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Spintronics devices from bilayer graphene in contact to ferromagnetic insulators
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Graphene-based materials show promise for spintronic applications due to their potentially large spin coherence
length. On the other hand, because of their small intrinsic spin-orbit interaction, an external magnetic source is
desirable in order to perform spin manipulation. Because of the flat nature of graphene, the proximity interaction
with a ferromagnetic insulator (FI) surface seems a natural way to introduce magnetic properties into graphene.
Exploiting the peculiar electronic properties of bilayer graphene coupled with FIs, we show that it is possible to
devise very efficient gate-tunable spin rotators and spin filters in a parameter regime of experimental feasibility.
We also analyze the composition of the two spintronic building blocks in a spin-field-effect transistor.
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Graphene with its high mobility1 and potentially long spin
lifetimes is an attractive material for spintronics. In particular,
spin-relaxation lengths on the order of micrometers have been
observed,2 together with spin-relaxation times of hundreds
of picoseconds, which are still believed to be limited by
extrinsic impurities.3,4 More recent experiments reported the
measurement of a spin lifetime up to 1 ns in graphene and
even of several nanoseconds in bilayer graphene (BG).5,6

Moreover, tunnel injection of spin into graphene has been
recently achieved using Co ferromagnets, with the observation
of the largest nonlocal magnetoresistance of any material.7

Graphene quantum dots have been also identified as an ideal
host for spin qubits.8,9

The reason for such favorable spin properties is the small
intrinsic spin-orbit coupling (SOC) and the weak hyperfine
interaction with the underlying nuclear spin system.10,11 The
SOC in single layer graphene has been predicted to be on the
order of 10−3–10−2 meV.12–14 On the other hand, this weak
SOC constitutes a severe limitation for spin manipulation in
conventional spintronics devices like the Datta-Das spin-field-
effect transistor (SFET).15

An alternative strategy is offered by contacting graphene
with a ferromagnetic insulator (FI), giving rise to an exchange
proximity interaction (EPI).16–18 EPI results from the Coulomb
exchange interaction between π states in graphene and the
magnetic ions on the FI surface. Ideally, the EPI—being short-
ranged—affects only a graphene layer in direct contact with
the FI and acts like an effective Zeeman field, superimposed
on the original BG Hamiltonian.18

Here, we theoretically study transport through BG in a
double gate configuration, on which a FI is used as spacer
between the upper (U ) layer and the top gate, giving rise
to EPI, as shown in Fig. 1(a). The gate bias � is used
to impose a semiconducting gap and to localize the low-
energy region of the conduction band on the U or the lower
(L) layer (depending on the sign of �). Indeed, a tunable
semiconducting gap up to 250 meV with the application of
a gate bias has been demonstrated.19–21 Consequently, it is
possible to electrically control the effective Zeeman field for
electrons in the conduction band, turning the device ON or
OFF. We show, in particular, that the device can act either as
a spin rotator (SR) or as a spin filter (SF). Finally, we propose

and analyze the combination of these two spintronic building
blocks within a SFET.

I. SETUP AND SCATTERING PROBLEM

The Dirac Hamiltonian describing BG near the K point is22

H0 = −�

2
τz + vf (σxpx − σyτzpy) + t⊥

2
(σz + σ0), (1)

with �σ and �τ the Pauli matrices for the sublattice (A,B)
and layer (U,L) degrees of freedom, � the potential-energy
difference between the L and the U plane, t⊥ = 0.39 eV
the interlayer hopping parameter,23 and vf ≈ 106 m/s.24 The
Hamiltonian acts on the the spinor � = (χA,χB,χB ′ ,χA′), with
A and B on the U layer, A′ and B ′ on the L one.

When the U layer is placed in direct contact with the FI
surface, EPI introduces a Zeeman field affecting the U part of
the Dirac Hamiltonian,16–18

hm = −Ez

2
m̂�s(τ0 + τz), (2)

where m̂ = (mx,my,mz) is FI’s magnetization axis, �s =
(sx,sy,sz) are the spin Pauli matrices, and Ez is the effective
strength of the EPI (absolute magnitude of the Zeeman
splitting).

We consider now a central (C) barrier region of length
LC , made of BG subject to EPI and described by H = H0 +
hm + U0, with U0 a possible potential shift (tunable by the
gates), while the left side (LS) and the right side (RS) leads
are semi-infinite normal BG described by H0. In LS and RS
regions, the dispersion curves are degenerate in the spin degree
of freedom. In the C region, a spin splitting Ez arises between
the spin components that are parallel (↗) and antiparallel (↙)
to m̂; see Fig. 1. A detailed description of the eigenstates of
H0 and H is given in Appendix A.

In the present paper we use Ez = 8 meV, close to the
estimation of Ref. 17, and, when not stated otherwise, |�| =
150 meV and a temperature of T = 1 K. In Fig. 1(b), we
show the lowest conduction and valence bands in the C region
(full, dashed lines) for U0 = 0 and in the leads regions (dotted
lines). The spin splitting for conduction and valence bands is
proportional to the localization of their respective states on the
U layer (see Fig. 6). Therefore inverting � will invert the spin
splitting for electrons and holes.
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FIG. 1. (Color online) (a) Setup of the double gate BG with FI
used as a spacer between the U layer and the top gate. (b) Dispersion
curve of biased BG, showing the typical Mexican hat behavior, subject
to EPI. A gate bias � = −150 meV is imposed between the BG
layers. The full blue lines are ↗-spin-polarized bands (concord to
the FI magnetization axis), while the dashed red lines are ↙-spin
polarized. The dotted lines represent the normal nonmagnetic BG
dispersion, as used for the LS and RS leads.

The system is assumed to be invariant under translations
along Y and the scattering is elastic. Therefore ky and E are
conserved quantities. We briefly outline here the procedure
used to calculate the transmission through a single barrier by
spinor matching and the conductance of the system, which
has been introduced in Ref. 25. For a given E and ky , solving
the Hamiltonian H0(H ), we obtain an analytical description
of the spinors of the propagating and evanescent modes in
the LS and RS (C region), which contribute to the scattering
state. In the RS and LS regions, disregarding the spin, there
are four possible values of the wave vector kx compatible
with a given ky and E: kx and −kx , which are propagating
modes, k̃x and −k̃x , which correspond either to propagating
or to evanescent modes having a finite imaginary part.26 In
the central part—due to the EPI—the secular equation for H

leads to spin-dependent solutions of the wave vector kx = αn

with n = 1, 2 . . . 8, described by the spinors �αn
(x), which are

eigenstates of H (see Appendix A for details).
For an incoming particle of wave vector kx , ky and spin

polarization �s (a vector describing the up- and down-spin
components with respect to the Z axis), we solve the linear
system determined by imposing the continuity of the scattering
state at x = 0 and x = LC . This fixes the output transmission
(reflection) coefficients t↑,t↓,t̃↑,t̃↓(r↑,r↓,r̃↑,r̃↓) for the allowed
kx and k̃x modes in up- or down-spin orientation. We define
the spin-resolved transmission probability Tλ,λ′ as the sum
of transmission probabilities in all the outgoing propagating
modes (|tλ|2, |t̃λ|2), calculated for �s compatible with a spin
polarization of the incoming particle λ′. We calculate the
conductance of the ballistic system in linear response. The
two-dimensional (2D) two-terminal conductance is

Gλ,λ′ = ge2

(2π )2

∫∫
dkxdkyTλ,λ′vx

df (E − μ)

dE
, (3)

with g = 2 (accounting for the valley degeneracy), f (E) is
the Fermi-Dirac distribution, vx is the group velocity along
the transport direction, E is the particle energy, and μ is the
electrochemical potential.

II. SPIN FILTER

We now analyze the behavior of the device as a SF. In
particular, the device acts on unpolarized incoming particles,
filtering the component antiparallel (↙) to m̂. In Fig. 2, we
show the spin-resolved conductance of the device as a function
of μ, where we choose m̂ along Z and a potential shift of
U0 = 5 meV. When μ falls between the spin-splitted bands
(between 70 and 78 meV) in the C region, G↓ is exponentially
suppressed as a function of LC with an average effective
decay length of the order of 50 nm, while G↑ does not
vary. This behavior is due to the fact that, in this energy
range, transmission of spin-down particles occurs through
evanescent modes, which exponentially decay (in C). Thus in
the spin-splitted C region and for T 
 Ez/kB , the device acts
as an efficient SF(↑), i.e., it lets pass only current with ↑-spin
polarization. Such a SF can be used to generate a spin-polarized
current out of an unpolarized one. Or reversely, it can be used as
a spin analyzer, which detects the degree of spin polarization
of charge carriers. This possibility will be exploited later in
this paper. In the inset of Fig. 2, we show the spin-resolved
conductance of the BG SF for increasing temperature in the
range 1–10 K. As expected, thermal excitations degrade the SF
efficiency. In particular, the value of Ez imposes a maximum
operating temperature for the device of T ≈ Ez/8kB , which
corresponds to about 12 K, for Ez = 8 meV.

III. SPIN ROTATOR

We have shown in a previous work25 that a BG in contact
with a FI can act as an electric-field switchable SR.

The control of spin rotation with the gate bias essentially
depends on the degree of wave-function localization on one
of the BG layers near the Mexican hat energy dispersion
region. A useful parameter to characterize spin rotation is
the ratio χ of the conductance associated with a spin-flipped
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FIG. 2. (Color online) Conductance of spin up and spin down
carriers as a function of chemical potential μ for a BG device acting
as a SF calculated for increasing values of LC . A FI is in contact to the
U layer of the BG, giving rise to an EPI with Ez = 8 meV. The gate
bias is � = −150 meV and a potential shift of U0 = 5 meV is applied
in the C region. In the inset, we show the spin-resolved conductance
of the SF with LC = 400a0 calculated for different temperatures.
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FIG. 3. (Color online) Conductance with transmission into spin
up G↑↑ and spin down G↓↑ carriers for a BG device acting as a
SR in ON state, feeded by ↑-polarized electrons. In the inset the
spin-flip conductance fraction χ = G↓↑/(G↓↑ + G↑↑) is shown for
ON (� < 0) and OFF (� > 0) state of the SR for LC = 175a0. The
dashed curves, data set (a), are calculated with |�| = 40 meV for
LC = 200a0.

transmission to the total conductance.25 As shown in the
inset of Fig. 3, we can put the device OFF (χOFF ≈ 6%)
or turn it ON (χON ≈ 60%) by reversing the gate bias. The
performance of the spin rotator is basically limited by the
finite χ fraction in the OFF state, due to the nonperfect
layer localization of electrons contributing to transport. With a
smaller gate bias of |�| = 40 meV (our model does not account
for the trigonal warping correction that introduces a strong
angle dependence of the transmission for energies as small as
μ ≈ |�| = 40 meV), the layer confinement is more effective
(see Fig. 6) and our model predicts a moderate performance
enhancement (χOFF ≈ 4% and χON ≈ 80%). Figure 3 shows
the spin resolved conductance in the ON state for a SR feeded
by a ↑-spin-polarized source lead, for increasing lengths of the
magnetic barrier. In particular, for L = 175a0 (a0 = 1,42Å
the in-plane nearest-neighbor distance), a strong spin-flip
resonance is present at μ ≈ 74 meV, which is well inside the
SF operational regime presented in Fig. 2.

The origin of the spin rotation is easily explained. A ↑-
spin-polarized electron is described inside the spin rotator as
the superposition of two components with spin polarization
↗ and ↙ (polarizations that are parallel and antiparallel to
the FI magnetic axes and are eigenstates of the EPI system).
These two components, being coupled differently to the EPI,
travel with a different kx wave vector and accumulate a phase
difference �kx · LC in a single crossing of the C region. The
phase difference translates into a net rotation of the initially
↑-spin-polarized electron.

Due to the complex 2D BG dispersion curve, it is difficult
to establish an immediate relation for the spin-flip resonance
condition between the parameters �, Ez, and LC . However,
for a wide range of Ez values, a spin-flip resonance is observed
in the Mexican hat region of the ↙-spin-polarized band, for
|�| = 150 meV and Lc ≈ 200a0, as shown in Fig. 4. The order
of magnitude of LC is related to π/kmin, where kmin is the wave
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FIG. 4. (Color online) In (a)–(c), we present the χ factor
calculated for a SR with different values of the Ez parameter for LC

varying from 150 to 300a0. For comparison we show in (d)–(f) the
corresponding first conduction-band dispersion: in a dotted curve that
of the leads, while in full and dashed lines the ↗- and ↙-spin-splitted
bands in the C region of the SR, corresponding to the ON state.

vector corresponding to the minimum of the first conduction
band [Eq. (A10)]. In Fig. 4, we compare the χON and χOFF of
three systems with EZ = 4 (a), 8 (b), and 16 meV (c), for a
C region of length LC = 150, 200, 250, and 300 a0. We also
plot in Figs. 4(d)–4(f) the corresponding ky = 0 dispersion
curves for the normal BG (dotted) and for the BG subject to
EPI in the ON state, in a full curve for ↗- and in a dashed
curve for ↙-spin polarization. In correspondence to the edge
of the ↙-spin-polarized band, transport is often associated
with a maximum of χON, corresponding to the fact that the
majority of the electrons that tunnel through the C region are
spin flipped (i.e., they satisfy �kx · LC ≈ π ).

IV. SPIN FET

We now calculate the total conductance G = ∑
λ,λ′ Gλλ′ for

a hybrid setup made by the series of a SF(↑), a SR(ON/OFF),
and a SF(↓), each one built from BG in contact with a FI
with m̂ along Z, Y , and −Z, respectively. Ideally, the SF(↑)
selects the ↑ component of the incoming unpolarized electrons,
resulting in a spin-polarized current. The SR introduces a
spin precession which we can turn ON or OFF with the gate
bias (see inset of Fig. 3 and related discussion). Finally, the
SF(↓) measures the degree of spin rotation, because it (ideally)
lets pass only carriers that have been spin flipped by the SR.
Therefore this structure realizes a complete spintronic scheme
of creation, manipulation, and measurement of spin-polarized
currents, which does not require spin-polarized leads. The
calculation of the transmission is performed by applying the
transfer-matrix (TM) formalism, which we briefly review in
Appendix B. For each barrier we obtain the corresponding TM,
which requires �r and �t for the individual scattering problems
of a particle, approaching the barrier from the LS or from
the RS. The TM links the LS modes to the RS modes and
therefore is multiplicative, in the sense that the TM of a
series of barriers is the ordered product of the corresponding
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individual TMs. We thereby neglect the contributions of the
evanescent modes connecting different scattering regions of
the system. Therefore we consider the three spintronics blocks
separated by a distance of L = 1000a0, where any effects
of such evanescent modes are negligible (however, we do
include the evanescent modes for the scattering problem of
the individual blocks where they are crucial).

Figure 5 shows the total conductance of a spintronic device
made by the composition of SFs and a SR as a function of
μ. The full black lines, as indicated, show the conductances
of an “open” series, i.e., the SF(↑)-SF(↑), and of a “closed”
one SF(↑)-SF(↓). For μ in the operational region of the SF,
the total conductance of the closed series is suppressed by
almost four orders of magnitude with respect to the open one.
The remaining lines represent the conductance of a closed
series including the SR described in Fig. 3. The dashed green
line—the SR(ON) case—is quite close to the conductance of
the open series. The dotted red line—the SR(OFF) case—
exhibits a conductance suppression by approximately a factor
10, with respect to the ON case. This expresses a measure
for the efficiency of the SR, for which, in fact, we note that
χON/χOFF ≈ 10 for the corresponding data set (b) in the inset
of Fig. 3.

V. DISCUSSION AND CONCLUSIONS

We now discuss the possibility of actually realizing the
EPI in graphene devices. One of the few concrete examples
of a FI is EuO. The first realization of the EPI coupling,
originating a spin splitting, has been experimentally proven in a
EuO/superconductor interface.27 The possibility to incorporate
FI in nanostructures has been recognized to be extremely
attractive for the realization of spintronic nanodevices and
recently much effort has been put into the development of the
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FIG. 5. (Color online) Hybrid devices combining the SF and
SR blocks described in Figs. 2 and 3, respectively. The full lines
represent the total conductance for a series of two SFs in “open” or
“closed” configuration. The dashed and dotted lines are for the total
conductance of combined system made by the series of a SF(↑), a
SR(ON/OFF), and a SF(↓). The calculation has been performed for
a gate bias of |�| = 150 meV, with LC = 400a0 for the SFs and
LC = 175a0 for the SR.

FI technology. In particular, important steps have been made in
the control of the epitaxial growth of EuO on Si and GaAs.28,29

EuO seems promising with its semiconducting gap of about
0.7 eV,30,31 and the possibility to be grown in thin films of a
few nm thickness.31,32 Regarding the practical realization of
the device, a suitable FI should have a sufficiently large band
gap and retain its properties when grown in thin films.

The occurrence of an EPI for graphene deposited on a FI
has been proposed by several authors,16–18 with a tentative
estimation of the expected Zeeman splitting of Ez ≈ 5 meV.17

When a BG is placed in contact with a FI, the EPI, being short
ranged, affects only the U graphene layer, which is in direct
contact with the FI.18 In fact, applying the contact exchange
model between magnetic ions and itinerant electrons proposed
in Ref. 33, and using the asymptotic atomic wave functions
for carbon,34 it is easy to show (see Appendix C) that the ratio
between the EPI strength on the L and U layer is on the order of
e−2κd0 ≈ 10−3, with d0 = 3.4 Å the interlayer distance in BG
and κ ≈ 0.91a−1

B the asymptotic exponent for the pz orbital of
atomic C.34

In summary, we have demonstrated that the exchange
proximity interaction in bilayer graphene in contact to a
ferromagnetic insulator can be exploited as a means for
electrical spin manipulation. We have shown that this system
acts both as a switchable spin filter or spin rotator, which
are basic building blocks for spintronics. As an example, we
have shown how to realize a complete spintronic structure for
the creation, manipulation, and detection of spin currents—a
spin FET, out of an initially unpolarized stream of electrons,
and calculated its operational efficiency with a transfer-matrix
approach.
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APPENDIX A: BILAYER GRAPHENE EIGENSPINORS

We consider the BG Hamiltonian

H =

⎛
⎜⎜⎝

−�
2 + hm vf k+ t⊥ 0
vf k− −�

2 + hm 0 0
t⊥ 0 �

2 vf k−
0 0 vf k+ �

2

⎞
⎟⎟⎠ (A1)

with k± = kx ± ky . �, vf , and t⊥ have been introduced in
Sec. I. EPI affects only the U plane and is contained in hm

[Eq. (2)], all other terms are proportional to the identity in the
spin subspace. The Hamiltonian acts on the spinor

� =

⎛
⎜⎝

χA

χB

χB ′

χA′

⎞
⎟⎠ eikxxeikyy√

LxLy

, (A2)

where A, B refer to the two inequivalent sublattices on the
U BG layer, and A′, B ′ refer to that of the L one. Lx and
Ly are the channel dimensions along the X and Y directions.
Now we distinguish the two spin components along the Z axis,
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perpendicular to the plane, therefore χX, with X = A, B, A′,
B ′, has to be regarded as a two-component spinor,

χX =
(

φX↑
φX↓

)
. (A3)

We introduce the following notation, similar to that chosen
in Ref. 26,

δ = VU − VL

2h̄vF

, ε = E

h̄vF

, u0 = VU + VL

2h̄vF

,

(A4)

ε′ = ε − u0, t ′ = t⊥
h̄vF

, α′ = EZ

h̄vF

.

1. Spinors of BG without EPI

In this section, we give the analytical expressions for the
spinors of normal BG, i.e., without EPI and neglecting the
trigonal warping effects. Spin is degenerate and therefore we
can consider χX as scalar complex numbers. The Hamiltonian
system (H0 − E)� = 0 leads to the secular equation

[(ε′ − δ)2 − k2][(ε′ + δ)2 − k2] − t ′2(ε′2 − δ2) = 0, (A5)

with k2 = k2
x + k2

y .
If we solve for the energy we obtain the BG eigenstates

(ε′
±)2 = δ2 + k2 + t ′2

2
± t ′

√
t ′2

4
+ 4

δ2k2

t ′2
+ k2. (A6)

If, instead, we solve for kx we obtain the BG modes
consistent with energy E and transverse wave vector ky ,

k2
x = −k2

y + ε′2 + δ2 ± t ′
√

ε′2 − δ2 + 4
ε′2δ2

t ′2
. (A7)

The spinor components can be expressed (for ε′ �= ±δ) as

χA = B
t ′(ε′ + δ)

χB ′ ,

χB = B(kx − iky)

t ′(ε′2 − δ2)
χB ′ ,

(A8)

χA′ = (kx + iky)

ε′ + δ
χB ′ ,

χB ′ = t ′(ε′2 − δ2)√
A|B|2 + t ′2(ε′ − δ)2C

,

where we adopted the following notation:

A = (ε′ − δ)2 + |kx − iky |2,
B = (ε′ + δ)2 − k2,

C = (ε′ + δ)2 + |kx + iky |2,
D = (ε′ − δ)2 − k2.

a. Layer localization and trigonal warping corrections

The probability to find the electron, of a specific eigenfunc-
tion, on the U plane is given by

P U = |χA|2 + |χB |2 = 1

1 + AB2

t ′2(ε′−δ)2C
, (A9)

and correspondingly P L = 1 − P U . For our purpose, the most
important part of the dispersion curve is the Mexican hat region
(|k| ≈ kmin). For this reason we now describe in more detail
this minimum for the first conduction band. Its wave vector,
energy, and layer projection are given by

kmin = δ
√

1 + X2,

ε′
min = ±δX, (A10)

P U
min = 1

1 + t ′2+4δ2

4δ2
1+X2+X
1+X2−X

(X2 − 1)
,

with X = t ′√
4δ2+t ′2

. In Fig. 6, we show the layer localization
properties of the first conduction-band minimum with a full
curve (and the first valence-band maximum with a dashed
line). For a sufficiently small |�|, the corresponding states are
strongly localized on the upper or on the lower graphene plane,
depending on the sign of the applied bias �. Similarly, the low-
energy states of the first conduction band share analogously
strong layer localization properties with the conduction-band
minimum. In particular, the layer localization is complete for
the k = 0 state (P U = 1 or 0).

We analyze, now, the effect of the trigonal warping
correction23 on the layer localization properties of BG. The
trigonal warping correction, acting on the spinor in Eq. (A2),
is

H3 = v3
σ0 − σz

2
(kxτx − kyτy), (A11)

with σ , τ the sublattice and layer Pauli matrices, respectively.
We have solved the system with a finite trigonal warping with
v3/vf = 0.1,23 found its eigenstates, and calculated their layer
projections. In Fig. 7, we compare the projection on the U

plane for the system without trigonal warping (solid curve)
and including the trigonal correction (dashed curve) for the
dispersion along the X axis in (a) and Y axis in (b) for � =
40 meV, energy for which the isotropic Mexican hat dispersion
is heavily distorted to a trigonal symmetry. In both cases, the
low-energy states are essentially localized on the L layer. We
conclude that the layer projection properties are only slightly
affected by the presence of the trigonal warping in the BG
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FIG. 6. (Color online) Spinor projection on the U BG plane for
the eigenstate corresponding to kmin of the first conduction (full line)
and valence band (dashed line), as a function of the layer potential
bias �.

125438-5



PAOLO MICHETTI AND PATRIK RECHER PHYSICAL REVIEW B 84, 125438 (2011)

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.00

0.05

0.10

0.15

0.20

0.25

0.30

k nm 1

P
U

a

v3 0.1 vf

v3 0

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.00

0.05

0.10

0.15

0.20

0.25

k nm 1

P
U

b

v3 0.1 vf

v3 0

FIG. 7. (Color online) Projection of the eigenstates of the first
conduction band on the U BG plane, with (dashed line) and without
(full line) trigonal warping corrections, for an applied bias of � =
40 meV; (a) is along the X axis and (b) along the Y axis.

Hamiltonian and the mechanism, which permits us to turn ON
or OFF the BG spintronic functionalities, is still effective.

The presence of the trigonal warping can, however, affect
the transmission of the system. The spin filtering properties
are unaffected, as long as a gap is present with spin-splitted
bands. The spin-rotation effect is due to the interference
effect between different spin components propagating with
different wave vectors from the Mexican hat spectral region.
The trigonal warping distortion of the Mexican hat can
change the accumulated phase difference and therefore leads to
differences in the form of the spin-flip transmission resonance.
The distortion is more pronounced at smaller applied gate
bias |�|,23 inducing a progressive angle dependence of the
spin-rotating properties. In principle, also in this small-gap
regime, spin rotation could still be exploited in angle-selective
transport experiments. Instead, for sufficiently large gate bias
(and therefore semiconducting gap), the trigonal warping
effect is limited to a minor distortion of the Mexican hat and
the properties of the system are essentially unchanged. This
scenario is met for |�| = 150 meV used in the paper.

2. Spinors of BG with EPI

In this section we derive the analytical expressions for the
BG spinors in the case of a finite EPI acting on the U plane. EPI

is not diagonal in the spin components and the spin variables
are individually addressed. Still the Hamiltonian system (H −
E)� = 0, can be analytically solved leading to the secular
equation [

t ′2(ε′2 − δ2) − B
(
D + α′2

4

)]2

= α′2

4
[2B(ε′ − δ) − t ′2(ε′ + δ)]2.

The secular equation solved for kx has in general eight complex
solutions:

k2
x = −P1

⎛
⎜⎝

−
−
+
+

⎞
⎟⎠ P2

⎛
⎜⎝

−
+
−
+

⎞
⎟⎠

×

√√√√√√√
⎡
⎢⎣P 1

⎛
⎜⎝

+
+
−
−

⎞
⎟⎠ P2

⎤
⎥⎦

2

− P3

⎛
⎜⎝

−
−
+
+

⎞
⎟⎠ P4, (A12)

with

P1 = 1

2

[
B̃ − D̃ − α′2

4

]
,

P2 = α′

2
(ε′2 − δ2),

P3 = −B̃D̃ − t ′2(ε′2 − δ2) − α′2

4
B̃,

P4 = α′

2
[2B̃(ε′ − δ) − t ′2(ε′ + δ)],

where B̃ = B + k2
x and D̃ = D + k2

x . Real solutions corre-
spond to propagating modes in the region with EPI interaction
while modes with an finite imaginary part give exponentially
decaying modes at the border of the EPI region.

We omit the expressions for the spinor components. We
obtained them with a straightforward derivation, using the
secular equation corresponding to the Hamiltonian Eq. (A1)
and the normalization condition.

APPENDIX B: MULTIPLE BARRIERS:
TRANSFER-MATRIX METHOD

Let us consider a 1D channel with a finite number of
modes M in which a scattering region is present. For each
scattering center, we can fictitiously divide the system in a
left-side (LS) and a right-side (RS) leads, which we assume to
be semi-infinite. The wave functions in the LS and RS leads
are described by

ψL =
∑

a

(
I (L)
a φ(+)

a + O(L)
a φ(−)

a

)
, (B1)

ψR =
∑

a

(
I (R)
a φ(−)

a + O(R)
a φ(+)

a

)
, (B2)

where φ(±)
a is the ath mode of the channel carrying an unity of

current, where ± stands for forward going (+), i.e., from the
LS to the RS, and backward going (−). �I (L,R) and �O(L,R) are
the coefficient vectors, in the LS and RS regions, for modes
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that are incoming toward the scattering center and outgoing
from it, respectively. We define the scattering matrix S and the
transfer matrix T through the following relations:( �O(R)

�O(L)

)
= S

( �I (L)

�I (R)

)
,

( �O(R)

�I (R)

)
= T

( �I (L)

�O(L)

)
. (B3)

It is immediate to identify the elements of the scattering matrix
with reflection and transmission coefficients, so that

S =
(

t r′
r t′

)
, (B4)

but we are interested in the transfer matrix because it is
multiplicative, i.e., the transfer matrix of a series of scatterers
is given by the ordered multiplication of the individual transfer
matrices, for each one of the scattering centers, or

Ttot =
n=N∏
n=1

Tn. (B5)

We can obtain an expression for the transfer matrix in terms
of reflection and transmission coefficients by comparing the
action of the S and T matrices in Eq. (B3):

�O(R) = t �I (L) + r′ �I (R),

�O(L) = t′ �I (R) + r �I (L),

�O(R) = T1,1 �I (L) + T1,2 �O(L),

�I (R) = T2,2 �O(L) + T2,1 �I (L). (B6)

We obtain

T2,2 = [t′]−1,

T2,1 = −[t′]−1r,

T1,1 = t − r′[t′]−1r,

T1,2 = r′[t′]−1. (B7)

In practice, in order to calculate the transfer matrix for each one
of the scatterers, the transmission and reflection coefficients for
a particle approaching from the LS and RS of the scattering
center are needed. From the total transfer matrix, it is then
possible to obtain the transmission and the reflection properties
of the overall system by the following relations:

t′ = [T2,2]−1,

r = −[T2,2]−1T2,1,

t = T1,1 − T1,2[T2,2]−1T2,1,

r′ = T1,2[T2,2]−1. (B8)

1. Properties of S and T matrices

The scattering matrix has to be unitary in order to ensure
charge conservation in a barrier, i.e., Iin = Iout. Explicitly∣∣∣∣

( �I (R)

�I (L)

)∣∣∣∣
2

=
∣∣∣∣
( �O(R)

�O(L)

)∣∣∣∣
2

=
( �I (R)

�I (L)

)†
S†S

( �I (R)

�I (L)

)
,

which is satisfied if S†S = 1 and therefore S† = [S]−1. A well-
known consequence of the unitarity of the scattering matrix

is that |t| = |t′| and |r| = |r′|, valid for any kind of elastic
scatterer. The condition for a stationary equilibrium current
through the barrier is given by

I = | �I (L)|2 − | �O(L)|2 = | �I (R)|2 − | �O(R)|2, (B9)

which imposes the following property on the transfer matrix
T†σzT = σz.

APPENDIX C: ESTIMATE OF EPI EFFECTS ON THE
DISTANT BG LAYER

The goal of this section is to provide an estimation of the
relative importance of the EPI in the two BG layers, when the
U layer is placed in direct contact to the FI surface. We will
consider the graphene layers and the FI surface oriented along
the XY plane with the FI surface at z = 0, the U plane centered
at z = LU and the L plane centered at z = LL, with LL −
LU = d0 the BG interlayer distance. As noted in Ref. 35, the
exchange coupling between an itinerant electron and the local
moments in FIs (like EuO) typically dominates the coupling
to the magnetization. The exchange potential for a mobile
electron, arising because of the exchange interaction with core
electrons in a magnetic ion, is modeled by33

Vex(�r) = −j

ions∑
i

δ(|�r − �Ri |)Ŝi Ŝ, (C1)

where Ŝi is the ion’s total spin, Ŝ is the electron spin operator,
and j is an exchange energy parameter. This expression is
used in Ref. 33 to model the exchange potential of conduction
electrons due to the presence of localized core d electrons in
Mn magnetic ions. The assumption is that the wave functions of
mobile electrons can be considered approximatively constant
in the range of variation of the magnetic ion’s occupied
orbitals.

In our model the mobile electrons are the graphene bilayer
conduction- and valence-band electrons. In the direction
perpendicular to the graphene plane, this material is practically
one atom thick and its conduction and valence bands can
essentially be described by the carbon atoms pz orbital. The
tails of the graphene pz orbital enter the FI, where the magnetic
ions are distributed.

We assume an homogeneous distribution of magnetic ions
inside the FI, with density nions and fixed average spin
polarization 〈Si〉 along Z. We obtain the following exchange
potential for the graphene electrons:

Vex(�r) = −jnions�(z − L)Ŝz〈Ŝi〉, (C2)

where �(x) is the step function and z = L identifies the surface
of the FI.

An established result in atomic physics34 is that we can
describe the asymptotic behavior of wave functions for valence
electrons in an atom, at large distances, as ψ(�r) = Rn,m(r)Ym,l ,
with R(r),

R(r) = Ar1/κ−1e−rκ , (C3)
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with κ = √
2I , where I is the ionization potential for that

electron in the atom. A pz electron on a graphene plane will
therefore be described as

ψ(r,θ ) ∝ r1/κ−1e−rκ cos θ. (C4)

The direct EPI energy between the FI and a graphene π

orbital from the U graphene plane is proportional to

E
(U )
Z ∝

∫ +∞

L−L1

drr2/κe−2rκ

∫ arccos (L−LU )/r

0
dθ cos2 θ

= (L − LU )2/κ+1

2
I1, (C5)

with t = r/(L − LU ) and

I1 =
∫ +∞

1
dtt2/κe−2t(L−LU )κ

[√
t2 − 1

t2
+ arccos

1

t

]
. (C6)

We now calculate the ratio E
(L)
Z /E

(U )
Z , where E

(L)
Z is the

magnitude of the EPI with a carbon pz orbital from the L

graphene plane, which is further away from the FI surface
than the U one. Observing the form of the EPI in Eq. (C5)
and using the fact that L − LL > L − LU , we can infer the
following condition for E

(L)
Z :

E
(L)
Z <

(L − LL)2/κ+1

2
e−2(LU −LL)κI1, (C7)

and therefore the ratio

E
(L)
Z

E
(U )
Z

< e−2d0κ . (C8)

For two neighboring graphene layers (interlayer distance d0

around 0.34 nm), and employing the value for C atoms
κ = 0.910a−1

B from Ref. 34, we conclude that the ratio of
the exchange interaction (JL/JU ) is of the order of 2 × 10−3.
We can therefore safely neglect the EPI effect on the lower
layer.
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