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Hopping transport in systems of finite thickness or length
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Variable-range hopping transport along short one-dimensional wires and across the shortest dimension of thin
three-dimensional films and narrow two-dimensional ribbons is studied theoretically. Geometric and transport
characteristics of the hopping resistor network are shown to depend on temperature T and the dimensionality
of the system. In two and three dimensions, the usual Mott law applies at high T where the correlation length
of the network is smaller than the sample thickness. As T decreases, the network breaks into sparse filamentary
paths while the Mott law changes to a different T dependence, which is derived using the percolation theory
methods. In one dimension, deviations from the Mott law are known to exist at all temperatures because of rare
fluctuations. The evolution of such fluctuations from highly resistive “breaks” at high T to highly conducting
“shorts” at low T is elucidated.
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I. INTRODUCTION

Variable-range hopping (VRH) is the mechanism of low-
temperature transport common in systems with electron states
localized by disorder. Typically, the VRH conductivity σ (T )
obeys the Mott law,

ln σ (T ) = −
(

cdT0

T

)1/(d+1)

, T0 = 1

gad
, (1)

where d is the space dimension, a is the localization length,
g is the density of states, and cd is a numerical coefficient.
Temperature dependence stronger than the Mott law can arise
due to electron interactions that deplete g near the Fermi level.1

On the other hand, T dependences weaker than the Mott law
have also been observed. For example, a power-law scaling,

σ (T ) ∼ T α, (2)

has been measured2,3 in transport across disordered thin films.
Such a behavior is thought to originate from hopping along
special highly conductive chains of sites.4–7 The exponent α

scales with the number of hops in the chain. We call this
transport mechanism rare-chain hopping (RCH). The RCH
has often been discussed in the context of magnetic tunneling
junctions; see a recent example in Ref. 8.

In the preceding paper,9 we have shown that the RCH can
also determine the conduction measured in an ensemble of
short one-dimensional (1D) wires connected in parallel. In our
theory, the exponent α depends on the ratio L/a, where L is the
length of the wires. However, Eq. (2) is only an approximation
that holds in a limited range of T . Such an apparent power-law
behavior has been observed in a number of 1D and quasi-1D
systems.10–13 We demonstrated that the RCH provides a more
plausible explanation of these observations than models based
on the concept of 1D Luttinger liquid.9

The present paper is devoted to the crossover from the low-
T RCH to the higher-T Mott law. To the best of our knowledge,
this problem has not been studied theoretically, although
similar problems have been examined in the context of VRH
transport along the longer dimension of three-dimensional
(3D) films14 and two-dimensional (2D) strips.15

We show that depending on space dimension d, the Mott
law and the RCH represent either two separate, competing
contributions to the transport or they succeed one another via
a continuous evolution. In the first case, realized in d = 3,
the logarithmic derivative d ln σ/dT has a sharp change at
the crossover point. Systems of dimension d < 3 produce the
other type of behavior, where a gradual variation of ln σ (T )
takes place. Our analysis is most complete in 1D (by which
we again mean an array of 1D systems connected in parallel),
where we can utilize both numerical and analytical methods.
More complicated cases of higher dimensions are studied using
qualitative physical considerations.

The paper is organized as follows. Sections II and III
introduce the model and key relations we use to analyze the
problem. Sections IV and V deal with d > 1 and d = 1 sys-
tems, respectively. Concluding remarks are given in Sec. VI.
Details of the derivations are gathered in the Appendix.

II. CONDUCTIVITY FROM CROSSING PROBABILITY

We consider localized states (sites) distributed randomly
with the uniform average density g in energy-position space.
The x coordinates of the states belong to the interval 0 < x <

L. If d > 1, the system is assumed to be infinite along the
remaining d − 1 coordinates. The x = 0 side of the system is
the source electrode and the x = L side is the drain electrode.
We wish to compute the conductivity σ (T ,L) between the
source and the drain.

We adopt the Miller-Abrahams resistor network model16 in
which the resistance between any two sites is given by

Rij = R0e
uij , uij = 2rij

a
+ |εi | + |εj | + |εi − εj |

2T
, (3)

where rij is the distance between the sites and εi is the energy
of state i measured from the Fermi level. The coefficient R0

should have some power-law T dependence determined by the
electron-phonon coupling. However, we will ignore it and treat
R0 as a constant.

The next approximation is to view our system as an array of
hypercubes of length L and cross-section area Ld−1 connected
in parallel. (For an array of d = 1 wires, this approximation is
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exact.) It yields the relation between the conductivity and the
ensemble-averaged conductance G of a single hypercube:

σ (T ,L) = L2−d〈G〉 . (4)

In order to estimate 〈G〉, we use the percolation theory argu-
ment. We assume that the conductivity of a given hypercube
is dominated by an optimal subnetwork, which is constructed
as follows.1,17 Each pair of sites with uij � u is considered
a connected bond; otherwise, it is a broken bond. Gradually
increasing u, one reaches some value uc where for the first time
the source and the drain become joined by a path of connected
bonds. The dominant subnetwork is obtained increasing u up
to uc + 1 or so. Further increase in u is assumed not to lead
to a significant growth of the conductivity because the added
resistors would be shunted by those already present in the
circuit.

For each disorder realization, the critical u is a random
number. Its statistical properties are encoded in the so-
called crossing probability18–20 P (u), which is a cumulative
distribution function of u. Thus, P (u) gives the probability of
having a connected path (the spanning cluster) between the
source and the drain via the bonds uij � u. [Accordingly, the
derivative of P (u) is the distribution function of the percolation
thresholds in a finite-size hypercube, the earliest study of which
was carried out in Ref. 21.] Understanding the geometry of the
spanning cluster is a key to calculating both P (u) and the
average conductance 〈G〉.

In general, the cluster consists of the current-carrying
backbone and the dead ends. We can imagine two limits.
The backbone can be made of a single filament, as illustrated
in Figs. 1(a) and 1(b), or it can look like a d-dimensional
network with a correlation length (characteristic size of the
cells) ξ � L; see Fig. 1(c). In the latter case, which is possible
only if d > 1, we find

〈G〉 ∼ (L/ξ )d−2
∫

duP ′(u)R−1
0 e−u

= (L/ξ )d−2R−1
0

∫
duP (u)e−u , (5)

The second line in Eq. (5) is obtained integrating by parts.
Substituting it into Eq. (4), we obtain, with the same accuracy,

σ ∼ R−1
0 max

u
{ξ 2−d (u)P (u)e−u} . (6)

Similarly, in the case of a single filament of a characteristic
transverse dimension L⊥, we can estimate the conductivity as
follows:

σ ∼ R−1
0 max

u
{LL1−d

⊥ (u)P (u)e−u} . (7)

The brunt of the remaining work is to compute P (u) and L⊥
(or ξ ) as a function of T , L, and d.

III. TWO MAIN REGIMES

As discussed in Sec. I, there are two principal regimes of
VRH: the Mott law and the RCH. In this section, we show how
they follow from our Eqs. (5)–(7).

L

y

x ξ L exp(L/ξ)

L

y

x  (La)1/2

L

y

x
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ua
(a)

(c)

(b)

FIG. 1. Evolution of a 2D network with increasing T (see
Sec. IV). The network progresses from independent conducting
strands to an interconnected grid; see the main text.

A. The Mott law

To see how Eq. (5) leads to the Mott law, let us recall that
according to the percolation theory, in the limit L → ∞, the
crossing probability P (u) approaches a step function, P (u) →
�(u − uc); therefore,

ln σ 
 −uc . (8)

The integral in Eq. (5) is dominated by the interval

uc < u � uc + 1 . (9)

To calculate the threshold value uc, we proceed as follows.
From Eq. (3), we see that for a given u we need to consider
only sites with energies −T u < ε < T u. These sites have the
average coordination number

C(u) =
∫ T u

−T u
gdεj

∫ T u

−T u
gdεi

∫
ddrij�(u − uij )∫ T u

−T u
gdε

, (10)

which scales with u as

C(u) = βd (u/uM )d+1 , (11)

uM ≡ (2T0/T )1/(d+1) , (12)

where β1 = 1/2, β2 = π/8, and β3 = π/20. The percolation
threshold is known to be Cc ≈ 3 for d = 2,3. Hence, the
threshold value is uc = (Cc/βd )1/(d+1)uM . Substituting this
into Eq. (8), we recover the Mott law [Eq. (1)] and determine
the numerical factor therein to be cd = 2Cc/βd .
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The geometry of the critical subnetwork in the Mott regime
is of course more complicated1 than what is sketched in
Fig. 1(c). This subnetwork is a self-similar fractal object on
the spatial scales rM � r � ξ . Here

rM = auM/2 (13)

is the typical hopping length,

ξ = rMu
νd

M ∼ au
νd+1
M (14)

is the correlation length, and

ν2 = 4/3 (d = 2) , (15a)

ν3 ≈ 7/8 (d = 3) (15b)

are the percolation theory exponents.1,22 Equation (14) for ξ

follows from the general formula

ξ ∼ rM |ε|−νd , (16)

where

ε = u/uc − 1 (17)

is the fractional distance to the percolation point. For u =
uc + 1 [cf. Eq. (9)], we have ε ∼ 1/uM , leading to Eq. (14).

The above derivation applies if d > 1. In 1D, the percolation
threshold does not exist in the L → ∞ limit because the infi-
nite spanning cluster is invariably broken apart by fluctuations.
We discuss this special case in Sec. V.

B. Rare-chain hopping

It is easy to see that for ξ given by Eq. (14), the condition
L  ξ necessary for the validity of the Mott law can be
satisfied only at a high enough temperature. At lower T , the
network geometry must be different and deviations from the
Mott law should appear. (The criterion ξ ∼ L also determines
the onset of finite-size effects in transport along the longer
dimension of a 3D film14 or a 2D strip.15) For the lowest T , we
expect the RCH regime. Let us now rederive the corresponding
conductivity4–7 from our formalism.

The connectivity of the chain of N sites is determined by
the probability of forming N consecutive bonds. Accordingly,
P (u) ∼ [C(u)]N . The lower bound on N is 2L/au because the
length of each hop is less than or equal to

R = ua/2 . (18)

Since C � 1, the optimal number N∗ of sites must be close to
this bound; hence,

ln P (u) 
 −2L

au
ln

[(uM

u

)d+1
]

, u � uM . (19)

Substituting this into Eq. (7), we find the optimal u to be, with
logarithmic accuracy,

u∗ 

[

2(d + 1)L

a
ln

(
uM

uRCH

)]1/2

, (20)

uRCH ≡
√

2L

a
. (21)

For the conductivity, we find

ln σ 
 −
[

8L

a
ln

(
T0

T

1

ud+1
RCH

)]1/2

, (22)

in agreement with the previous work.5 Equation (22) represents
a very slow T dependence compared to the Mott law. If
the accessible range of T is limited, as is often the case in
experiments, such a dependence can be easily confused with
a power law, Eq. (2). In fact, Eq. (22) can be written as

σ ∼ T N∗ . (23)

Therefore, the exponent α in Eq. (2) is essentially the optimal
number of sites N∗ ∝ ln−1/2[(T/T0)ud+1

RCH] in the chain.2,6,9

The remainder of the paper is devoted to analyzing the
crossover between the Mott law and the RCH.

IV. 2D AND 3D SYSTEMS

We make a key observation that at finite L, function P (u) is
nonvanishing even at u < uc due to some disorder realizations
that percolate “early.” This creates an exponential tail of
P (u), which competes with the factor e−u in Eq. (7). As
a result, the optimal u can be pushed below the threshold,
u∗ < uc, implying that the transport is governed by subcritical
percolation, ε < 0.

The behavior of the crossing probability near the perco-
lation threshold 0 < −ε � 1 can be understood qualitatively
as follows. Correlation length ξ in Eq. (16) represents the
characteristic size of the largest connected clusters (i.e., the
largest clusters among those that are not yet exponentially
rare22). This is different from the geometrical meaning of ξ in
the supercritical regime u > uc, where it is the characteristic
size of the voids in the network; see Eq. (9) and Fig. 1(c).
In the subcritical regime, the spanning cluster appears when
L/ξ independent clusters of size ξ each join together by
chance, forming a conducting pathway. Therefore, the crossing
probability can be estimated as19,20 P (u) ∼ e−L/ξ . Combined
with Eqs. (16) and (17), this estimate yields [in the 2D case,
this coincides with Eq. (9) of Ref. 15]

ln P (u) 
 −L

ξ
∼ − L

rM

(
uc − u

uc

)νd

. (24)

This implies

P ′(u) ∝ (uc − u)νd−1 . (25)

Hence, the behavior of P (u) near uc depends on whether νd

is larger or smaller than unity. In 2D, we have ν2 > 1, and so
the derivative vanishes. In 3D, the opposite inequality ν3 < 1
holds, and so P ′(uc) diverges. This dichotomy is the reason
for the different manner in which the Mott law transitions to
the RCH regime in the two cases.

Consider the 2D case first. Per Eq. (6), the conductivity is
determined by the maximum of e−uP (u). Using Eq. (24), we
find that it is reached at u∗ such that

uc − u∗ = (TP /T )β , TRCH < T < TP , (26)

where

β = νd + 1

(d + 1)(νd − 1)
= 7

3
, d = 2 , (27)
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uucln P(a) uucln P(b)

FIG. 2. Crossing probability P (u). The qualitative difference of
the (a) 2D and (b) 3D cases in the vicinity of uc is apparent.

and the characteristic temperatures TRCH and TP are

TP ∼ T0

( a

L

)(d+1)/(νd+1)
= T0

( a

L

)9/7
, (28)

TRCH ∼ T0

( a

L

)(d+1)/2
= T0

( a

L

)3/2
. (29)

TP is the temperature below which the T dependence of the
conductivity and the network geometry start to deviate from
what is found in an infinite sample, cf. Sec. III A and Fig. 1(c).
The Mott law acquires the correction term as follows:

ln σ = −uc + νd − 1

νd

(uc − u∗) . (30)

Formula (14) for ξ is replaced by ξ ∼ L/(uc − u∗) � L and
the VRH network now consists of well-separated filaments;
see Fig. 1(b).

As T decreases further and reaches TRCH, the optimal u

becomes equal to uRCH [Eq. (21)]. At this point, the distance
from the critical point uc − u∗ becomes comparable to uc

itself. The cluster size ξ shrinks down to the elementary
hopping length R, which signifies the crossover to RCH;
see Sec. III B.

In 3D, the optimal u∗ has a different T dependence. Due
to positive concavity (the second derivative) of the ln P (u)
curve near uc, see Fig. 2, the maximum of e−uP (u) stays at uc

at all T > TRCH. The temperature scale TP plays no role and
Eq. (26) does not apply. The Mott law continues to be valid.
However, as soon as T drops below TRCH, parameter u∗ gets
suddenly reduced by some numerical factor and at still lower
T we have Eq. (20). In other words, in 3D the transition from
the Mott law to RCH is abrupt; see Fig. 3(b).

V. QUASI-1D SYSTEMS

A. Toy model

Since the percolation threshold does not exist in 1D,
function P (u) for high u has a somewhat different form
compared to d > 1. The peculiarities of the 1D case are well
illustrated by the toy model in which all the site energies are
equal to zero. The connected sites are those that are separated
by a distance less than R [Eq. (18)].

The crossing probability can be computed exactly:

P = 1 +
∑

1�k�l

(−1)k

k!
e−ρk[ρ(l − k)]k−1(k − kρ + lρ) , (31)

where l = L/R, ρ = gR, and the density of states g is
redefined to be simply the density in coordinate space. For
large l, this expression can be approximated by

ln P ∼ (s0 − ρ)l , (32)

−u
6/7
RCH

−uRCH

− 3
√

c2uRCH

c2
T0
T

)1/3
3
√

c2uRCHu
6/7
RCH(a) ln σ

− 4
√

c3uRCH

c3
T0
T

)1/4
4
√

c3uRCH(b) ln σ

FIG. 3. (Color online) Conductivity as a function of temperature.
The tilted dashed line shows the extrapolation of the Mott law past
its region of validity for contrast. (a) In 2D, there is an intermediate
regime smoothly interpolating between the Mott law and the RCH.
(b) In 3D, the transition between the Mott and RCH regimes is abrupt.

where s0 is the real root of the equation

k(s) ≡ 1 − e−s

s
= 1

ρ
, (33)

cf. Appendix A. For large ρ, this yields

ln P 
 −lρe−ρ , ρ  1 . (34)

For small ρ, we have s0 ∼ ln ρ, which gives

ln P 
 −l ln
1

ρ
, ρ � 1 . (35)

These results have a simple interpretation. For high ρ, the sites
are very dense. However, empty segments of length larger than
or equal to R may also appear by chance. Deviations of P

from unity are due to these rare disruptions—“breaks.” The
probability of having no sites in a segment of length R is

ptoy = e−ρ. (36)

The average distance 1/(ptoyg) between such breaks defines
the average length ξ of connected clusters. Using ln P =
−L/ξ , as in Eq. (24), we recover Eq. (34). On the other
hand, for small ρ, the sites are very sparse, so we have an
analog of the RCH regime. We expect P ∼ CN , similar to
Sec. III B. Approximating the number of hops N by l and the
average coordination number C by ρ, we arrive at Eq. (35).
(We assume that N is large and ignore its fractional part in
this heuristic derivation.) Note that Eqs. (34) and (35) match
at ln ρ ≈ −1, where the cluster size shrinks to the elementary
size R. In this respect, our toy model is similar to the 2D case
(Sec. IV).
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Next, we show that the having random energies in addition
to random x coordinates does not qualitatively change this
physical picture.

B. Analytical results for 1D

The model of 1D VRH in which both the coordinates x and
energies ε of the sites are random has been studied extensively
in prior literature. It has been shown that a number of rigorous
analytical results can be obtained in the limits of either high
or low T where σ is dominated by rare events. Below, we
rederive these results in a unified manner, which enables us to
elucidate the crossover between them.

Recall that each link of the hopping network is characterized
by a dimensionless number uij . As in the toy model, we can talk
about “breaks,” by which we mean links with uij much larger
than the typical value uM . At high T , the transport is dominated
by these rare breaks;15,23–26 see Fig. 4(b). The breaks straddle
regions of size R = ua/2 and 2uT in x and ε directions,
respectively, empty of hopping sites. The probability of having
a break with uij > u can be computed considering how the
area and the perimeter of such regions scale with u. The result
is25,26

p(u) ∼ exp

(
− u2

u2
M

+ 2B
u

uM

)
, (37)

where27 B ≈ 0.9. The average size of the connected cluster is
therefore ξ = rM/p(u) and the crossing probability is, similar
to Eqs. (24) and (34),

ln P (u) ∼ −L

ξ
∼ −2L

ua
exp

(
− u2

u2
M

+ 2B
u

uM

)
. (38)

For such P (u), the maximum of the right-hand side of Eq. (7)
is reached at

u∗ 
 uM ln
1
2

(
u2

RCH

u2
M

)
, uM � uRCH . (39)

-uT uT

x

ε

(a)
x

ε

(b)

uT-uT

L L

FIG. 4. (Color online) VRH network in 1D. (a) At low T , the
network is made of a few approximately equidistant hops. The
resistance of each link eu is much smaller than the typical one euM .
This structure is common to all d , cf. Fig. 1(a). (b) At high T , most
of the resistors in the network (dashed lines) have typical values
and form clusters. However, unlike the d > 1 case [Fig. 1(b)], the
clusters are connected together by u  uM “breaks” that straddle
regions empty of the hopping sites. The solid line shows the path of
the least total resistance.

−2c1

−uRCH

−√
c1uRCH

ln σ c1
T0
T

)1/2

2c1

√
c1uRCH

FIG. 5. (Color online) Transport regimes in the quasi-1D case.
The lowest T region (to the right of the second dot on the curve)
is the RCH regime, Eq. (22). The intermediate T regime (between
the two dots) is described by Eq. (40). It transitions smoothly into
activated transport at high T . Near the inflection point (the leftmost
dot), the Mott law, Eq. (1), is realized.

Accordingly, the conductivity σ is given by

ln σ (T ) 
 −
[

2T0

T
ln

(
L

a

T

T0

)]1/2

. (40)

[The argument of the logarithmic factor on the right-hand side
is reduced by

√
T/T0 compared to Eq. (7) of Ref. 25 for

the typical conductance. This is because Eq. (40), equivalent
to Eq. (13) of Ref. 9, represents not the typical but the
ensemble-averaged conductivity, which is enhanced by the
better conducting members of the ensemble.] It was shown
in Ref. 25 that this equation has the upper limit of validity,
T = T0/(4c1), where c1 is defined by

c1 = 2 ln u2
RCH = 2 ln

(
2L

a

)
. (41)

At still higher T , the conductivity is described by the activation
law,23,25 ln σ (T ) 
 −T0/(2T ). This implies that the Mott law
is, strictly speaking, invalid in 1D. However, if the accessible
range of temperature is narrow, the deviations from the Mott
law may not be readily apparent. These deviations are the
smallest precisely near the point of crossover to the activation
law because the dependence of ln σ (T ) on uM ∝ T −1/2 must
have an inflection point there. In this sense, we can argue
that the Mott law is confined to a narrow vicinity of T =
T0/(4c1), while Eq. (40) describes an intermediate subcritical
percolation regime, similar to Eq. (30) in 2D. We may expect
that this intermediate regime should cross over to the RCH
when the cluster size ξ becomes of the order of the average
hopping length rM . Indeed, this criterion is satisfied at uM ∼
uRCH; see Fig. 5.

For u < uRCH, the behavior of P (u) is determined by the
RCH; see Fig. 4(a). Adapting the method of Ref. 5 to the 1D
case, we obtain the result conceptually similar to Eq. (35):

ln P (u) 
 2L

a
c0(u) . (42)

Function c0(u) in this equation is defined in Appendix B. For
u � uM , it has the asymptotic form

c0(u) 
 − 1

u
ln

(
u2

M

u2

)
, (43)
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so that the crossing probability is given by

ln P (u) 
 −2L

ua
ln

(
u2

M

u2

)
. (44)

As in our toy model, P is the product of the number of
hops N = 2L/(ua) and a logarithmic factor. Equation (44)
is also in agreement with the general RCH formula (19),
but it is more accurate. In principle, it enables one to go
beyond the leading logarithmic approximation of Eq. (22). In
practice, these logarithms are not truly large even when such
more accurate approximations are used. This motivates us to
additionally examine the problem by numerical simulations,
which are described in the last part of this section.

C. Numerical results for 1D

To compute P (u) numerically, we proceed as follows. First,
we generate an ensemble of 1D systems for each L and T of
interest. For every realization, we find uc—the minimum value
of u at which the path traversing the system is formed. This
uc is a random number between 0 and 2L/a. To find it, we
start from some initial guess ∼ L/a and then fine-tune it by
iterative bisection. The connectivity of the network for a given
u is determined by the algorithm similar to one used in our
previous work.9,27 Finally, the histogram of uc gives us the
crossing probability P (u).

In Fig. 6, we show that when our results for P (u) are plotted
as (rM/L) ln P (u) versus u/uM , they collapse on a common
master curve. The deviation from the master curve at high
u comes from the fact that the number of hops N ∼ 2 is no
longer large. The deviations at low u are due to poor statistics
of these low probability events.

We considered two analytical approximations of our numer-
ical results. First, aiming to utilize the analogy to the exactly
solvable toy model, we fitted the master curve in terms of
function P defined by Eq. (31). The fit (shown by the longer

u/uM

(r
M

/L
)l

n
P

-6

-5

-4

-3

-2

-1

0

0 1 2 3

5 × 10−5

1 × 10−4

5 × 10−4

1 × 10−3

5 × 10−3

1 × 10−4

5 × 10−4

1 × 10−3

5 × 10−3

1 × 10−2

FIG. 6. (Color online) Numerical results for P (u) in 1D. Different
colors represent T ranging from 5 × 10−5 to 5 × 10−3 for L = 100a

(circles) and from 10−4 to 10−2 for L = 30a (squares), with the
temperature unit being such that T0 = 3/4. The solid lines are analytic
approximations; see the main text.

0 6 12 18 24 30 36
10−20
10−15
10−10
10−5
100

uM

σ

(a)

12 18 24 30 36

10−18

10−15

10−12

10−9

uM

σ

(b)

FIG. 7. (a) 1D conductivity vs uM obtained numerically (see the
main text). The tilted dashed line and the two dots have the same
meaning as in Fig. 5. The parabola on the left of the dashed line
represents the activation regime. (b) The same data plotted on a
double logarithmic scale in order to demonstrate that it can resemble
a power-law (2) at low T (to the right of the dot).

curve in Fig. 6) was generated by setting

ρ = 1

1 + 2B uM

u

u2

u2
M

(45)

designed to produce p 
 ptoy at u  uM ; cf. Eqs. (36)
and (37).

The second approximation is the parameter-free Eq. (42),
which simultaneously represents the leading asymptotic result
for P (u) at low u and the strict lower bound at any u; see
Appendix B. It is shown by the shorter solid curve in Fig. 6.
While our numerical results converge to this curve at lowest u,
we were unable to achieve an accurate match because of the
prohibitive computational cost needed to acquire statistics in
this region.

Using our first fitting formula for P (u) and Eq. (5), we
also computed the conductivity at sufficiently large uM > 12
where this approach should be valid. The results are shown
in Fig. 7 together with the activated dependence25 at uM <

6 and the dashed line through the surmised inflection point
at uM = √

8c1 ≈ 8. The obtained graph suggests a smooth
transition from the exponential to the stretched-exponential to
the power-law-like behavior of σ (T ), consistent with Fig. 5
and our previous work.9,27

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the dependence of VRH
conductivity on temperature in systems of finite thickness or
length in all physical dimensions. We have demonstrated that
both stretched exponential and quasi-power-law dependences
can arise in such systems. The significance of our results serves
to elucidate the transition between these different laws.

Prior theoretical work that dealt with hopping conductivity
across a thin film took the number of hops N as the principal
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variable of the problem.5,6,25 This allows one to compute
the conductivity in the RCH regime beyond the leading
logarithmic approximation given in Sec. III B. However, this
approach precludes one from making a connection with the
percolation theory and the Mott law. Our method, which
employs concepts of subcritical percolation theory and takes
u as the main variable, allows us to do so. In the RCH regime,
the computation of the optimal u = u∗ implicitly optimizes
the number of hops in a path. In the Mott regime, it plays the
role of the percolation parameter directly.

Our results provide a natural explanation for the be-
havior observed in quasi-1D systems with a large number
of channels.10–13 However, individual wires28 and similar
systems, such as graphene nanoribbons,29 exhibit significant
mesoscopic fluctuations. Further effort is required to take these
fluctuations into account.

Examples of 2D systems that can be studied using our
method include GaAs devices30 and bilayer graphene p-n
junctions.31 Finally, in 3D our approach describes thin
films.2,3,32 Reference 3 indeed reported the crossover from
Mott to a power-law-like dependence with decreasing temper-
ature.

In an interesting recent experiment,32 the transport across
disordered films of Cu-phthalocyanine was measured over a
broad range of temperature T and thickness L. A sharp change
from strong to weak T dependence below some temperature
in the thinnest films studied therein agrees qualitatively with
our theory. The dependence on L is more complicated to
analyze because of a possible systematic variation of the film
morphology and doping level with thickness.

Extensions of our work may include the study of Coulomb
and spin-related effects,33–35 energy-dependent (e.g., exponen-
tial) density of states, and non-Ohmic transport.9,36
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APPENDIX A: SOLUTION OF THE 1D TOY MODEL

Within our toy model, the (unnormalized) probability of
connecting the source and drain via N − 1 intermediate sites
is given by

ZN−1(R,L) = gN−1
∫ R

0

N∏
i=1

dxiδ

⎛
⎝L −

N∑
j=1

xj

⎞
⎠ , (A1)

where xi is the length of the ith hop and g is the density.
The normalized probability is obtained by summing over N

and multiplying by the factor e−gL known from the Poisson
distribution. In order to compute each term, we first take its
Laplace transform over L. This decouples the integrals and
yields the closed-form expression

Z̃N−1(R,s) = gN−1

(
1 − e−sR

s

)N

. (A2)

C

S0

S1

S
S2

S3

S-1

S-2

S-3

FIG. 8. The contour used in Eq. (A6). For ρ � 1, all the poles
sj are in the left half-plane. When ρ becomes sufficiently large,
the pole s0, which has the largest real part, becomes positive and
approaches ρ.

Next, we perform the inverse Laplace transform and sum over
N . The result is

Z(L) =
∞∑

N=1

N∑
k=0

N (−1)k[g(L − kR)]N−1

k!(N − k)!
�(L − kR) . (A3)

In terms of the notations l = L/R and ρ = gR introduced in
Sec. V, the crossing probability becomes

P =
∞∑

N=1

N∑
k=0

(
N

k

)
(−1)k[ρ(l − k)]N−1e−ρl

(N − 1)!
�(l − k), (A4)

which can be shown to lead to Eq. (31) by straightforward
algebra.

One can also proceed by summing Eq. (A2) for all N :

Z̃(R,s) = 1 − e−sR

s − g(1 − e−sR)
. (A5)

The inverse Laplace transform can be written, after the change
of variable s → s/R, as

P = e−ρl

2πi

∫
C

ds esl 1 − e−s

s − ρ(1 − e−s)
. (A6)

The integration contour C is shown in Fig. 8.
Applying the residue theorem, we get

P =
∞∑

j=−∞

sj

ρ(1 − ρ + sj )
e(sj −ρ)l , (A7)

where sj are the roots of Eq. (33). For large l, the real root s0

dominates; therefore,

P 
 s0

ρ(1 − ρ + s0)
e(s0−ρ)l . (A8)

Equation (32) in Sec. V was obtained from here by dropping
the preexponential factor.
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APPENDIX B: LOWER BOUND ON THE CROSSING
PROBABILITY

For any d, we define the function

ZN−1 =
∫

dδ

(
L −

N∑
k=1

xk

)
N∏

i=1

�(u − ui,i−1) , (B1)

d =
N∏

i=1

dxid
d−1r⊥

i

N−1∏
j=1

gdεj . (B2)

Unlike ZN−1 in the toy model [Eq. (A1)], here we take into
account random site energies −T u < εj < T u. The energies
of the electrode sites, ε0 and εN , are both equal to zero to
minimize the resistance. The transverse displacements r⊥

i that
exist in the d > 1 case are unrestricted except for the first
and the last one, r⊥

1 = r⊥
N = 0. The hop lengths xi in the x

directions are assumed to be positive.
The sum of ZN−1 over all N yields the unnormalized

probability of finding a path with ui,i−1 < u for all links i

provided only the hops between sites that are nearest neighbors
in x are allowed. Hence, this quantity gives the strict lower
bound on the crossing probability P (u). The bound becomes
sharp at u � uM , where the average number of nearest
neighbors is parametrically small.

Similar to Appendix A, we proceed to take the Laplace
transform of ZN−1 with respect to L:

Z̃N−1 =
∫

d

N∏
i=1

�

(
φi − 2

a

√
(r⊥

i )2 + x2
i

)
e−sxi , (B3)

φi = u − |εi | + |εi−1| + |εi − εi−1|
2T

. (B4)

Henceforth we focus on the 1D case. Making two changes of
variables, ζ ≡ ε/(uT ) and c = as/2, and integrating over xi ,
we obtain

Z̃N−1 =
( a

2c

)N

(guT )N−1 fN−1(0) , (B5)

where f0(ζ ) = k(ζ ), function k(ζ ) is defined by Eq. (33),
and functions fj (ζ ) with j > 0 obey the recursive integral

equations

fj (ζ ) =
∫ 1+ζ�(−ζ )

−1+ζ�(ζ )
dη A(ζ,η)fj−1(η) , (B6)

A(ζ,η) = 1 − e−λ , (B7)

λ(ζ,η) =
(

1 − |ζ | + |η| + |ζ − η|
2

)
uc . (B8)

Similar equations appeared previously in Ref. 5, a near-literal
copy of which is available online in Ref. 37. Following
this work, for N  1 we expect fN−1(ζ ) 
 ακ

N−1ψ(ζ ),
where κ = κ(uc) is the largest eigenvalue of the integral
operator in Eq. (B6) and α is the overlap of f0(ζ ) with
the corresponding eigenfunction ψ(ζ ). This approximation
enables us to derive the leading asymptotic behavior of the
inverse Laplace transform of the geometric series:

Z = 1

2πi

∫ −i∞+γ

−i∞+γ

dc
2

a

∞∑
N=1

Z̃N−1e
2Lc/a . (B9)

Representing this integral by a sum over the poles of the
integrand, we see that the dominant pole c0 is the real-valued
solution of the equation

κ(uc0)

uc0
= u2

M

u2
, (B10)

while the crossing probability is given by Eq. (42). For
u � uM , the product uc0 proves to be large and negative.
In this limit, we can reduce our integral equation to that
studied in Ref. 5 and obtain the eigenvalue equation in the
form

κ 
 − e|uc0|

|uc0|κT , κT ≈ 1.18 . (B11)

Solving this equation in the leading logarithmic approximation
yields Eq. (43). In order to produce the second analytic fit
(the shorter solid line) in Fig. 6, we solved both the integral
eigenvalue problem and Eq. (B10) numerically. Hence, we are
quite confident that what is shown in that figure is the strict
lower bound on P (u).
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