online) y component of the persistent current
corresponding to the topological state of a single kink potential
as a function of the x direction for zero magnetic field (dashed
curves) and B = 5 T (solid curves) with k′

y = 0 and ub = 0.25. Blue
curves display the current density for δ = 1 and black curves are the
corresponding results for δ = 10.

Next, we consider the density of states (DOS) for the kink
potential. The number of k states per unit energy is given by

D(E) = D0

2π

∑
n

∫
dk′

yδ(ε − εn,k′
y
), (22)

where D0 = (h̄vF )−1. To calculate the DOS numerically, we
introduce a Gaussian broadening

δ(ε − εn,k′
y
) → 1

�
√

π
exp

[
− (ε − εn,k′

y
)2

�2

]
, (23)

where � is the broadening that is taken as � = 0.005 in our
calculations. Figure 13 shows the DOS as a function of Fermi
energy EF in the absence and presence of an external magnetic
field for sharp (δ = 1) and smooth (δ = 10) kink potentials.
For a sharp profile, the topological levels contribute an almost
constant value to the DOS for |ε| < ub even in the presence

FIG. 13. (Color online) Density of states (DOS) of a single kink
potential for δ = 1 (solid and dashed curves) and δ = 10 (dotted and
dashed-dotted curves) with ub = 0.25 for two different magnetic field
values.

FIG. 14. (Color online) Conductivity σyy as a function of the
Fermi energy EF for a single kink potential with ub = 0.25. Other
parameters are indicated in the figure.

of an external magnetic field. For the smooth profile, peaks
corresponding to the nontopological levels appear in the DOS
and note that only these peaks are shifted in the presence of a
magnetic field, while the DOS of the topological states is not
affected by the magnetic field.

We now turn to the transport properties of a kink potential
and look at the influence of the topological states on the
conductivity in the y direction (σyy). For elastic scattering,
the diffusive conductivity σyy is given by18

σyy = e2vF

2πh̄kBT

∑
n

∫
dk′

yτv2
n,yfn,k′

y
(1 − fn,k′

y
). (24)

Here, T is the temperature, vn,y = ∂εn/∂k′
y is the elec-

tron velocity, fn,k = 1/{exp[(EF − En,k′
y

)
/KBT ] + 1} is the

equilibrium Fermi-Dirac distribution function, and τ is the
momentum relaxation time. For low temperatures, we assume
that τ is approximately constant, evaluated at the Fermi level
(τ ≈ τF ), and replace the product fn,k′

y
(1 − fn,k′

y
)/kBT by the

delta function given in Eq. (23). The results are presented as a
function of EF in Fig. 14 in the units of σ0 = e2vF τF /h̄Ly for
both sharp (δ = 1) and smooth (δ = 10) potentials with B = 0
and 5 T. Due to the robust confinement of the topological
levels, the conductivity is constant in the energy gap even for a
nonzero magnetic field (solid blue curve for B = 0 T and red
dashed curve for B = 5 T). The extra localized levels in the
case of δ = 10 lead to an increasing conductivity as a function
of EF . Note that, in the presence of an external magnetic field,
some of the additional electron (hole) states are shifted up
(down) in energy (see Figs. 4 and 11), which results in smaller
σyy at the |εF | < ub region compared to the conductivity in
the absence of magnetic field (black dotted-dashed curve).

IV. KINK-ANTIKINK

A. Zero magnetic field

Next, we consider a potential profile with a pair kink-
antikink. The kink-antikink potential is modeled by

u(x ′) = ub

[
tanh

(
x ′ − d

δ

)
− tanh

(
x ′ + d

δ

)
+ 1

]
, (25)
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FIG. 15. (Color online) Left panels: Energy levels of a kink-
antikink profile in bilayer graphene with ub = 0.25, δ = 1, d = 15
for (a) B = 0 T and (b) B = 3 T. The black dashed curves display
analytical results as obtained from Eq. (11). Right panels: Real part
of the wave spinors and the corresponding probability density for the
points that are indicated in panels (a) and (b).

where d is the distance between the kink and the antikink
in units of l. The spectrum of the localized states in the
absence of a magnetic field is shown in Fig. 15(a) for
ub = 0.25, δ = 1, and d = 15. The black dashed curves are
the analytical results for δ = 0, which are obtained using
Eq. (11). Note that there are only two chiral states per kink,
which leads to the appearance of crossing points in the energy
spectrum (at E = 0 and k′

y = 0). The spinor components
and probability densities associated with the points indicated
inside the circle in Fig. 15(a) are shown in the panels
(1a, 2a,...,5a). In the absence of a magnetic field and for

FIG. 16. (Color online) The same as Fig. 15 but for a smooth
kink-antikink profile with δ = 10.

the points around the energy level crossing, the carriers are
strongly confined at either the position of the kink or antikink.
The wave function corresponding to an energy at the crossing
point (5a) is localized at both the kink and antikink.

Next, we investigate smooth potential kink profiles. In
Fig. 16(a), the energy spectrum of a smooth kink-antikink
profile (i.e., δ = 10) is presented for zero magnetic field. As
in the case of the single kink profile, additional bound states
appear in the energy spectrum. The overlap between theses
states leads to the appearance of crossing points in the energy
spectrum. The wave spinors and the corresponding probability
density for the points indicated by arrows in Fig. 16(a) are
shown in panels (1a, 2a, 3a, 4a). In the absence of a magnetic
field and for k′

y = 0, the states are localized at both kink and
antikink (panels 1a, 2a, and 4a), whereas panel 3a shows that
the confinement tends to the kink or antikink at k′

y �= 0.
Decreasing the distance between the kink and antikink

generates an unperfect kink-antikink profile.19 This profile is
illustrated in Fig. 17(a). The energy spectrum of such a profile
is shown in Fig. 17(b) for B = 0 T, δ = 1, and d = 3(≈5 nm).
The analytical results [obtained from Eq. (11)] for δ = 0 are
shown by the black dashed curves. Now, the crossing points in
the energy spectrum for the case of d = 15 [see Fig. 15(a)] are
replaced with anticrossings and an energy gap Eg appears in
the energy spectrum. The positions of these minigaps move

1b

2b
3b

4b

1b

2b

3b

4b 4c

3c

2c

1c

1c

2c
3c

4c

FIG. 17. (Color online) Energy levels of a sharp kink-antikink
profile with ub = 0.25, d = 3(≈5 nm), and δ = 1 [the profile is
depicted in (a)] for (b) B = 0 T and (c) B = 3 T. The black
dashed curves in panel (b) display analytical results as obtained from
Eq. (11). Right panels show the real part of the wave spinors and
the corresponding probability density for the points at the energy
spectrum that are indicated by arrows in panels (b) and (c).
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FIG. 18. (Color online) Energy levels of a smooth kink-antikink
profile on bilayer graphene with ub = 0.25, d = 3, and δ = 10 for
(a) B = 0 T and (b) B = 3 T.

when we increase the magnetic field as is apparent from
Fig. 17(c). The panels (1b, 2b, 3b, 4b) show the real parts
of the wave spinors and corresponding probability density for
the indicated points in Fig. 17(b) by red arrows. Note that, due
to the decreasing distance of the kink and antikink, the carriers
can be localized between the kink and antikink.

Figure 18(a) displays the energy spectrum of a smooth
(δ = 10) kink-antikink potential with d = 3 for B = 0 T.
Now, the kink and antikink are close to each other and the
smoothness of the potential leads to extra localized levels.
Therefore, the crossing and anticrossing points between the
additional bound states are seen to disappear, and the energy
gap between the topological levels is increased. The magnitude
of the energy gap Eg depends on the width of the interface
region δ, the maximum value of the potential ub, and the
distance between the kink and antikink. This is shown in

(a) (b) (c)

FIG. 19. (Color online) The energy gap Eg [indicated in
Fig. 17(b)] as a function of (a) maximum amplitude of the gate
voltage ub, (b) the width of kink profile δ, and (c) the position of the
kink and antikink d . Other parameters are shown in the figures.

Fig. 19, where Eg is plotted as a function of ub, δ, and
d, respectively, in panels (a), (b), and (c) in the absence of
magnetic field (blue solid curves). As shown in Figs. 19(a)
and 19(b), the energy gap is an increasing function of ub and
δ. When δ increases, the first energy level at the spectrum
changes from a Mexican hat shape to a parabola. Therefore, Eg

increases with increasing δ [compare the potentials illustrated
in Figs. 17(a) and 18(a)]. Increasing the distance of the kink
and antikink results in perfect unidirectional states, and the
gap disappears [Fig. 19(c)].

Next, we consider the transmittance of a kink-antikink
potential. In Fig. 20, we show a contour plot of the transmis-
sion probability (in logarithmic scale) for the kink-antikink
structure with Lx = 24 for (a) δ = 0.1 (sharp) and (b) δ = 4
(smooth) potentials. The results show a nonzero region for
the transmittance below the gap where the topological levels
corresponding to the kink and antikink cross each other.
The conductance as a function of Fermi energy is plotted in

FIG. 20. (Color online) (a), (b) Contour plot of the transmission
T (in logarithmic scale) through a kink-antikink structure with the
length L = 24 (≈40 nm) for ub = 0.25 and d = 6 with (a) δ = 0.1
and (b) δ = 4. (c) Conductance G/G0 vs Fermi energy of a kink-
antikink potential for the same parameters as (a) and (b).
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Fig. 20(b). A small region of transmittance appears in the
energy gap due to the chiral states that appear as small peaks
in the conductance [see the inset of Fig. 20(c)].

B. Magnetic field dependence

Figure 15(b) shows the kink-antikink energy levels in the
presence of an external magnetic field (B = 3 T). The results
show a shift of the four intragap energy branches as the
magnetic field increases. In addition, the continuum of free
states at zero magnetic field [shadowed region in Fig. 15(a)]
is replaced by a set of Landau levels. The spinor components
and probability densities associated with the points indicated
inside the circle in Figs. 15(b) are shown in the panels (1b, 2b,
. . . ,5b). For nonzero magnetic field, the states show a shift of
the probability density toward the region between the kink and
the antikink. This is caused by the additional confinement due
to the magnetic field.

The energy levels of a smooth kink-antikink profile (i.e.,
δ = 10) in the presence of a perpendicular magnetic field is
presented in Fig. 16(b). Now, the crossing points (in the case of
B = 0 T) changed into anticrossings. In the inset of Fig. 16(b),
an anticrossing is enlarged. Due to the strong confinement of
the potential, the magnetic field can only lead to a shift up in
energy of the localized chiral states. The wave spinors and the
corresponding probability density for the points indicated by
arrows in 16(b) are shown in the panels (1b, 2b, 3b, 4b). In
the presence of an external magnetic field and at the crossing
points of the topological states (panels 1b, 2b) due to the strong
confinement by the potential, the magnetic field can only affect
weakly the electrons. At the first anticrossing (panels 3b and
4b), which arises from the overlap of the first bound states
in the kink and antikink potentials, the electrons are confined
closer to the center of the potential.

FIG. 21. (Color online) Energy spectrum of a kink-antikink
profile in bilayer graphene as a function of the cyclotron orbit center
Xc with ub = 0.25, d = 15, B = 7 T, and δ = 1. Solid red lines
correspond to the Landau levels of a biased BLG. The gray solid
curves show fitted functions (given in the text) to the numerical results.
The solid black and green curves describe the potential, respectively,
in the upper and lower layers.

FIG. 22. (Color online) Energy levels of a sharp kink-antikink
profile (δ = 1) as a function of external magnetic field for ub = 0.25
with (a) k′

y = 0 and (b) k′
y = 0.2.

The energy levels for a sharp (δ = 1) kink-antikink potential
with d = 3 is presented in Fig. 17(c). The crossings that
appeared in the energy spectrum due to the overlap of the extra
bound states in the absence of magnetic field [see Fig. 17(b)]
now are replaced with anticrossings and the energy gap Eg

between the kink and antikink states is shifted up in energy
due to the confinement by the magnetic field. Panels (1c, 2c,
3c, 4c) show the wave spinors and probability density for the
points indicated by arrows in Fig. 17(c). The energy spectrum
of a smooth kink-antikink potential with d = 3, δ = 10 and in
the presence of an external magnetic field B = 3 T is shown

(a)

(b)

(c)

FIG. 23. (Color online) y component of the persistent current of a
kink-antikink profile in bilayer graphene as function of the x direction
for E = EF and for values of the magnetic field that are indicated by
(1),(2), . . . in Figs. 22(a) and 22(b).
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(a)

(b)

FIG. 24. (Color online) Density of states (DOS) of kink-antikink
potentials for (a) δ = 1 and (b) δ = 10 with ub = 0.25. The results
are presented for d = 3 and 15 with B = 0 and 5 T.

in Fig. 18(b). In the presence of a magnetic field, the energy
gap is shifted and the symmetry of the spectrum around E = 0
for B = 0 T is broken [see Fig. 18(a)]. The energy gap in the
presence of a magnetic field (B = 5 T) is shown in Fig. 19 as
red dashed curves. Notice that an external magnetic field only
shifts up the energy gap, and the gap size remains constant.

The energy spectrum of a kink-antikink potential is
shown in Fig. 21 as a function of orbit center Xc for
δ = 1, ub = 0.25, and d = 15. The kink-antikink potential
is depicted in the figure by the dashed curves. As for the
single kink potential, the topological levels can be fitted to
ε± ≈ a

√
(Xc ± X0)4 + (ub/a)2 (see gray solid curves) where

− (+) corresponds to the kink (antikink) branches (a = 0.003
and X0 = 41 are the fitting parameters). Now, the Landau
levels above the gap are affected by the kink-antikink potential,
where anticrossing points appear along the topological levels.
The solid red lines are the Landau levels in a biased BLG.

Figure 22 shows the dependence of the energies on the
external magnetic field for (a) k′

y = 0 and (b) k′
y = 0.2. The

branches that appear for |ε| > 0.25 correspond to Landau
levels that arise from the continuum of free states. For the
kink-antikink case, however, the overlap between the states
associated with each confinement region allows the formation
of Landau orbits. Therefore, the proximity of an antikink
induces a strong dependence of the states on the external field.

Figure 23 shows plots of the y component of the current
density as function of x for the states labeled (1) to (6) in
Figs. 22(a) and 22(b). It should be noticed that a nonzero
current can be found for E = 0 and k′

y �= 0, as can be deduced
from the dispersion relations. For k′

y = 0, the results presented
in Fig. 23(a) show a persistent current carried by electrons
localized at each kink region, irrespective of the direction of

B, as exemplified by the states (1) and (2), which correspond
to opposite directions of the magnetic field. For nonzero wave
vector, however, as shown in Figs. 23(b) and 23(c), the current
is strongly localized around one of the potential kinks. In
Fig. 23(b), the current density curve shows an additional
smaller peak caused by the strong magnetic field (B ≈ 7.5 T),
where the carriers can also be confined closer to the center.

The density of states of the topological states for (a) δ = 1
and (b) δ = 10 kink-antikink potential is shown in Fig. 24 with
d = 3 and 15. The results show additional peaks for a sharp
kink-antikink with d = 3, which is due to the splitting of the
topological levels. Note that the energy gap leads to a zero
density at EF = 0 for zero magnetic field [green dotted curve
in (a)], while shifting the gap in the presence of a magnetic
field results in a nonzero DOS at EF = 0 [black dot-dashed
curve in (a)]. For the smooth profiles, the nontopological 1D
states lead to the appearance of additional peaks in the DOS
[panel (b)] that shift with the magnetic field.

V. CONCLUDING REMARKS

In summary, we obtained the energy spectrum, the density
of states, the transmission, and conductivity for carriers
moving in BLG in the presence of asymmetric potentials (i.e.,
kink and kink-antikink profiles) in each layer of the BLG.
Unidirectional chiral states are localized at the location of the
kink (or antikink). By controlling the gate voltages and/or the
smoothness of the kink profile, the number of one-dimensional
metallic channels and their subsequent magnetic response can
be configured.

The effect of an external magnetic field perpendicular to
the bilayer sheet was investigated. We found that the influence
of the magnetic field is very different for single and double
kinks. Due to the strong confinement by the kink potential, the
topological states are weakly affected by the magnetic field in
the case of a single kink profile.

Changing the sign of the kink potential smoothly (i.e.,
broadening the kink potential) leads to extra bound states,
which have a very different behavior as compared to the
unidirectional topological states. First, these states are no
longer unidirectional and they have a quasi-1D free-electron
type of spectrum, which is asymmetric around ky = 0. Second,
they are less strongly localized at the kink of the potential as
compared to the chiral states, and their probability distribution
appears as those of excited states of the chiral state.

In the case of parallel kink-antikink profiles, apparent
crossings of the energy levels are found in the spectrum.
Decreasing the distance between (and/or smoothing) the kink-
antikink profiles turns into anticrossings. It opens a gap in the
topological state spectrum. This allows for a robust 1D system
having a tunable minigap.
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