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Rainbow scattering under axial surface channeling from a KCl(001) surface
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Fast He, Ne, Ar, and N atoms with projectile energies from 1 up to 60 keV are scattered under grazing polar
angles of incidence from a flat and clean KCl(001) surface. For the scattering along low-index directions (axial
surface channeling) we observe pronounced peaks in the angular distributions of scattered projectiles which can
be attributed to rainbow scattering. From classical trajectory calculations based on universal and individual pair
as well as density functional theory (DFT) potentials, we obtained corresponding rainbow angles for comparison
with the experimental data. Fair agreement was found for DFT and individual pair potentials calculated from
Hartree-Fock wave functions.

DOI: 10.1103/PhysRevB.84.125440 PACS number(s): 68.49.Bc, 34.20.Cf, 34.35.+a, 34.50.−s

I. INTRODUCTION

For the description of atomic collisions the interaction
potentials are essential to determine the trajectories of the
collision partners and the differential cross sections.1,2 Ac-
cordingly, stopping phenomena, electronic excitation, charge
transfer processes, sputtering, etc., are directly related to
the interatomic potentials between the collision partners.3

Examples for the importance of the interatomic potentials are
low- and medium-energy ion scattering spectroscopy (LEIS4,5

and MEIS,6,7 respectively), where the potential determines the
shape of the shadow and blocking cone.4 In collisions of fast
atoms and ions with insulator surfaces under grazing angles of
incidence with respect to the surface plane, one can observe
interesting phenomena as high electron yields, large fractions
of negative ions, suppression of charge transfer, and resonant
coherent excitation of projectiles. For the interpretation of
such features and modeling of the microscopic interaction
mechanism, accurate interaction potentials are important.

In the regime of surface channeling, the scattering potential
results from an averaging over discrete interatomic potentials
between a projectile atom or ion and the atoms of the target
surface. This leads to an effective potential with either planar
symmetry when the projectiles are steered by planes (planar
surface channeling) or axial symmetry for steering along
axial strings (low-index directions) of surface atoms (axial
surface channeling).8 An important feature resulting from
such an averaged potential is the distance of closest approach
of projectiles to the surface plane, which is essential for the
theoretical description of interaction processes of atoms or
ions in front of a surface. Along the low-index directions of
the surface plane the interaction potential is quasisinusoidally
corrugated. This corrugation gives rise to extrema of the
deflection function θ (b), which is the dependence of the
scattering angle θ on the impact parameter b, leading to
an enhanced flux of scattered projectiles under a maximum
deflection angle, the so-called rainbow angle θrb in analogy
to the atmospheric phenomenon. Rainbow scattering is a

fairly general phenomenon in atom-atom and atom-surface
collisions. For a general discussion on this topic we refer to
the literature (see, e.g., Refs. 9–12 and the review by Kleyn
and Horn13).

Recently, we have demonstrated that detailed information
on the effective interaction potential at metal and insulator
surfaces can be derived from rainbow structures.14–21 These
structures can be observed in the angular distributions after
scattering of fast atoms along low-index directions of the
surface plane of monocrystalline samples and can be compared
with results from classical trajectory calculations. We have
shown that the rainbow angle θrb is sensitive and therefore
suitable for probing the interaction potential in the classical
regime, where quantum-mechanical effects can be neglected
and the quasistatic limit applies.

In this work we present a study on the scattering of fast
He, Ne, Ar, and N atoms from a KCl(001) surface along
〈100〉 and 〈110〉 directions under grazing angles of incidence
with respect to the surface plane. The experimental results are
compared with classical trajectory calculations based on three
different types of potentials: (i) the universal Ziegler-Biersack-
Littmark (ZBL3) and O’Connor-Biersack (OCB22) potentials,
(ii) individual pair potentials calculated from Hartree-Fock
wave functions, and (iii) density functional theory (DFT)
potentials. The individual Hartree-Fock (HF) pair potentials
calculated within the present work were compared with the
HF potentials calculated by Kim and Gordon23,24 as well as
with the universal potentials.

II. EXPERIMENT

The experiments were performed in an ultrahigh vacuum
chamber at a base pressure in the 10−11 mbar range, attached
via two differential pumping stages to the beam line of an
electrostatic ion accelerator. In the experiments, we have
scattered neutral He, Ne, Ar, and N atoms with projectile
energies E0 ranging from 1 keV up to 60 keV from a flat and
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clean KCl(001) surface at room temperature under grazing
polar angles of incidence φin ranging from 0.5◦ up to 2◦ with
respect to the surface plane. These settings provide normal
energies (kinetic energy for motion along the surface normal)
E⊥ = E0 sin2 φin ranging from 0.5 eV up to 40 eV. The
azimuthal setting of the target surface was oriented along the
〈100〉 or 〈110〉 low-index directions in the surface plane. The
fast ion beams were produced in a 10-GHz electron cyclotron
resonance (ECR) ion source (Nanogan-Pantechnique, Caen,
France). The neutralization of ions was achieved via charge
transfer in a gas cell mounted in the beam line of the
accelerator operating with He, Ne, Ar, or N2 gas. Residual
ions were removed by electric field plates. The atomic beams
were collimated by two sets of vertical and horizontal slits
of 0.2-mm widths to a beam divergence smaller than 0.03◦
(adjustable).

The KCl(001) surface was prepared by cycles of grazing
sputtering with 25-keV Ar+ ions at a temperature of 470 K
and subsequent annealing at about 650 K for 20 min. Two-
dimensional angular distributions of scattered projectiles were
recorded at a distance of 0.66 m behind the target with a
position-sensitive microchannel plate (MCP) detector (Roent-
dek GmbH, Kelkheim-Ruppertshain, Germany). In order to
avoid dead-time effects in the data acquisition system, the
count rate was reduced to less than 104 counts per second. At
such a low flux of particles in the range of sub-fA, radiation
damage of the target surface via sputtering or implantation
effects can be completely neglected. The charge state of incom-
ing and scattered projectiles was checked by means of electric
field plates between target and detector. In general, the fraction
of ions in the scattered beam was found to be negligibly small.

III. RESULTS AND DISCUSSION

A. Calculation of channeling potentials

For axial surface channeling, the averaged interaction
potential between a projectile and the target surface is given
by

Vsurface(x,z) =
+∞∑
−∞

Vstring,n(
√

(x − xn)2 + (z − zn)2), (1)

where Vstring,n is the interaction potential between the projectile
and a string of atoms at positions (xn,zn) averaged over the low-
index surface channeling direction (y direction). The direction
within the surface plane transverse to the channeling direction
defines the x coordinate, and z is the coordinate normal to
the surface plane. The summation runs over all atomic strings
forming the surface. For one-atomic strings the corresponding
potential is given by25–28

Vstring(ξ ) = 1

d

∫ y0+d

y0

V (
√

ξ 2 + y2)dy, (2)

where d is the distance between adjacent atoms within the
string and V (

√
ξ 2 + y2) = V (r) is the interaction potential

between the projectile and a string atom as function of their
distance r =

√
ξ 2 + y2, with ξ = √

x2 + z2. We note that this
averaging results immediately from the fast parallel motion of
the projectile (with the kinetic energy E|| = E0 cos2 φin ≈ E0,
which is approximately the projectile energy E0 in the regime

of grazing scattering) above the surface, and therefore, we con-
sidered this averaging in the classical trajectory calculations.
For the 〈110〉 direction within the (001) surface of KCl there
are two different kinds of one-atomic strings, consisting of
K and Cl atoms or ions only, providing two different string
potentials. However, in the case of the 〈100〉 direction there
exists only one kind of string consisting of alternating K and
Cl atoms or ions. The corresponding string potential reads

Vstring(ξ ) = 1
2 [Vstring,K(ξ ) + Vstring,Cl(ξ )]. (3)

If the interaction potential V (r) between two atoms (e.g.,
a projectile and a target atom of the surface) with nuclear
charge numbers Z1 and Z2 and the distance r can be described
as screened Coulomb potential (all energies and lengths in
atomic units, a.u.),

V (r) = Z1Z2

r
�(r) = Z1Z2

r

N∑
i=1

ai exp(−bir/as), (4)

with a screening function �(r), which can be written as a
sum of exponential functions with a screening length as, the
integral in Eq. (2) can be calculated analytically:8,27–30

Vstring(ξ ) = 2Z1Z2

d

N∑
i=1

aiK0(biξ/as), (5)

with K0 being the modified zeroth-order Bessel function of
the second kind (Macdonald function31). Hence, the averaged
force 	Fstring(	ξ ) = −	∇Vstring(ξ ) between the projectile and an
atomic string is given by

	Fstring(	ξ ) = 2Z1Z2

d

N∑
i=1

aibiK1(biξ/as)
	ξ
ξ
, (6)

where −∂K0(ξ )/∂ξ = K1(ξ ) is the modified first-order Bessel
function of the second kind. The resulting force 	Fsurface(x,z)
between the projectile and the target surface is given by
the sum of the atomic string forces 	Fstring(	ξ ) analogously to
Eq. (1). The analytical expression of 	Fsurface(x,z) is used for
the classical trajectory calculations, where the trajectories of
the scattered projectiles are derived from Newton’s law for the
two-dimensional motion in the xz plane by solving the initial
value problem using the Runge-Kutta method.

The screening function of the universal ZBL potential3

is given by a sum of four exponential functions with
the parameters ai = {0.1818,0.5099,0.2802,0.02817} and
bi = {3.2,0.9423,0.4028,0.2016} with the ZBL screening
length as = aZBL = 0.8854/(Z0.23

1 + Z0.23
2 ). O’Connor and

Biersack22 suggested an improved description of the screening
function �(r) for the Molière potential,32 which is given by a
sum of three exponential functions with ai = {0.35,0.55,0.1}
and bi = {0.3,1.2,6} and the Firsov screening length33 aF =
0.8854(

√
Z1 + √

Z2)−2/3, by a correction of aF according
to the OCB screening length as = aOCB = [0.045(

√
Z1 +√

Z2) + 0.54]aF.
The universal ZBL and OCB potentials are smooth func-

tions with respect to the interatomic distance r and the nuclear
charge numbers Z1 and Z2 and, furthermore, do not take
into account the individual electronic shell structure of the
atoms. To consider this feature of the atomic interaction
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partners it is necessary to calculate the interatomic potentials
individually for each Z1,Z2 combination. This can be done
in good approximation by assuming free electrons of density
ρ in a differential volume element of the atom (statistical
model of atom), where the electron density ρ is obtained from
quantum-mechanical models taking into account the individual
electronic properties of the atoms. In this manner, the total
interaction potential can be separated into a Coulombic VC(r)
and a non-Coulombic part Vg(r). The first one is given by

VC(r) = Z1Z2

r
+

∫∫
ρ1(r1)ρ2(r2)

|	r + 	r1 − 	r2|d
3r1d

3r2

−Z2

∫
ρ1(r1)

|	r + 	r1|d
3r1 − Z1

∫
ρ2(r2)

|	r − 	r2|d
3r2, (7)

where ρ1(r1) and ρ2(r2) are the spherical electron densities
of the two interacting atoms or ions and 	r1, 	r2, and 	r are the
vectors of the distances with respect to nucleus 1, with respect
to nucleus 2, and between the two nuclei, respectively. The
first term on the right side in Eq. (7) describes the Coulomb
repulsion between the two nuclei, the second term represents
the electron-electron repulsion, and the third and fourth terms
describe attractions between electrons and nuclei. The non-
Coulombic part is given by

Vg(r) =
∫

Ed (ρ1(r1) + ρ2(|	r + 	r1|))d3r1

−
∫

Ed (ρ1(r1))d3r1 −
∫

Ed (ρ2(r2))d3r2, (8)

where the energy density Ed of a gas of free electrons with
density ρ is a sum of the kinetic contribution given by
Thomas34 and Fermi35 and the exchange contribution given
by Bloch36 and Dirac,37

Ed (ρ) = Ckinρ
5/3 + Cexchρ

4/3, (9)

with Ckin = 0.3(3π2)2/3 and Cexch = −0.75(3/π )1/3 (all
lengths and energies are in atomic units, a.u.). The electronic
density of the two-atom system (quasimolecule) is simply
approximated by a sum of the densities of the two free
atoms or ions. Based on this model (with an additional small
correlation contribution) and using electron densities obtained
from Hartree-Fock wave functions,38 Kim and Gordon23,24

have calculated the interaction potentials for atomic closed-
shell partners, i.e., rare gas atoms and alkali and halide ions,
with their spherical densities via Gauss-Laguerre integration.

We have performed similar calculations according to
Eqs. (7)−(9). However, compared with the calculations of Kim
and Gordon,23,24 we considered Roothaan-Hartree-Fock wave
functions published by Clementi and Roetti39 as described in
Ref. 40. Furthermore, our calculations are not restricted to
atomic closed-shell partners. In order to be able to use the
analytical expression for the force 	Fstring given in Eq. (6) for
the classical trajectory calculations, we interpolated the Kim
and Gordon and our individual HF pair potentials using the
following approach:

V (r) = Z1Z2

r

4∑
i=1

ai exp(−bir). (10)

The parameters ai and bi (i = 1 − 4) are listed in Table I.

TABLE I. Parameters ai and bi (i = 1–4) of interpolation func-
tions for He-, Ne-, Ar-, and N-K+ and He-, Ne-, Ar-, and N-Cl−

individual HF potentials calculated in this work and by Kim and
Gordon.24

Parameter i = 1 i = 2 i = 3 i = 4

This work
He-K+ ai −7.2835 −12.1597 6.9069 13.1362

bi 1.2588 1.2391 1.2044 1.2827
He-Cl− ai −7.0898 −12.8314 6.1531 14.2146

bi 1.1201 1.1104 1.1105 1.1201
Ne-K+ ai −7.8744 −12.5389 7.4824 13.3971

bi 1.3291 1.3256 1.2937 1.3556
Ne-Cl− ai −7.4690 −12.7991 6.5290 14.0457

bi 1.1708 1.1648 1.1646 1.1710
Ar-K+ ai −7.0591 −12.8746 6.3859 13.8501

bi 1.1506 1.1383 1.1141 1.1615
Ar-Cl− ai −7.1549 −13.0666 5.9350 14.5037

bi 1.0848 1.0811 1.0807 1.0853
N-K+ ai −7.2708 −12.6500 6.5422 13.7998

bi 1.1809 1.1415 1.1159 1.1828
N-Cl− ai −7.1798 −13.0331 6.0064 14.5232

bi 1.0821 1.0762 1.0757 1.0826
Kim and Gordon

He-K+ ai −10.0915 −15.2996 9.7769 16.2533
bi 1.2397 1.2397 1.2034 1.2743

He-Cl− ai −7.3823 −12.6926 5.2158 15.2164
bi 0.8910 0.9709 0.8743 0.9700

Ne-K+ ai −9.6213 −14.5061 9.4007 15.2314
bi 1.3256 1.3256 1.2942 1.3550

Ne-Cl− ai −5.5373 −13.0454 4.9075 13.9234
bi 0.9791 0.9914 0.9607 1.0013

Ar-K+ ai −7.1565 −13.1462 6.1025 14.4595
bi 1.0616 1.0564 1.0289 1.0756

Ar-Cl− ai −6.1441 −13.1207 5.1898 14.2294
bi 0.9751 0.9957 0.9757 0.9957

In Fig. 1, we show the individual HF pair potentials
calculated in this work as well as by Kim and Gordon,24 the
interpolation functions of the HF potentials, and the universal
OCB and ZBL potentials for He-K, Ar-K, and N-K and He-Cl,
Ar-Cl, and N-Cl. For N-K and N-Cl only the individual HF
pair potentials calculated in this work are presented since
the N atom is a non-closed-shell system. The Kim and
Gordon potential,23,24 however, considers the interaction for
closed-shell systems as rare-gas atoms with alkali or halide
ions only, so that a comparison with neutral atoms is not
possible.

For all configurations, we found fair agreement between the
HF potentials and the corresponding interpolation functions.
In general, the HF potentials reveal a small attractive part for
distances between 5 and 10 a.u. compared to the universal
OCB and ZBL potentials, which are repulsive only. The HF
potentials calculated by Kim and Gordon are slightly different
from our HF potential for a potential energy below 0.1 eV. The
ZBL potential reveals the largest repulsivity in the range of
the interaction distance shown in Fig. 1. The OCB potential is
weaker than the ZBL potential, but it reveals a larger repulsivity
than the HF potentials. For distances below 3 a.u. or above
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FIG. 1. (Color online) Potential energy as function of interatomic distance for (left) He-K, Ar-K, and N-K and (right) He-Cl, Ar-Cl, and
N-Cl. Individual HF potentials are calculated in this work (blue circles) and by Kim and Gordon24 (red triangles); blue and red solid curves show
interpolation functions (for details, see text and Table I); green curves show OCB potential; black curves show ZBL potential. For calculation
of individual HF potentials charge states of K+ and Cl− ions were taken into account. (Note that the upper part of the potential-energy axis is
scaled logarithm, whereas the lower part is linearly scaled.)

12 a.u., where the interaction potential energy is above 10 eV
or almost zero, respectively, the HF, OCB, and ZBL potentials
agree.

Figure 2 shows the equipotential lines of the potential
Vsurface(x,z) for scattering of He atoms along the 〈110〉 direc-
tions of the KCl(001) surface in an energy range 0.3−40 eV,
where Vsurface(x,z) is given by a sum of He-K and He-Cl string

potentials. The atomic strings along 〈110〉 are composed by
either K+ or Cl− ions, whereas the atomic strings along 〈100〉
are composed by K+ as well as Cl− ions. The displayed
contours were derived from HF potentials calculated in this
work [Fig. 2(a)] and by Kim and Gordon24 [Fig. 2(b)] as well
as from OCB [Fig. 2(c)] and ZBL [Fig. 2(d)] potentials. For the
calculation of both types of HF potentials, the charge states of
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FIG. 2. Equipotential lines of potential Vsurface(x,z) for scattering of He atoms along 〈110〉 of KCl(001) in an energy range 0.3–40 eV,
where Vsurface(x,z) is given by a sum of He-K and He-Cl string potentials. Contours are derived from individual HF potentials calculated (a) in
this work, (b) by Kim and Gordon24, and from (c) OCB and (d) ZBL potentials. For calculation of HF potentials charge states of K+ and Cl−

ions were taken into account.

FIG. 3. (Color online) Equipotential lines of potential Vsurface(x,z) for scattering of (top) He and (bottom) Ar atoms along (left) 〈100〉 and
(right) 〈110〉 of KCl(001) in an energy range 0.3–40 eV, where Vsurface(x,z) is given by a sum of He-K+ and He-Cl− and of Ar-K+ and Ar-Cl−

string potentials, respectively. Contours are derived from individual HF potentials calculated in this work, where charge states of K+ and Cl−

ions were taken into account. Projections of 50 calculated classical trajectories of He and Ar atoms with E⊥ = 1 eV and 11 eV scattered along
〈110〉 and 〈100〉, respectively, are shown as gray curves. Rainbow angle θrb is highlighted for scattering of Ar along 〈100〉.
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FIG. 4. Equipotential lines of potential Vsurface(x,z) for scattering
of He atoms along (top) 〈100〉 and (bottom) 〈110〉 of KCl(001) in
an energy range 0.3–11 eV. Contours are derived from DFT (solid
curves) and individual HF (dashed curves) potentials calculated in
this work, where charge states of K+ and Cl− ions were taken into
account.

K+ and Cl− ions were taken into account. Due to the different
repulsivities of the interatomic potentials shown in Fig. 1, the
corrugations of the resulting surface potentials Vsurface(x,z)
are also different. For 0.3 eV the equipotential plane of the
ZBL potential is weakly corrugated, whereas the equipotential
planes of the HF and OCB potentials reveal a corrugation, for
example. In general, the corrugation of an interaction potential
increases with increasing energy.

In Fig. 3, we show the equipotential lines of the potential
Vsurface(x,z) for scattering of He (top panels) and Ar (bottom
panels) atoms along the 〈100〉 (left panels) and 〈110〉 (right
panels) directions of the KCl(001) surface in an energy range
0.3−40 eV, where the potential Vsurface(x,z) is given by a
sum of He-K+ and He-Cl− and of Ar-K+ and Ar-Cl− string
potentials, respectively. The displayed contours were derived
from HF potentials calculated in this work, where the charge
states of K+ and Cl− ions were taken into account. The
projections of 50 calculated classical trajectories of He and Ar
atoms with E⊥ = 1 eV and 11 eV scattered along 〈110〉 and
〈100〉, respectively, are shown as gray curves in Fig. 3 also. Due
to the corrugation of the equipotential planes of the interaction
potential, the projectiles are deflected out of the plane defined
by the surface normal (z axis) and the channeling direction

FIG. 5. (Color online) Two-dimensional plots of angular distri-
butions recorded by means of position-sensitive microchannel plate
(MCP) detector for scattering of (top) 15-keV Ar atoms along 〈100〉
under φin = 1.53◦ with E⊥ = 10.7 eV and (bottom) 7-keV He atoms
along 〈110〉 under φin = 0.64◦ with E⊥ = 0.9 eV from KCl(001).
Annuli mark elastic scattered projectiles; solid and dashed lines
mark rainbow angles θrb. Color code for two-dimensional angular
distributions is as follows: red, high intensity; blue, low intensity.

(y axis, here 〈100〉 or 〈110〉). The quasisinusoidal shape of the
equipotential planes leads to an enhanced intensity under the
maximum deflection angle, the rainbow angle θrb (highlighted
in Fig. 3 for scattering of Ar atoms along 〈100〉 of the KCl(001)
surface), which depends on the transverse energy E⊥ of the
projectiles and the given interaction potential only.

We also calculated DFT potentials for the scattering
of He atoms from KCl(001) using the Vienna Ab-initio
Simulation Package (VASP)41,42 with the Perdew, Burke,
and Ernzerhof (PBE)43,44 exchange-correlation functional. An
empirical dispersion correction was added to include the
dispersion forces (PBE+D).45–47 The electron-ion interactions
were described by the projector augmented wave method
(PAW), originally developed by Blöchl48 and adapted by
Kresse and Joubert.49 The total energy calculations were
performed with a plane-wave basis set with a kinetic energy
cutoff of 400 eV and a 2 × 2 × 1 Monkhorst-Pack k-point
mesh.50
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FIG. 6. (Color online) Rainbow angles θrb as function of normal energy E⊥ for scattering of (a) He, (b) Ne, (c) Ar, and (d) N atoms from
KCl(001) along 〈100〉. Gray circles represent experimental data; curves represent results from classical trajectory calculations using individual
HF potentials calculated in this work (black solid curve) and by Kim and Gordon24 (red dashed curve), OCB (blue dash-dotted curve), and
ZBL (green dotted curve) potentials.

The derived contours of the equipotential lines of the
potential Vsurface(x,z) derived from the DFT calculations for
scattering of He atoms along the 〈100〉 and 〈110〉 directions of
the KCl(001) surface are shown in Fig. 4. For comparison, the
equipotential lines of the corresponding potentials obtained
from the individual HF potentials calculated in this work (cf.
Fig. 3) are also displayed in Fig. 4. We found very similar
corrugations of the DFT and HF potentials; however, the DFT
potentials are calculated for distances to the surfaces above
0.7 a.u. only due to the considered finite lattice. Hence, for
the DFT potentials the rainbow angles θrb were derived from
classical trajectory calculations for normal projectile energies
E⊥ up to 5 eV only.

B. Comparison with experimental results

In Fig. 5, we show two-dimensional plots of angular
distributions recorded by means of the position-sensitive
microchannel plate (MCP) detector for scattering of 15-keV
Ar atoms along 〈100〉 under φin = 1.53◦ with E⊥ = 10.7 eV
(top panel) and 7-keV He atoms along 〈110〉 under φin =
0.64◦ with E⊥ = 0.9 eV (bottom panel) from KCl(001). The
annulus marks the range of elastically scattered projectiles.
Both distributions show typical features for axial surface
channeling, which are also visualized by the trajectories shown

in Fig. 3 (note that the highlighted transverse energies in
Fig. 3 are about the same as in Fig. 5). For scattering of
Ar atoms along 〈100〉 (top panel) the angular distribution
contains a pronounced central peak which stems from a double
deflection of the projectiles on adjacent equivalent strings
composed by K+ as well as Cl− ions, whereas the two different
rainbow angles shown for scattering of He atoms along 〈110〉
(bottom panel) stem from deflections of projectiles on adjacent
nonequivalent strings composed either by K+ or Cl− ions (cf.
Fig. 3). In particular, the two separated rainbow angles were
observed for scattering along 〈110〉 for He and Ne atoms for
normal energies E⊥ up to 5 eV and for Ar atoms for E⊥ � 10
eV, where the “inner” and “outer” rainbow angles stem
from the deflection on the K+ and Cl− strings, respectively.
The “outer” rainbow angle increases slightly for decreasing
normal energy due to the attractive part of the interaction
potential, which affects the trajectories of the projectiles. For
enhanced normal energies, both rainbow angles increase due
to the increasing corrugation of the interaction potential, and
therefore, the “inner” and “outer” rainbow angles can no longer
be separated.

In the same manner as demonstrated in Fig. 5, the rainbow
angles θrb were determined for scattering of He, Ne, Ar, and
N atoms from KCl(001) along the 〈100〉 and 〈110〉 directions
for different energies E0 and angles of incidence φin. The data

125440-7



U. SPECHT et al. PHYSICAL REVIEW B 84, 125440 (2011)

FIG. 7. (Color online) “Inner” rainbow angles θrb as function of normal energy E⊥ for scattering of (a) He, (b) Ne, (c) Ar, and N atoms
from KCl(001) along 〈110〉 (same notation as in Fig. 6).

are plotted as function of the normal energy E⊥ = E0 sin2 φin

in Figs. 6 and 7. For scattering along the 〈110〉 directions we
show the “inner” rainbow angle in Fig. 7 only; however, we
discuss below (at the end of this section) the normal-energy
dependence of both rainbow angles by means of the data shown
in Fig. 8.

Within the experimental uncertainties the results support
the concept that the rainbow angle θrb is independent of the
projectile energy E0 at the same normal energy E⊥. For the
insulator LiF(001) we observed in recent studies for scattering
of Ne, N, and O atoms no deviation from such a behavior.19,20

However, this is different for the scattering from an aluminum
surface [e.g., Al(100) or Al(111)], for example, where an
additional potential due to the embedding of atomic projectiles
into the electron gas at the selvedge of a metal surface
affects the scattering process. Thus, for some reactive atomic
projectiles, e.g., Na and Al, a dependence on the total projectile
velocity was observed.14,17 The additional contribution to the
interaction potential can amount up to some eV and is repulsive
for noble-gas atoms but partially attractive for reactive atoms.
Local density approximation (LDA) calculations51 support this
assumption since a repulsive potential for noble-gas atoms
and an attractive potential for reactive atoms forming negative
ions within an electron gas were found. On a qualitative
level, an additional (planar) embedding potential results in
less corrugated equipotential curves for given normal energies
E⊥ and following smaller rainbow angles. Nevertheless, in

the present study, we observed a monotonic increase of
the rainbow angle θrb with increasing E⊥ for all projectiles
and for both channeling directions since more corrugated
equipotential planes at larger potential energies result in larger
rainbow angles.14–21

The curves shown in Figs. 6 and 7 represent results from
classical trajectory calculations making use of the different
types of interatomic potentials between the He, Ne, Ar, and N
projectile atoms and the atoms or ions of the KCl(001) surface
presented in Sec. III A. For the positions of the lattice atoms
or ions an ideal structure was assumed. A small rumpling
of about 0.03 Å of the topmost surface layer,52 leading only
to a small shift of the rainbow angles within the scatter
of data, was neglected here. Furthermore, we neglected the
rumpling since the classical rainbow angle is not suitable
to deduce the rumpling value due to the uncertainty of the
experimental data of about 2◦ − 3◦. However, in the regime
of fast atom diffraction (FAD) with normal energies from
0.02 eV up to 1.5 eV, where quantum effects are important
and affect the scattering process, one has to consider the
rumpling for a comparison between experimental data and
calculations.53,54

We found fair agreement between the experimental data
and the calculated rainbow angles for both HF potentials for
scattering of He, Ne, and Ar atoms along 〈100〉 in the whole
investigated normal-energy range. Concerning the scattering
of N atoms, the calculated rainbow angles considering the HF
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potentials are smaller than the experimental data for normal
energies E⊥ < 5 eV. The calculated rainbow angles for the
OCB potential are slightly smaller for scattering of He, Ne,
and N atoms and slightly higher for scattering of Ar atoms
along 〈100〉 with respect to the rainbow angles calculated for
both HF potentials. The calculated rainbow angles considering
the ZBL potential are significantly smaller with respect to
the experimental data for normal energies E⊥ below 35 eV.
For E⊥ > 35 eV, the calculated rainbow angles are in accord
with the HF, the OCB, and the ZBL potentials. We note that
the spread of the experimental data is slightly larger for the
scattering of Ne and N atoms along 〈100〉. However, the quality
of the experimental data is sufficient to show fair agreement
between experimental and calculated rainbow angles based
on HF and OCB potentials as well as the discrepancy for the
ZBL potential for scattering along 〈100〉. This discrepancy
between the experimental and calculated rainbow angles for
the ZBL potential was also observed in a recent study for
scattering of Ne atoms from LiF(001) along the 〈100〉 and
〈110〉 directions.19

Concerning the other channeling direction investigated in
the present work (cf. Fig. 7), we found fair agreement between
the experimental data and the calculated rainbow angles for
both HF, OCB, and ZBL potentials for scattering of He
atoms along 〈110〉 in the whole normal-energy range. For
scattering of Ar atoms along 〈110〉, all calculated rainbow
angles are larger than the experimentally deduced values
for E⊥ < 40 eV. As a reason, we consider the completely
neglected deformation of the electron densities in the projectile
atoms as well as the surface in our calculations, which leads
to an enhanced corrugation and a decreased repulsion of the
interaction potential. In contrast to the results for scattering
along 〈100〉, the calculated normal-energy dependence of
the rainbow angle is in agreement for both HF and the
ZBL potentials, whereas the values of θrb calculated using
the OCB potential are slightly larger with respect to the
results for the other potentials. The experimentally deduced
rainbow angles for scattering of Ne and N atoms along 〈110〉
are between the calculated θrb for OCB and HF and the
ZBL potentials.

In Fig. 8, we show the experimental rainbow angles θrb as
a function of the normal energy E⊥ in a range from 0.1 eV
up to 4.8 eV for scattering of He atoms from KCl(001) along
〈100〉 (top panel) and 〈110〉 (bottom panel). With respect to the
data shown in Fig. 7, we plotted in the bottom panel of Fig. 8
the “inner” and “outer” rainbow angles. The curves represent
results from classical trajectory calculations using the DFT
and HF potentials calculated in this work. For scattering along
〈100〉, we found good agreement between the experimental
data and the calculations using the DFT and HF potentials
for normal energies 0.5 eV � E⊥ � 5 eV. For scattering of
He atoms along 〈110〉, the calculated values of the “inner”
rainbow angle using the HF potential are in agreement with
the experimental data, and the values of θrb calculated using
the DFT potential are slightly smaller by about 2◦ with respect
to the experimental data. However, the calculated values of
the “outer” rainbow angle are too large with respect to the
experimental data for the DFT and HF potentials, where we
found poor agreement for the HF potential.

FIG. 8. (Color online) Rainbow angles θrb as function of normal
energy E⊥ in a range 0.1–4.8 eV for scattering of He atoms from
KCl(001) along (top) 〈100〉 and (bottom) 〈110〉 as shown in Figs. 6
and 7. Open gray circles represent experimental data, and the solid
gray circles in the bottom panel represent experimentally determined
values of the “outer” rainbow angle (not shown in Fig. 7; for details see
text). Curves represent results from classical trajectory calculations
using DFT potential (red solid and dashed curves) and individual HF
potential (blue solid and dashed curves).

IV. CONCLUSIONS

In conclusion, we have presented an analysis of rainbow
structures observed for the scattering of He, Ne, Ar, and
N atoms from KCl(001) along the 〈100〉 and 〈110〉 axial
channeling directions in the surface plane. The well-defined
peaks in the angular distributions of scattered atoms allow
us to analyze the experimental data in terms of the effective
interaction potentials by comparing with classical trajectory
calculations based on different potentials. It turns out that the
rainbow angles are closely related to the corrugation of the
equipotential planes. This feature is the basis for detailed tests
on established approaches for atomic interaction potentials
in an interval of distances to the surface from about 1 to
5 a.u. For the specific case studied in the present work, we
found an overall good description of the experimental data by
the individual Hartree-Fock (HF) pair potentials calculated by
Kim and Gordon as well as within the present study, whereas
potentials with the ZBL screening function are generally too
repulsive for larger distances. Accordingly, we found for the
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ZBL potential poor agreement between the experimental data
and the results of the calculation for the scattering along 〈100〉
only; however, for scattering along the 〈110〉 directions the
agreement is good. We also reveal that the application of a
correction of the screening length in the Molière potential
as proposed by O’Connor and Biersack results in a better
agreement with the experimental data as for the ZBL potential.
Comparing the DFT and the HF potential for the scattering of
He atoms from KCl(001), we found no significant differences

in the description of the experimental data for these completely
different derived potentials.
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(2008).

20A. Schüller and H. Winter, Nucl. Instrum. Methods Phys. Res. Sect.
B 267, 2621 (2009).

21P. Tiwald, A. Schüller, H. Winter, K. Tökesi, F. Aigner, S. Gräfe,
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