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Size distribution dependence of the dielectric function of Si quantum dots described
by a modified Maxwell-Garnett formulation
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Numerical inversion of effective medium equations used in ellipsometry data analysis are carried out, without
using any parameterized dispersion formula, in order to investigate on the influence of size distribution (SD) on
the dielectric properties of silicon quantum dots (Si QDs) within a silica matrix over the energy range [0.65–
6.5 eV]. To do so the dielectric function (DF) of the whole inhomogeneous layer is properly determined, and then
a modified version of the Maxwell-Garnett (MG) formula, which is often used in the ellipsometric modeling of
nanoscale Si, is set forth. This formula, which accounts for SD, was formerly introduced by Bányai and Koch.
We show that a small change in the size dispersion value may induce a sensitive modification in the line shape of
the DF. It is also pointed out that if only the filling factor f is accounted for as in the classical MG formula this
may lead to the overestimation of the amplitude of the DF of the Si nanoclusters. Furthermore the use of f solely
may induce an underevaluation of the optical-gap energy of the Si QDs but also of the broadening and transition
energies associated to the E1-like and E2-like critical points of crystalline Si. Likewise it is shown that SD does
have an impact on the static dielectric constant ε0 at low frequency, contrary to what has been generally supposed.
Indeed it is demonstrated that provided that either quantum confinement or surface polarization is considered,
then the parameters describing the size dependence of ε0 at 0.65 eV are subjected to sensitive changes as the size
dispersion σ increases.
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I. INTRODUCTION

Silicon is a material of primary interest in microelectronics.
For this reason its optical and dielectric properties have been
thoroughly determined and mastered since pioneering works
were earlier carried out.1–7 Moreover, the dielectric function
(DF) of Si has been parameterized with various dispersion
formulas that reproduce the experimental data quite well.
Current research focuses on the investigation of the dielectric
properties of nanometer-sized silicon embedded within
silicon-rich silicon oxide (SRSO) films. The objectives of such
investigations lie in potential applications for the building of
optoelectronic devices.8 When it comes to studying silicon in a
reduced dimension, some uncertainties arise about the accurate
evolution of the DF line shape. These observations originate
from the different results deduced from ellipsometry analysis.
On one hand this incertitude is certainly owed to the mixture
models generally used to describe the dielectric properties
of the nanoparticles. On the other hand these uncertainties
may emanate from the use of a single average size considered
in the modeling while passing over the corresponding size
dispersion commonly observed in Transmission Electron
Microscopy (TEM) images.9–15 Nevertheless most of the
previous studies show a redshift of the E2-like absorption peak
and a decrease in the amplitude of the DF with respect to that
of crystalline Si (c-Si). Such behavior of the DF has primarily
been attributed to quantum confinement effect (QCE).9–15

The complex nature of the investigated media brings about
interesting questions concerning the physical models used to
extract the local dielectric properties of the silicon quantum
dots (Si QDs). These properties are embedded in the optical
response of the composite film formed by the nanoclusters
and dielectric matrix. Maxwell-Garnett (MG) theory is one
of the most used effective medium approximations. An MG
model enables the determination of the dielectric properties of

heterogeneous films.16,17 Its conditions of applications require
well-separated spherical inclusions with a low volume fraction
in order to satisfy the dipolar approximation. The effective
dielectric function (EDF) ε̃eff (ω) of a composite material is
defined as the averaged DF of that entire medium, here the
whole SRSO layer. It takes into account the contributions of
the various pure phases in it.16,17 Thereafter we will consider
only a two-phase medium composed of the QDs and the
matrix. The EDF inherently contains information about the
inhomogeneous film properties such as the volume fraction of
the inclusions embedded within the layer and the signature of
any crystalline phase.10–12,14

The various deposition techniques [plasma-enhanced
chemical vapor deposition (PECVD),9 ion implantation,10

evaporation,11–13 co-sputtering,14,15 currently used do not
enable the elaboration of Si QDs rigorously uniform in size.
Hence such SRSO films represent, on a microscopic view, dis-
ordered media. Consequently, size dispersion is always present
no matter how small it is. Even though a Gaussian function18,19

has been often applied to describe the size distribution (SD)
of semiconductor QDs embedded within a dielectric matrix,
many experiments show that the SD is rather of lognormal
type.11–13,20,21 This latter kind of SD has to be preferred to the
former one because it represents a more physical description
of the QDs ensemble, specifically for very small size (when
radius R → 0). Additionally a lognormal SD is more
frequently encountered in systems like SRSO films that have
been submitted to high-temperature annealing. Subsequently
to such a thermal process, the Si QDs lose the memory of
their specific initial germination conditions and undergo a
random nucleation and growth in a homogenous medium.20,21

However, an experimental demonstration of the effect of SD
by using spectroscopic ellipsometry is unavailable in the
literature.
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Therefore, a matter arises regarding the latter subject.
How can SD influence the dielectric properties of Si QDs
and their associated optical transitions? By attempting to
answer that issue, we are putting forward in this paper an
approach that allows the modeling of the dielectric properties
of semiconductor QDs dispersed in thin dielectric films. Such
method takes into account their SD. This work is based
on, first, the determination of the EDF from experimental
spectra. Subsequently, numerical inversions are performed by
using effective medium equations. The outline of our study is
divided into three parts. In Sec. II we introduce the modified
Maxwell-Garnett (MMG) formula20,21 that is to be used in
the calculations. In Sec. III we present the results obtained by
considering the size dispersion effect as given in the MMG
formula. We also provide some comparisons with the main
works available in the literature. Finally in Sec. IV we discuss
the influence of quantum confinement and surface polarization
on the SD-dependent static dielectric constant at 0.65 eV.

II. MMG EXPRESSION AND NUMERICAL INVERSION

Let a host medium of dielectric constant ε2 contain spherical
QDs of the same size and be characterized by ε1. It is assumed
that the QDs are homogeneously distributed in the medium.
We presume that the concentration of the QDs is low and
their radii are smaller than the distance between each of
them. Thus such collection of QDs can be assimilated to
electric dipoles. As a result it is possible to show that the
effective dielectric constant εeff of such a system is expressed
as16,17,22

εeff = 1 + 8π
3·ε2

· n · κ

1 − 4π
3·ε2

· n · κ
, (1)

where the number of QDs per unit volume (concentration) n
is related to their volume fraction f through the expression
f = 4πR3

3 · n, and the polarizability κ of the QDs is defined as

κ =
ε1
ε2

− 1
ε1
ε2

+ 2
· ε2 · R3. (2)

The former equations lead to the well-known MG formula17

εeff − ε2

εeff + 2 · ε2
= f · ε1 − ε2

ε1 + 2 · ε2
. (3)

At this stage it can be remarked that in the MG model
the information about the average size of the inclusions is
implicitly contained in the value of the volume fraction f and
the polarizability κ as far as a system of identical QDs and
homogeneously distributed inside a host material is supposed.

Bányai and Koch22 previously suggested that if a system
contains dots of different radii with a given SD P(R), then the
expression of the polarizability κ should be revised in order to
take into account the effect of that SD. Thereby the quantity κ

is weighted by P(R) and substituted in Eqs. (1) and (2) by an
average polarizability κ̄ formulated as

κ̄ =
∫ ∞

0
dR κ · P (R). (4)

Hence the classical MG formula should be replaced by an
MMG formula [Eq. (5)] for absorbing materials,

ε̃eff (ω) − 1

ε̃eff (ω) + 2

= f ·
∫ ∞

0
dR (R/R̄)3 · P (R) · ε̃QDs (ω,R) − 1

ε̃QDs (ω,R) + 2
, (5)

where the host material is void (ε2 = 1).22

We have applied this formula to the case of Si QDs
embedded within a silica matrix and this MMG formula is
established by the equation

ε̃eff (ω) − ε̃SiO2 (ω)

ε̃eff (ω) + 2 · ε̃SiO2 (ω)
= f ·

∫ Rmax

Rmin

dR (R/R̄)3 · P (R)

× ε̃QDs (ω,R) − ε̃SiO2 (ω)

ε̃QDs (ω,R) + 2 · ε̃SiO2 (ω)
,

(6)

where ε̃eff(ω) is the EDF of the whole composite layer; ε̃SiO2 (ω)
is the DF of the silica matrix; and ε̃QDs(ω,R) = εr + iεi is the
DF of the Si QDs with a given radius R (in nm) and ω is the
photon energy (in eV). In Eq. (6) P(R) is the QD SD that has
been chosen here to be a normalized lognormal SD which is
defined as

P (R) = 1

R · √
2π · Log(σ )

×Exp
(−((

Log[R/R̄]
)
/
(√

2 · Log
(
σ
)))2)

. (7)

In Eq. (7) the standard deviation (that we call size dispersion
further in the text) σ (σ > 1) is expressed as

Log(σ ) =
⎡
⎣∑

j

Nj · (Log(Rj ) − Log(R̄))2

/∑
j

Nj

⎤
⎦

1/2

,

(8)

where Nj is the number of inclusions with a radius equal to
Rj . Rmin and Rmax represent the lower and upper bounds in
which the SD P(R) evolves.

It is noteworthy that for disordered systems the ensemble-
averaged EDF can also be determined from first principles
in terms of n-particle distribution functions.23 Hence, MG
approximation can be considered as a particular case when
dealing with two-particle spherical distribution. Although it
was shown earlier that both size and shape distributions can af-
fect both the EDF of the system24 and the DF of the embedded
nanoclusters, the MMG formulation is restricted in this work
to the case of QDs with a spherical shape, which models the
best shape describing the QDs in our samples. Nonetheless,
the MMG model may have several extensions among which
the potential application to systems, (i) with a bimodal SD
of the QDs; (ii) with an SD of ellipsoidal QDs using the
generalized MG theory;25 and (iii) with two different kinds
of shape distributions, e.g., both ellipsoidal and spherical QDs
with diverse sizes. Practically, P(R), Rmin, and Rmax should
be assessed by TEM observation which, however, currently
has a detection limit of 1 nm in radius. The EDF ε̃eff(ω) of
the SRSO layer can be obtained with a good precision from
ellipsometry modeling using either dispersion formula9,10,13
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or wavelength-by-wavelength numerical inversion.11,12,14 An
assumption is usually made that ε̃SiO2 (ω) may not be radically
changed from the data provided in the literature, even though in
strict reality there are interactions between the matrix and the
QDs, which should lead to slight deviations of ε̃SiO2 (ω) from
the tabulated values.11,12 An explicit analytical dependence of
ε̃QDs(ω) with the QDs’ size is not known to date. Thereafter,
we will presume that such dependence of ε̃QDs(ω) with size
in Eq. (1) may be implicitly contained in the characteristic
parameters (transition energy, amplitude, and broadening)
for nanocrystalline materials as described elsewhere.26–31 By
assuming that in Eq. (6) ε̃QDs(ω) is the only unknown, we
can numerically solve that equation and find the energy
dependence of the DF of the Si nanoclusters.

III. SIZE DISPERSION EFFECT ON THE LINE SHAPE
OF THE OPTICAL FUNCTION OF THE Si QDs

Pavesi et al.8 employed an MG relationship in order to
evaluate the effective refractive index neff of their SRSO films
in which were embedded Si nanocrystals (Si-ncs) with an
average diameter of 3 nm and a volume fraction f = 28%.
In that work it was shown that a decrease of the optical
filling-factor value, implicitly connected to the SD of the
nanocrystals, led to a perceptible variation—around 10%—of
neff in the nanocrystalline region. Hence in our case, a careful
analysis of this EDF should be a necessary investigation
preliminarily to determine the dielectric properties of the
Si QDs. Such investigation has not always been reported in
preceding works.9,10,13,14 Figure 1 shows the EDF of an SRSO
layer elaborated by ion implantation. The estimated volume
fraction of Si QDs was 5.0%. The latter value was deduced
from a model presented in a previous work.32 This modeled
EDF ε̃mod was obtained from the fit of the experimental
ellipsometric data using wavelength-by-wavelength numerical
inversion. Besides, the same figure presents for comparison the
DF of silica ε̃SiO2 and a calculated EDF ε̃cal corresponding to
an MG mixture between a host medium of silica (f = 95%)
and inclusions of crystalline Si (f = 5%). The quantities ε̃SiO2

and ε̃c−Si are known values from the literature.33

In Fig. 1 it is seen that the amplitude of the real part of
ε̃mod and ε̃cal are much higher than that of silica. Moreover, the
absorption onset starts at nearly 2 eV on the imaginary part of
ε̃SiO2 and ε̃cal. All these points are features of the presence in
the SiO2 matrix of a silicon excess, which is under two distinct
forms: nanocrystalline Si (for the line shape of ε̃mod) and
crystalline Si (for the line shape of ε̃cal). It is noteworthy that,
from the examination of ε̃cal, the presence of some structures,
indicated by the vertical arrows in this figure, is observed.
These structures stem from the signature of E1 (at 3.4 eV), E2

(at 4.26 eV), and E′
1 (at 5.5 eV) transitions in the imaginary

DF of c-Si. In the case of ε̃mod no prominent signature of either
the E1 transition or the E′

1 one exists. The same observation
seems to be valid when analyzing the EDF of systems with a
higher volume fraction (f = 29%) of Si QDs, such as in Refs. 11
and 12. This observation can be interpreted as a consequence
of the reduction in the size of the Si inclusions and/or the
formation of a suboxide shell around the Si QD structure.

In all of the results subsequently presented the size
dispersion σ ranges between 1.05 and 1.40, while the average

FIG. 1. (Color online) DF of (a) SiO2 extracted from the literature
(dash-dot line); (b) the effective medium of a calculated MG mixture
between a host medium of silica and crystalline Si inclusions in
a proportion of 95% and 5% volume fractions, respectively (solid
line); (c) the effective medium of the modeled SRSO layer containing
a volume fraction of nanocrystalline Si QDs evaluated to 5.0% as
estimated in Ref. 32 (dash line).

radius of the Si QDs is set constant to R̄ = 1.5 nm. The values
of Rmin and Rmax move between 0.5 and 3.0 nm, respectively.
The volume fraction of the Si QDs is constant and equal to
5.04%. The curves in Fig. 2 display the probability density of
different lognormal SDs obtained from Eq. (2) by varying the
values of the standard deviation σ . As σ increases, a sprawl of
the SD toward both larger and smaller radii is observed. Indeed
a slight elevation of σ from 1.05 to 1.15 leads to a more than
double radii range. At the same time the probability density
maximum is slightly skewed (from 1.50 to 1.34) toward the
smallest radii (as is observed in the inset of Fig. 2 and also in
Table I). Thus for σ values higher than 1.15, most of the QDs
have a size smaller than the average size of R̄ = 1.5 nm. The
vertical arrow in Fig. 2 indicates the size (radius) detection
limit of the QDs, which is equal to 1 nm generally for the
actual TEM instruments. It is striking that as σ goes up the
contribution of QDs with a radius less than 1 nm cannot
be neglected especially as the quantum confinement is more
important for such sizes.

Figure 3 shows the imaginary DFs obtained for Si QDs
whose diameters range between 3.0 and 4.7 nm. The data
were extracted from literature. Losurdo et al.9 synthesized by
PECVD nanocrystalline Si (f = 38% in an hydrogenated amor-
phous Si matrix) of approximately 3 nm in diameter with a size
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FIG. 2. (Color online) Probability densities P(R) of some lognor-
mal SDs obtained by varying the values of the standard deviation σ

from 1.05 to 1.40. The average radius is R̄ = 1.5 nm. The inset shows
the distribution P(R) associated to σ values between 1.25 and 1.40.
The detection limit of the conventional TEM instruments—generally
around 1 nm in radius—is indicated by a vertical arrow.

dispersion in the range 1.20 � σ � 1.30 as estimated from
the histogram of the TEM image. Furthermore, Ding et al.10

used MG theory in order to derive the DF of ion-implanted
Si-ncs. The latter Si-ncs (f = 17% in an SiO2 matrix) had an
average size of 4.6 nm with a given size dispersion that was
not specified. Gallas et al.11,12 employed Bruggeman Effective
Medium Approximation (BEMA) for the characterization of
Si-ncs (f = 29%) within evaporated SRSO layers. The size
standard deviation was estimated to range between 1.15 and
1.20 from the histogram of the TEM image. En Naciri et al.32

elaborated (f = 5.04%) by ion-implantation within silica. The
size dispersion was evaluated to be approximately 1.20. More
recently Alonso et al.14 also modeled nanocrystalline Si of
average sizes comprised between 4.2 (f = 18%) and 4.7 nm
(f = 20%) embedded in a sputter-deposited SiO2 matrix. In
their work the DF of the Si nanoclusters was extracted using
BEMA as well. The corresponding size dispersions are in the
range 1.20 � σ � 1.30 as evaluated from the histogram of

TABLE I. Variation with size dispersion σ of different parameters
characterizing the line shape of the Si nanoclusters. C is taken as the
full width at half maximum of the imaginary DF. The significance of
the other parameters is given in the text.

R̄ (nm) f (%) σ R0 (nm) A C (eV) E (eV) E04 (eV) ε0

1.00 1.50 37.5 1.55 4.15 2.27 9.00
1.05 1.50 35.4 1.65 4.20 2.28 8.85
1.10 1.49 30.9 1.75 4.30 2.30 8.49
1.15 1.47 24.9 1.85 4.50 2.37 7.90

1.50 5.04 1.20 1.45 20.2 2.07 4.65 2.40 7.32
1.25 1.43 16.4 2.55 4.85 2.45 6.71
1.30 1.40 14.0 − 5.00 2.52 6.23
1.35 1.37 11.5 − 5.15 2.57 5.65
1.40 1.34 9.46 − 5.30 2.61 5.07

FIG. 3. (Color online) Comparison between some of the various
imaginary DFs obtained in the literature for Si QDs of specified
average size (diameter). The imaginary DF of Si QDs that takes into
account a size dispersion σ = 1.20, deduced from this work, is also
depicted. The imaginary DF of c-Si is also plotted for comparison.
The position of the E1 (3.4 eV) and E2 (4.26 eV) transitions are
evidenced by vertical dotted lines.

the TEM image in Refs. 14 and 15. The different features
of these referenced optical functions for Si nanoclusters are
summarized in Table II.

Regarding the previous DF line shapes of nanocrystalline
Si, some similarities between them can be noticed. Indeed there
is (i) a decrease of the amplitude with respect to crystalline Si;
(ii) a red shift of the main transition energy as compared to E2;
and (iii) a broadening of the optical resonances relatively to the
bulk materials. Nonetheless, some quantitative disagreements
remain unresolved. As an example Fig. 3 shows a fall of
the amplitude of the DF from three nanometer-sized Si
QDs to 4.7 nanometer-sized Si QDs, whereas the quantum
confinement theory predicts the opposite trend to occur. Thus
some hypotheses may be put forward in order to explain such
differences. First the deposition and annealing conditions may
significantly influence the optical properties of Si QDs. The
former elaboration parameters could result, secondly, in silica
matrices with different (optical) properties and hence this
could affect the local environment of the Si QDs. However,
Table II and Fig. 3 show that for rather close values of the
filling factor (f ≈ 18%) and average radius R̄ ≈ 2.6 nm, Ding
et al.10 and Alonso et al.14 obtained line shapes for the DF
that seem radically dissimilar. In both studies an identical
silica matrix, whose optical properties were extracted from
the literature,33 was reported. Furthermore, we stress here
on the fact that silica is totally transparent in the [0.6–6.5
eV] photon-energy range.33 Consequently comes into play
a third interpretation of such discrepancies, which has to be
attributed to the impact of SD in the previous SRSO films as
evidenced by the corresponding TEM histograms.

From the perspective of numerical simulations ab initio
results showed that for embedded QDs (of 1 nm large at
least but sufficiently small), both BEMA and MG theory
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TABLE II. Description of the different main features related to the dielectric properties of nanocrystalline Si available in the literature. The
size standard deviation σ is evaluated from the shape of the SD of the corresponding TEM histogram. In the case of Si QDs, the parameter C is
determined using Lorentzian oscillators in order to make a deconvolution of the DF line shape. The symbol “∗” means that the associated gap
energy is actually not the fundamental gap Eg but the optical gap E04. As a comparison, the parameters of the line shape of the Si QDs with
σ = 1.20 are also presented (as obtained in this work). The DF of crystalline, polycrystalline, and amorphous Si are also presented.

Authors R̄ (nm) f (%) EMT DF derivation Estimated σ Ai Ci (eV) Ei (eV) Eg (eV) εr at E = 1 eV

This work 1.50 5.0 MMG λ-by-λ inversion 1.20 20.2 2.07 4.65 2.40∗ 8.99

Losurdo et al.9 1.50 38 BEMA Forouhi-Bloomer 1.20−1.30 34.0 3.05 3.8 1.97 10.6
13.2 0.75 3.58 1.97∗ 12.2

Gallas et al.11 2.00 29 BEMA λ-by-λ inversion 1.15−1.20 28.2 1.32 4.22
0.96 0.58 5.25

Alonso et al.14 2.10 18 BEMA λ-by-λ inversion 1.20−1.30 4.73 − 4.70 2.36 4.24

Ding et al.10 2.30 17 MG Forouhi-Bloomer − 19.8 0.53 3.54 1.74 10.3
4.99 0.19 3.95

Alonso et al.14 2.35 20 BEMA λ-by-λ inversion 1.20 − 1.35 5.98 1.98 3.58 2.09 6.02
4.61 1.80 4.39
24.4 0.24 3.42 1.12 12.4

c-Si2,33 − − − − − 24.6 0.75 3.74
32.2 0.44 4.26
4.77 1.22 5.39
17.3 0.67 3.51 − −

p-Si5 − − − − − 30.6 1.05 4.11
4.44 0.79 5.37

a-Si6,33 − − − − − 29.9 2.24 3.72 1.39 −

remained valid and led to similar results.27–29 This remark
holds especially when comparing the DFs obtained in the
work of Ref. 10, where MG was employed, and the study of
Ref. 14, in which BEMA was used. According to the remarks
of Weissker et al.,27–29 the deviations observed between these
two DFs should not be primarily attributable to the use of either
BEMA or MG.

Wood and Ashcroft34 examined the quantum-size effects
in the optical properties of small metallic particles. They
observed that the dc electric dipole conductivity (also linked
to the DF) is suppressed by a factor O(10–100) with respect to
the bulk value. Moreover, they noted the prominent presence
of broadened absorption peaks. Above all they stressed on the
fact that in order to make meaningful comparisons between
the predictions of the quantum size effect and experiment, the
distribution of particle sizes in real systems must be taken into
account. In light of these prior results, the same trends can
be qualitatively envisaged when characterizing the dielectric
properties of a nanocrystalline semiconductor like Si. Besides
this, Khurgin et al.35 proceeded to a systematic study of the size
dependence of the photoluminescence (PL) spectra of Si-ncs in
an SiO2 matrix. They showed that when size dispersion rather
than specific mean size is taken account, then the confinement
model seems to explain reasonably well the experimental PL.
On that account we can hypothesize on a possible impact of
SD on the absorption process of Si QDs.

Figure 4 plots the evolution of the real and imaginary parts
of the DF of an ensemble of Si QDs with an average radius of
1.5 nm and a corresponding size dispersion σ . The results in
Fig. 4 were determined from the numerical inversion of Eq. (6),
without using any fitting quantity. The evaluation of the second

FIG. 4. (Color online) Optical properties of the Si nanoclusters
obtained with MMG formula for various values (from 1.05 to 1.40)
of the size dispersion σ . The DF of c-Si is also plotted. The inset
shows the evolution of the real DF in the range [0.65–1.05 eV].
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derivative of εi reveals the presence of a single peak only that
may come from the E2 one of c-Si. It is noticeable that Ding
et al.10 and Zhang et al.13 clearly observed the presence of
the E1-like and E2-like peaks. In the previous reports the DF
was evaluated by employing dispersion formulas with more
than 16 fitted parameters, contrary to the inversion method
used in this work. Next we are to give a close look over the
variations with σ of the characteristic parameters of the DF line
shape by comparing our results with those obtained in former
experimental and theoretical research. Five interesting points
arise from the observation of the line shape of εi in this figure.

First we concentrate on the quantity A of εi , which is linearly
connected to the oscillator strength and measures the proba-
bility of a quantum mechanical transition.36,37 The outcomes
of our calculations, presented in Fig. 1, depict a dramatic fall
of the amplitude A of εi as the size dispersion rises: indeed,
an augmentation of σ of 20% divides the value of A by
more than 1.85. Ab initio simulations performed on embedded
Si-ncs pointed out a reduction of the DF amplitude with a
reduction of their size.27–31 According to such research the
transition probabilities of the lowest transitions remain small.
Ding et al.10 found that for Si QDs of roughly 4.6 nm, the DF
line shape is marked by the domination of an E1-like transition,
whereas the contribution of the E2 one is much weaker (see
Table II). On another side the E1-like participation on the
dielectric behavior seems to be a good deal lower, according to
Alonso et al.14 Moreover, in the work of Ref. 14 the magnitude
of the imaginary DF of approximately 4.7 nm diameter Si-ncs
is around A ≈ 8.9. This value seems to be significantly reduced
as compared to the result of Ref. 10, where A ≈ 19.8 for nearly
4.6 nm diameter Si-ncs. Likewise according to Ref. 14, Si QDs
with an average diameter of 4.2 nm have A ≈ 4.7 whereas it is
importantly increased up to A ≈ 28.2, as their mean size goes
down to 4 nm.11,12 This observation leads to an interesting
point about the lower limit down to which the DF amplitude
decreases. Simulations carried out under density functional
theory formalism showed that the key quantity in controlling
the dielectric properties is given by the number of Si QDs.27–31

Hence, for a free-standing 239-atom (2.2 nm in diameter) Si
cluster passivated by H atoms, Weissker et al.27–29 deduced A
≈ 6. In the case of embedded Si nanoparticles, they computed
A ≈ 20, also for an identical cluster. These reports revealed a
distribution of oscillator strengths to high photon energy above
3.5 eV. As described previously, in our case the DF amplitude
is drastically reduced, as can be seen in Fig. 4. For example,
the amplitude A varies from 37.5 to 9.49 when σ changes
from 1 to 1.4. All values are summarized in Table I. Thus, our
computations support the idea of an influence of the SD in
order to explain the differences between the DF line shapes as
observed in Fig. 3 and Table II.

Next we focus on the broadening C of the DF line shape.
It is known that the broadening may result, on one hand,
from either the radiative pair recombination or the scattering
of the electron-hole pair with impurities in the nanocrystal
(homogeneous broadening). On the other hand such
broadening may also be owed to the presence in
the SRSO film of a significant number of Si QDs
with different sizes (inhomogeneous broadening).22

Besides, Alonso et al.14 attributed the increasing
broadening of the DF spectra to the growing number

of possible transitions. When performing ellipsometry
characterization, the measurement is more likely to be
inherently sensitive to the effect of inhomogeneous
broadening. The broadening C of the imaginary DF is
linked to the value of the full width at half maximum of the
absorption peak. As could be expected, Table I shows that the
effect of size dispersion is more stressed on the broadening
than on the other parameters of the DF line shape. Indeed a
54.5% increase of C is noticed when σ is changed from 1.05 to
1.25. For σ � 1.30 the full width at half maximum is beyond
our experimental measurement range, and the corresponding
value is not displayed. Table II displays that the values of C
associated to the critical points of the line shape are enlarged
in comparison with bulk Si. Notwithstanding, Table II
suggests that C is rather subjected to notable modifications
from one sample (work) to another. As a matter of fact, from
the parameters presented in their paper, it can be noticed that
Losurdo et al.9 obtained a broadening close to 3.1 eV, much
larger than that of amorphous Si. The same comment may hold
when trying to match the results derived for the main transition
of 4.0 (C ≈ 1.32) and 4.7 (C ≈ 1.98) nm Si-ncs, studied in
Refs. 11 and 14. An enhancement of the broadening should be
expected as the mean size of the Si nanoclusters diminishes.
The outcome of these observations is that size dispersion may
be at the origin of such differences, as emphasized by our
results related to the variation of C with σ in Table I.

Third, theoretical calculations generally demonstrated that
a shift toward higher energies of the whole DF line shape is
expected for smaller Si QDs as far as quantum confinement
is involved.27–31 However, it is noteworthy to point out that
in such reports the effects of SD were not taken into account.
On an experimental point of view, the redshift of the main
transition energy of the nanocrystalline Si DF, with respect
to the E2 transition of c-Si, was noticed. This behavior
was obtained in most of the preceding works employing
ellipsometry modeling.9–13,32 Particularly in Ref. 32, the DF
obtained from the classical MG formula shows no blueshift of
E but rather a redshift of approximately 0.1 eV with respect
to the E2 position of c-Si. Nonetheless the calculations, based
on ellipsometric data, we have undertaken (see Table I) reveal
a significant blueshift of the transition energy E from 4.15 eV
(σ = 1.00) to 4.65 eV (σ = 1.20). Gallas et al.11,12 found a
perceptible decrease of the magnitude of the E1-like transition
as the size of the Si QDs was reduced from 4 to 2.5 nm.
They attributed this change to a transfer of the oscillator
strength to higher energy states. However, in their paper, the
authors detected no blueshift of the E2-like peak, though they
recognized that this behavior may come from the omission
in the modeling of an inhomogeneous broadening owing
to the size dispersion of the Si-ncs. As far as we are
concerned our results in Table I stress on the fact that an
accurate determination of the size dispersion may generate an
appreciable modification of the transition energy.

In addition, as evidenced in prior studies,3–7 a strong
correlation exists between the band gap energy and the other
parameters (amplitude, broadening and transition energy) of
the DF line shape. Hence an under/overestimation of one of the
latter quantities may alter in a noticeable way the evaluation
of the gap energy. Delley and Steigmeier38 applied density
functional approach to calculate the electronic structure and
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FIG. 5. (Color online) Influence of size dispersion on the ab-
sorption coefficient line shape for different values of the size
dispersion σ . The absorption coefficient of amorphous, crystalline
and polycrystalline silicon are also represented. The inset shows the
absorption edge between [1.5–3.0 eV].

band gap of finite (up to 750 atoms or 3-nm-sized) Si structures.
They showed that the band gap Eg scales linearly as (2·R)−1.
Contrary to the previous authors Öğüt et al.39 took into account
the size dependence of the self-energy correction in their first
principles simulations. They computed the optical gaps of
spherical Si clusters with diameters up to 2.7 nm and assessed
a (2·R)−0.7 dependence. Experimentally, Nguyen et al.40

measured by in situ spectroscopic ellipsometry the dielectric
properties of ultrathin crystalline Si films. In that report the in-
vestigated films varied between 0.6 to 1.3 nm. They obtained a
linear increase of the gap energy—from 2.75 to 3.0 eV—as the
layer gets thinner. The dependence between band-gap energy
and size dispersion can be evidenced by examining the absorp-
tion coefficient α(E) spectra. In this manner Fig. 5 describes
the evolution of the α(E) of Si QDs as the size dispersion σ is
raised. The absorption coefficient is directly deduced from the
real and imaginary DF. The line shapes of α(E) are also plotted
for amorphous (a-Si), crystalline and polycrystalline (p-Si)
silicon for comparison. Up to 3 eV the absorption coefficient
of the Si QDs is rather close to that of c-Si. Above 3 eV
the Si QDs’ absorption is obviously amorphous-like, and the
influence of size dispersion starts to be more stressed. Similarly
to the evolution of the dielectric response of the Si QDs, the
increase of σ progressively moves the absorption peak forward
higher energies. Meanwhile the broadening that is induced by
such elevation of σ increasingly smears the absorption peak. In
some works the Si QDs’ gap energy Eg

Tauc was deduced from a
Tauc representation. This method consists in the extrapolation
of the linear domain of the curve (α ×E)1/2.10,14 However such
a method of determination of Eg

Tauc value has to be handled
with care. Indeed it is well known that as k(E) is close to zero,
ellipsometry measurements may be tainted with uncertainties.
For this reason we have evaluated only the optical gap E04,
which is defined as the photon energy at which α = 104 cm−1,
as done by Gallas et al.11,12 Figures 4 and 5 and Table I reveal
that E04 increases from 2.28 eV (σ = 1.05) to 2.61 eV (σ =
1.40). These E04 values are significantly higher than that of

a-Si (E04 = 1.68 eV) or p-Si (E04 = 1.91 eV). Nonetheless
they remain close to the E04 of c-Si (2.27 eV) for relatively low
σ . Accordingly, as σ is raised the blue shift of the absorption
edge may primarily be attributable to the greater contribution
of smaller sizes. However, as depicted in Table II, these former
theoretical predictions do not every time comply with the trend
observed from experimental results on Si QDs. In fact, an
expansion of R from 1.59 to 2.35 nm14 does not induce a
systematic reduction of Eg , even though the latter quantity
is blueshifted in comparison with the gap energy of bulk
crystalline Si. Furthermore, a significant difference of 0.35 eV
resides in the Eg values of Si-ncs with 4.6 nm10 and 4.7 nm14

average sizes (see Table II). Hence, as shown in Table I, the
incorporation of an SD into the modeling should bring some
meaningful corrections to the estimation of Eg . In regard to
the evaluation of the nature of the band gap an open subject
remains. Delley and Steigmeier found a direct band gap.38

Our results tend to convey an indirect-like gap for Si QDs. On
this point, former results deduced from ellipsometry modeling
seem to conform with our deduction.14,40

Fifth, concerning previous ellipsometric modeling only
little attention has been paid to the analysis of the static
dielectric constant ε0 (or real part of the low frequency
DF) with size. The precise determination of ε0 may be
of particular importance in the conception of electronic
devices.10,34 We will subsequently show that theoretical
calculations also demonstrate such a reduction of ε0.
Nonetheless, Ng et al.41 determined ε0 for 4.5-nm-sized
Si-ncs embedded in SiO2. They showed that ε0 for
nanocrystalline Si dots are significantly reduced ε0 = 9.8
in comparison to the bulk one. Their result was thoroughly
supported by C-V measurements.41 Our results denote that
the static dielectric constant ε0 is affected by an increase in
the size dispersion also. This is evidenced by the modification
of εr at 0.65 eV for various σ , as shown in the inset of Fig. 4.
Actually ε0 is split by nearly a factor of 1.23 when σ rises from
1.00 to 1.20. However, contradictory values for the evolution
of ε0 are presented in the literature. Indeed εr is divided by
more than 3, though Si-ncs with approximately the same size
were investigated, depending on whether the work of Gallas
et al.11 or Alonso et al.14 is considered. Furthermore, it is
shown in the same Table II that a 2% difference in the average
size of the Si-ncs could lead up to a discrepancy of 41% in
the evaluation of their corresponding ε0.10,14 In this regard our
results explain such deviations in terms of size dispersion.

Until now in this paper, we have proceeded with a scrupu-
lous examination of the main published data regarding the
parameters that influence directly the line shape of the optical
function of Si nanoclusters. We have identified five important
parameters: amplitude A of εi and associated broadening C;
transition energy E and optical gap E04. The plot of εr has been
used to extract the static dielectric constant ε0. The quantitative
evolution of such parameters versus the size dispersion σ

is illustrated in Fig. 6. Again, the dependence of the DF
parameters with SD is shown for a realistic variation of σ

between 1.05 and 1.20. It has been noted that annealing of
SRSO samples at high temperatures (at least 1000 ◦C) leads to
the formation of Si QDs with standard deviations that generally
vary around σ = 1.20. This value of σ is reasonable because
even much higher figures (σ ≈ 1.40–1.50) were obtained in a
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FIG. 6. (Color online) Illustration of the quantitative evolution of
the parameters that determine the line shape of the DF versus the
size dispersion σ . The figured parameters are the amplitude A, the
broadening C, the transition energy E, the optical gap E04, and
the static dielectric constant ε0.

prior research.20 It should be noted that SD deduced from TEM
analysis represents local information on the sample. When
ellipsometry experiment is undertaken, the light beam probes
several μm2 up to mm2 of the sample surface. Consequently,
the effect of SD should be emphasized on the ellipsometry
measurement. This observation has revealed to us rather con-
vincing arguments showing that SD, as highlighted in electron
microscopy observations, should be taken into account in the
ellipsometric modeling via the MMG formulation (see Eq. (6)
and Ref. 22). Thus, we have first determined the dielectric
response as a function of SD in spectral range from 0.6 to
6.5 eV (see Figs. 4 and 5), and now we shall investigate on its
effect on the parameters describing the size dependence of the
low frequency static dielectric constant of Si nanostructures.

IV. SD IMPACT ON THE STATIC DIELECTRIC CONSTANT
AFFECTED BY QUANTUM CONFINEMENT AND

SURFACE POLARIZATION

Theoretical works have focused, likewise, on the evalu-
ation of the low frequency static dielectric constant for Si
nanostructures. In this manner, Wang and Zunger evaluated,
by quantum mechanical pseudopotential simulations, ε0 for
Si QDs with an average radius between 0.8 and 2 nm. They

showed that ε0 is importantly decreased relatively to the bulk
value.42,43 Apart from that previous report, Delerue et al.44

employed tight-binding simulations in order to evaluate the
effective dielectric constant of nanostructured Si layers. In
order to explain the reduction of ε0 with size, two competing
physical mechanisms have been put forward hitherto. On one
hand the first mechanism may be owed to the opening of the
band gap or in other words to QCE. It has been shown in
previous studies that QCE affects the static dielectric constant
with a size dependence that is expressed as:39,40,42,43

ε
QCE
0 (R) = 1 + εbulk

0 − 1

1 + (α/R)l
, (9)

where ε0
bulk = ε0

c−Si = 11.95 is the dielectric constant of
the bulk material taken here at photon energy of 0.65 eV.27–29

(α, l) is a pair of variable parameters, which are used to fit the
dependence of ε0 with the mean radius of the Si nanostructures.
The (α, l) parameters depend on the size and shape of the
Si nanostructures. Wang and Zunger,42 Delerue and Allan,44

and Öğüt et al.39 assigned to this pair the values (0.425,
1.25), (1.84, 1.18), and (0.97, 1.3), respectively. According
to the literature, the l exponent lies between 1 and 2. The
size parameter α has to be less than the QD mean radius R̄

when a strong confinement regime applies to the system.42

The smaller the α/R ratio is, the more intense the confinement
regime becomes.42 On the other hand the second mechanism at
the origin of the diminution of ε0 may come from the breaking
of polarizable bonds.44–47 It is also referred to as surface
polarization effect (SPE). It has been established that SPE
influences the static dielectric constant with a size dependence
that is quite different from QCE and formulated as

εSPE
0 (R) = εbulk

0 − (
εbulk

0 − εsurface
) · dsurface

R
= εbulk

0 − sSPE

R
,

(10)

where dsurface (in nm) is the thickness of the surface shell,
εsurface is its corresponding DF, and sSPE is defined as47

sSPE = (
εbulk

0 − εsurface
) · dsurface. (11)

Recently, Yoo and Fauchet made use of spectroscopic
ellipsometry in order to determine the dielectric constant, at
0.73 eV, of Si nanoslabs of various thicknesses from 3.2 to
13.1 nm.47 They noticed that when l = 1 and α/R	1, then
the effects of QCE and SPE become quite similar at the first
order.47 In fact, Eq. (9) can be approximated to

ε
QCE
0 (R) ≈ εbulk

0 − sQCE

R
, (12)

where

sQCE = (
εbulk

0 − 1
) · α. (13)

Now let us consider the size-dependent expressions of
ε0 given by Eqs. (9) and (10). We expect that these latter
relationships are not only valid for the average radius of the Si
QDs, but they remain well founded for each QD radius with a
given size comprised within the SD P(R). Next, by inputting
the expressions of ε0

QCE (R) and ε0
SPE (R) into Eq. (6), for

E = 0.65 eV we can numerically solve it. Afterward, the
parameters (α, l) and (dsurface, εsurface) can be extracted. The
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FIG. 7. (Color online) Values of the (α, l) parameters that fit with
the modeled effective dielectric constant ε0

eff = 2.269 at 0.65 eV
obtained by considering the influence of quantum confinement on
the static dielectric constant ε0

QCE (R). The horizontal dotted lines at
l = 1 and l = 2 define the region where the values of l should lie (as
observed in the literature).

value of the effective dielectric constant is deduced from the
λ-by-λ inversion and is such that ε0

eff = 2.269.33 Moreover,
at E = 0.65 eV the dielectric constant of the silica matrix is
given by ε0

SiO2 = 2.071.23

Figure 7 shows the (α, l) values obtained from numerical
integration of the MMG formula given by Eq. (6). We point
out that the (α, l) provided in this figure are determined
from experimental data only. Contrary to the referenced (α,
l) extracted from the literature, we obtain in Fig. 7 not single
points—as in Refs. 39, 42, and 44—but curves, because our
study deals only with one sample characterized by a unique
average size. In case of the consideration of other samples
with different mean size, we could remove the uncertainty
about the exact value of the couple (α, l). Hence, according to
the literature data we will focus on solutions for which l lies
between 1 and 2. It is seen in Fig. 7 that the consideration of
a specific value of σ results in a different l = f (α) curve.
Subsequently, it can be deduced that the static dielectric
constant of the Si QDs is affected by the SD effect. As far
as σ remains small (σ < 1.05), the (α, l) points obtained using
MG are close to those derived with MMG. It is observed that
for σ = 1.20, for the SRSO sample examined in this study, α

varies around 1.30, near R̄ = 1.50 nm. This could suggest an
intermediate confinement regime, which is in good agreement
with the rather flat PL peak observed at room temperature.32

For higher values of the size standard deviation, the associated
α is larger, which could signify much lower confinement.

Figure 8 depicts the evolution of εsurface versus dsurface. The
result that is transmitted across this figure is that size dispersion
σ affects the evolution of the parameters (dsurface, εsurface). For
a given σ , εsurface asymptotically grows with dsurface. The larger
σ is, the lower the value of εsurface becomes. In addition the
lessening of εsurface is more important for a thinner surface
region. Besides, in Fig. 8 the variation of εsurface versus dsurface

FIG. 8. (Color online) Values of the (dsurface, εsurface) parameters
that fit with the modeled effective dielectric constant ε0

eff = 2.269
at 0.65 eV obtained by considering the effect of surface polarization
on the static dielectric constant ε0

SPE (R). The vertical dotted line at
dsurface = 1.5 nm is given as a comparison to the value of the average
radius

(
R̄ = 1.5 nm

)
of the Si QDs.

may recall that of the dielectric constant versus the silicon
sphere radius as presented in Fig. 2 of Ref. 43.

Table III shows the evolution of α and εsurface with σ for
l = 1 and dsurface = R̄ = 1.5 nm. The values of α and εsurface

were deduced from Figs. 7 and 8. The sSPE quantity defined by
Eq. (11) remains almost constant for a fixed value of σ : indeed
it is approximately equal to 4.4 for MG (σ = 1.00), and it
successively goes up to 4.7 for σ = 1.05 to 10.1 for σ = 1.30.
As a comparison we recall that Yoo and Fauchet47 obtained
more or less s ≈ 6.6 for Si nanoslabs with a 0.5-nm-thick
surface roughness layer. Table III shows that for a 1.5-nm-thick
surface region, εsurface reaches approximately the same value
as ε0, as determined in Table I. However, a slight increase of
the relative difference between εsurface and ε0 is observed as
σ goes up. This gap comes from the fact that the influence
of size was implicitly assumed in the determination of ε0 in
Table I. Conversely, it is observed in Table III that the values
of sQCE are much higher than those of sSPE. This is owed to the

TABLE III. Influence of the standard deviation σ on the (α, l),
(dsurface, εsurface), sQCE, and sSPE parameters assigned to describe the
influence of quantum confinement and surface polarization on the
size-dependent static dielectric constant at 0.65 eV. The definition of
the other parameters is provided in the text.

Quantum confinement Surface polarization

σ α (nm) l sQCE εsurface dsurface (nm) sSPE

1.00 0.55 6.02 8.99 4.44
1.05 0.60 6.57 8.82 4.69
1.10 0.72 1.00 7.88 8.37 1.50 5.37
1.15 0.93 10.18 7.71 6.36
1.20 1.22 13.36 7.16 7.18
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large values of α, which leads to a relaxation of the condition
α/R 	 1 in our investigated film.

Previously, some works more or less supported the idea
that the static dielectric constant is not affected by a possible
broadening of the electronic transition resonances near the
E1-like and E2-like structures of c-Si.14,41,46 Our results do not
categorically allow having a definite opinion on whether the
reduction of ε0 is mainly attributable to surface polarization
or quantum confinement. Nonetheless, we have shown that
both mechanisms come into play. Furthermore, we have
stressed here on the fact that inhomogeneous broadening does
substantially influence the value of ε0. Certainly a slight
increase of the size dispersion should lead to significant
variations of the characteristic parameters describing QCE and
SPE. On that account, a conspicuous fall, more than expected,
of the static dielectric constant is likely to occur as the influence
of size dispersion is considered.

V. CONCLUSIONS

This paper deals with the insertion of an SD in the
modeling of the optical properties of nanoscale Si when using
spectroscopic ellipsometry characterization. To date only a
single average size has been implicitly considered in the
modeling. We have shown that such assumption has led to
some uncertainties. This observation has been evidenced by
a comparative study of the various results presented in the

literature. Therefore, we have presented an MMG formula.
This mixture model takes into account explicitly the effect of
SD on the optical response of Si nanoclusters embedded in a
dielectric (silica) matrix. The ellipsometric computations we
have undertaken and that were performed without using any
parameterized dispersion formula have shown that the three
parameters f (their volume fraction), R̄ (their average radius),
and σ (their dispersion in size) are interrelated. Hence the
influence of one of these parameters cannot be investigated
while disregarding the effect of the two others. The results
infer strong evidence that σ plays a non-negligible role in the
evolution of the whole line shape of the DF. In fact it smears
the peaks associated to the E1-like and E2-like transitions; it
sensitively reduces their corresponding amplitudes and slightly
contributes to a blueshift of both the optical gap onset and the
absorption peaks. Additionally it has been shown that, owing
to inhomogeneous broadening, the low frequency dielectric
constant of Si nanostructures is not independent of SD.
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