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We describe a family of phase transitions connecting phases of differing nontrivial topological order by
explicitly constructing Hamiltonians of the Levin-Wen [Levin and Wen, Phys. Rev. B 71, 045110 (2005)] type
which can be tuned between two solvable points, each of which realizes a different topologically ordered phase.
We show that the low-energy degrees of freedom near the phase transition can be mapped onto those of a Potts
model, and we discuss the stability of the resulting phase diagram to small perturbations about the model. We
further explain how the excitations in the condensed phase are formed from those in the original topological
theory, some of which are split into multiple components by condensation, and we discuss the implications of
our results for understanding the nature of general achiral topological phases in 2 + 1 dimensions in terms of

doubled Chern-Simons theories.
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I. INTRODUCTION

The study of non-Abelian phases of matter has drawn
increasing attention in recent years, inspired in part by potential
applications to topological quantum computation.'™ Since
Moore and Read’s’ proposal of the Pfaffian wave function
for the fractional quantum Hall state at v = 5/2, there have
been many propositions for realizing non-Abelian matter in a
wide variety of physical systems. These include, in Sr,RuQy,
superconductors,>!! Josephson junction arrays,'>!3 helium
3A,!%15 cold-atom systf:ms,'6‘18 as well as conventional super-
conductor interfaces on 3D topological insulators'® and other
strongly spin-orbit coupled materials.?*?! In addition to this
wealth of new directions, recent experimental investigations of
the 5/2 state*>~>® give renewed incentive to study non-Abelian
matter. Despite this boom of interest, one topic that has
received relatively little attention until recently?® is the
question of phase transitions in these topological systems,
which will be the focus of this work.

The non-Abelian phases of interest can be characterized by
their topological order—that is, by the fusion and braiding
(statistical) properties of their low-lying excitations. An
interesting general question is to understand, on broader
grounds, the possible transitions between phases with different
topological order. Drawing on the analogy with the Landau
theory of symmetry-breaking phase transitions, we consider
what features of such transitions, and the relationship between
the phases they connect, can be deduced from the topological
order alone. There are two questions to address here. First, if
the phase transition is second order, one would like to be able
to deduce from the topological orders of the initial and final
phases a long-wavelength description of the critical theory.
While we will not provide a complete answer to this question
here, we will identify the critical theories for a large class of
phase transitions and comment on their universality. Second,
we would like to understand—using information about the
topological order alone—how the excitations of the phases
on both sides of the transition are related. A substantial
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step in this direction was made by Bais and Slingerland,?*!

who developed a framework known as fopological symmetry
breaking that describes topological phase transitions as a type
of Bose condensation and deduces the topological order of the
condensed phase. Here we will elaborate on this picture by
studying the fate of the excitations of a Hamiltonian that can
be tuned through the phase transition.

Our method for addressing the above issues will be to study
aclass of topological symmetry-breaking phase transitions that
we can realize explicitly by a simple deformation of lattice
Hamiltonians of the Levin-Wen® type; in a future work®” we
will address their physical realizability in more detail. The
Levin-Wen models can be used to study topological phases
that are net achiral, and our analysis begins with a model that
describes two copies of a chiral system (such as the v =5/2
quantum Hall state mentioned above) with opposite chirality
(such as a Pfaffian/anti-Pfaffian bilayer). Here we use these
models to study a class of topological symmetry-breaking
transitions (those involving condensation of an Abelian boson)
from these phases into other achiral topologically ordered
phases that can also be described by solvable Levin-Wen
Hamiltonians. The phase transitions involved can be viewed
as dual—in a sense that we will make precise below—to
symmetry-breaking transitions in the Ising or Potts models.
We can, therefore, understand much about the critical behavior
by leveraging existing results on the dual-spin systems.

The key advantage of studying these transitions in Levin-
Wen models is that, because these Hamiltonians can be solved
exactly at certain points in the phase diagram, we will be
able to understand in detail the phase transition (which in
this case is always of the transverse-field Potts type) and the
fate of the excitations on both sides of the phase boundary.
Further, many of the features of these transitions are associated
with the topological orders of the phases rather than to the
specific lattice model. Indeed, from the point of view of
studying the general characteristics of the phase diagram,
the Levin-Wen models should be viewed not as candidates
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for accurately describing a theory on the microscopic scale
but as “oc models” for these types of topological phases:
though they will differ microscopically from any known
candidate physical system, they represent faithfully—in a
highly tractable form—the low-energy physics of any gapped
phase with the same topological order. Hence by studying
phase transitions in these models, we may hope to extract
the generic features of the low-energy theory: the topological
orders of the two phases, and (in some cases) the critical theory
(or possible critical theories) of the phase transition separating
them. This is exactly as in the Landau symmetry-breaking
program.

This work is divided into three main parts. In Sec. II, we will
show explicitly how to construct a lattice Hamiltonian that can
be tuned between two phases with different topological order.
The transition occurs via condensation of a bosonic plaquette
excitation which can be mapped onto a Potts spin; we will show
that, under certain assumptions, the critical theory is that of the
transverse-field Potts model (TFPM). Section III discusses the
fate of these results when the model is perturbed. In Sec. IV,
we will study the condensed phase in detail, showing how
its excitations arise from those of the uncondensed model.
Of primary interest here is the phenomenon of “splitting”3*-3!
(in the context of conformal field theory, this is related to
fixed-point resolution®®) a single species of excitation into
two distinct particle types after condensation, which we
can understand explicitly in the lattice model. We conclude
with a summary of our results and a brief discussion of
other types of transitions that can be studied by the same
methodology.

II. CONDENSING ACHIRAL SIMPLE CURRENTS

In the present work we will realize phase transitions in
the TFPM universality class by condensing a particular type
of boson (an achiral simple current) that has the property
that multiple bosons combine (or fuse) according to addition
rules appropriate to a Q-state Potts spin (a Zg spin). To
describe precisely the nature of these transitions, we will
study a family of lattice Hamiltonians that are equivalent to
exactly solvable Levin-Wen®® models at two points in the
phase diagram. In the uncondensed phase, the topological
order will be that of a “doubled” Chern-Simons theory,39 a
chiral Chern-Simons theory together with its mirror image.
Here we will show that when the condensed boson @ is
a certain type of achiral simple current with Z, symmetry
(i.e., ¢ = Id), the long-wavelength description of the critical
theory can be mapped exactly onto the Q-state Potts model.
(We will discuss in Sec. III various perturbations to this Potts
model.) Condensing achiral currents necessarily leads to a
net achiral condensed phase, whose topological order is also
captured by a Levin-Wen®® model; the study of this phase will
be the focus of Sec. IV.

A. Topological lattice Hamiltonians

Our starting point will be an exactly solvable Hamiltonian
of the type introduced by Levin and Wen.?® We will restrict
our discussion to models that realize doubled Chern-Simons
theories, though the construction of Ref. 36 is more general.

PHYSICAL REVIEW B 84, 125434 (2011)

The Levin-Wen models can be viewed as deformed versions
of a lattice Yang-Mills theory. Their Hilbert space consists of
a finite set of possible states i € {Id, ...,r} on each edge of
a honeycomb lattice. The labels {Id, ... ,r} of these states are
analogous to the set of possible electric fluxes in the gauge
theory. (The label Id will always denote the trivial flux.)
The Levin-Wen Hamiltonian is constructed from two sets of
commuting projectors:

H=-cY Pv—eny Py (1)
v P

The first sum contains projectors Py acting on vertices V, and
ensures that the ground states obey the constraints V - E=0
at each vertex. For example, if the gauge group is SU(2), in
the lattice Yang-Mills theory

Py 7)]{\« = Z Sul 7)1’) 2

leixj

where the rules for addition of angular momenta stipulate
that i x j = Z;:{,_ ;1. The projectors PV in the second
sum impose a condition analogous to V x B =0 at each
plaquette P on the ground states. (As in lattice Yang-Mills
theories, the operator Pp is essentially a superposition of
Wilson loop operators encircling the plaquette P; we will will
return to its the precise form presently.) All of the projectors in
Eqg. (1) commute, since these two constraints can be satisfied
simultaneously.

The models are “deformed” in the sense that the number of
fields r is finite, even though the gauge group is not discrete.
For example, if the gauge group is SU(2), the lattice Yang-Mills
theory would have electric fluxes corresponding to all allowed
values 0,1/2, ... of the total spin—of which there are infinitely
many. In the Chern-Simons theory there is a maximum spin
k/2; the rules for adding angular momenta which specify
Py (or more generally, combining fluxes carrying different
representations of the gauge group) must also be modified to
be consistent with this truncation. & is referred to as the level,
and the resulting Chern-Simons theory is denoted SU(2).
Tabulations of these fusion rules for a number of theories can
be found in Refs. 40—42.

It is important here that there is no “E?” term in the
Levin-Wen Hamiltonian: there is an energy cost to creating
matter sources, but once a pair of these is created, there is
no Coulomb-like energy cost associated with separating them.
This ensures both that the Hamiltonian is solvable, as all terms
commute, and that the ground states and low-lying excitations
are independent of all length scales, as required if they are to
be topological.

Because all of the projectors in Eq. (1) commute, the
topological order of the model can be deduced from the
statistical properties of its excitations. Though the electric
fluxes used to label the edges in the lattice are drawn from
the representations of a chiral Chern-Simons theory, the
Levin-Wen models realize a phase whose topological order
is that of a doubled (net achiral) Chern-Simons theory, whose
sources we will label iz x j; withi,j € {Id, ...,r} (indicating
a composite excitation composed of a right-handed i particle
and a left-handed j particle).
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Excitations in the Levin-Wen model can be described in
terms of electric sources, which violate the vertex condition
Py =1, and magnetic sources which violate the plaquette
condition P;,O) = 1. As described in Ref. 43, these are related
to the sources in the doubled Chern-Simons theory as follows.
The electric excitations have the chirality of the original model
(assumed to be right handed), so that electric sources are of the
form i x Id; or just ip for short. The magnetic sources are
achiral composites ig x iy, of a particle and its mirror image.
The “left-handed” excitations i; carry both electric charge
and magnetic flux of the particle type i. We will discuss these
excitations in more detail when we consider the topological
order of the condensed phase in Sec. IV.

Importantly, while generically electric sources have non-
trivial braiding properties, magnetic sources are always bosons
in the sense that they have trivial braiding statistics with
themselves, and hence can be condensed.?! In doubled Chern-
Simons theories achiral particles are necessarily bosonic,
meaning that they have trivial self-braiding statistics (in at
least one fusion channel).**

Here we will condense a particularly simple type of
magnetic excitation—one that behaves essentially like the
magnetic flux in a discrete Abelian gauge theory. Specifically,
we choose a particle ¢ from the chiral theory with the
property that ¢ = Id, ¢” # Id for any p < Q. Excitations
with this property are known as Z simple currents. In this
work, we consider condensation of the magnetic excitation
® = ¢r x ¢ which is a bosonic Z  simple current carrying
flux ¢. (Throughout this text, we will use ¢ to denote the
chiral excitation, while ® refers to the corresponding achiral
magnetic particle.)

The particle we will condense is an excitation that violates
only the plaquette projectors of Eq. (1). To see how to condense
such a particle, we must understand in more detail the form
of the plaquette projectors. These have a very similar form to
the plaquette term in a lattice-gauge theory: they can basically
be viewed as Wilson loop operators around a single plaquette,
which in lattice-gauge theory contribute a “B>” term to the
long-wavelength Hamiltonian. Since we wish to work in a
basis where edge labels denote electric flux, the result is an
operator that raises or lowers the electric flux on each edge
of the plaquette. This will be familiar to many readers from
the standard formulation of Ising gauge theory, in which the
magnetic term in the Hamiltonian is commonly expressed
as an operator that simultaneously flips all spins bordering
a plaquette.

The amount by which the electric flux changes under these
operators is determined by the representation carried by the
Wilson line. To construct a plaquette projector PY) onto
magnetic flux j, we must use a particular linear combination
of these representations, given by:

P =8 Wi(P), 3)

i=Id

where Wi(P) denotes a Wilson line (or “string operator”
in the language of Ref. 36) around the plaquette P in
the representation i, and the sum runs over the (finitely
many) representations i. Here S is the modular S matrix
of the chiral Chern-Simons theory, and is related to the
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braiding properties of the excitations therein. The Levin-Wen

Hamiltonian [Eq. (1)] has projectors 7>§9> on each plaquette
that project onto the identity representation Id, in which case

1
Soi = = Ay, 4
0 =7 4)
where A; is a real number known as the quantum dimension
of the representation i, and D =,/>_, A%
More generally, if ¢ is a Z simple current, then Sg; has
the particularly simple form

1 .
Sgni = EA,&’”?, S

where g; is specific to ¢ but independent of n. (To be precise, g;
is an integer, with ¢; = 0if i and ¢ have trivial mutual braiding
statistics in the chiral Chern-Simons theory). Substituting (5)
into (3) gives a projector onto plaquettes with flux ¢.

B. Condensation

We now describe the simple deformation of the exactly
solvable Hamiltonians that allows us to tune the system
through a phase transition in which the boson ® = ¢ x ¢,
condenses, and derive a second exactly solvable Hamiltonian
that captures the topological order of the condensed phase.
Here we restrict ourselves to the case that ® is a purely
magnetic excitation, and is also a simple current.

We first require an operator that will pair-create the requisite
vortices. If ¢ is a Z y simple current, we may create a pair of
vortices of flux ¢" and ¢~ on adjacent plaquettes P; and P,
by acting with an operator:

: . 1 . 27 M.
V, (@"in) = KS¢”i|112> =e7 i), (6
where ey, is the edge between plaquettes P; and P, and |ij;)
denotes any state that has electric flux i on the edge e
shared by plaquettes P, and P,. (Which plaquette obtains a
vortex of flux ¢", and which a flux ¢2—", depends on which
orientation we choose for the electric flux on the edge i.)

This operator lez(df’) thus assigns a phase to the wave
function depending on the value of the electric flux on the
edge-separating plaquettes P; and P, (Fig. 1). Note that if the
plaquettes already have magnetic fluxes ¢ and ¢?, then this

operator simply increments these fluxes mod Q accordingly
to ¢(n+a)m0dQ and ¢(Q—n+h)mon'

O _ sz%

FIG. 1. (Color online) Creating a pair of simple-current vortices
on adjacent plaquettes. The operator Vj]z(q&”) acts on the edge-

separating plaquettes P; and P,, assigning a phase &M 1o any
component of the wave function in which this edge is labeled by i. If
the plaquettes start without flux as shown in the figure, the result is a
pair of vortices of flux ¢" on P, and ¢27" on P>.
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To engender condensation, we will simultaneously (1)
decrease the energy gap of ®” excitations (magnetic fluxes of
¢") without changing the gap to the model’s other excitations,
and (2) add a term proportional to V(¢) that creates such
excitations spontaneously. The Hamiltonian that does this has

the form:
0-1
M= e X P SR
P n=0

~ [p«» Zp@”}_emwz

CU

(Note that the sums over powers of ¢ in the first and second
lines run from O to Q — 1 and 1 to Q — 1, respectively). Here
e;; is the edge shared by plaquettes P; and P;, and

IO
v = ) PIRARCE! (8)
n=0
creates all fluxes 0,¢,¢2, . ..,¢2~! withequal amplitude. Note
that here \A/j,/. = ‘78,., = ng,.

In the limit ar = 1,ay = 0, this Hamiltonian is just the
exactly solvable Levin-Wen Hamiltonian [Eq. (1)], which
assigns a mass gap of €, to electric sources and €, to magnetic
sources. The second line of Eq. (7) allows us to tune the model
through a condensation transition by varying the parameters
oanN and or.

To understand the phase portrait of Eq. (7), it is helpful
to consider the effect of the various terms on the subspace
of states in which the only excitations are the magnetic ®
excitations that we wish to condense. The first line of Eq. (7)

is indifferent to the presence of ®, as ® does not violate the
vertex condition, and the sum of plaquette projectors

0-1
> Py )
n=0

has eigenvalue 1 for a plaquette excitation ®” (magnetic flux
¢" forn =0,1,... 0 — 1) and O for a plaquette containing
any other possible excitation. The role of these terms of the
Hamiltonian is to ensure that there is a minimum gap of -
for all magnetic excitations other than ®", and €y for all
electric excitations, everywhere in the phase diagram. (Here
we keep €, and ey fixed). These energy gaps are unfrustrated,
in the sense that neither the plaquette term nor the creation
term on the second line have any amplitude to create these
other excitations, which therefore remain both gapped and
orthogonal to the ground state throughout the phase transition
we describe. Thus we will be able to focus our entire attention
on the Hilbert space containing only by ®” type excitations.
The second line of Eq. (7) contains the terms that drive the
system through a condensation transition. The first term

_ —Ot |:73(0) Z 7)(¢" j| (10)

sets the scale of the gap to creating a ® excitations, which we
may tune from €, at oy =1 to 0 at oy = 0. For ay < O the
formation of & excitations is energetically favored; for small

PHYSICAL REVIEW B 84, 125434 (2011)

negative o7 the system remains in the condensed topological
phase. If, however, we make oy < 0,|ar| > ay we will find a
new variant of the uncondensed phase in which each plaquette
is occupied by a definite superposition of ¢” vortices. (Taking
oy = 0 in this phase gives another exactly solvable model,
again of the general form discussed in Ref. 36).

The term in Eq. (7) with coefficient oy adds an amplitude
to create or destroy pairs of fluxes on adjacent plaquettes (as
shown in Fig. 1). Analogous to adding an anomalous term to
a Hamiltonian of conventional bosons

H = Hy+ A*b' + Ab, (11)

spontaneous creation of ® particles is precisely what we should
expect to need to add to a Hamiltonian in order to form a &
condensate. In these topological models, particles must be
created in particle-antiparticle pairs connected by a Wilson
line (or string operator); Vet, acts on pairs of neighboring
plaquettes to create these.

It is instructive to consider the Hamiltonian (7) in the limit
ar = 0,ay = 1. The plaquette term then has the form:

0-1
%ZP;“’") = ZA (ZJ”’ )W (P)
n=0

j=Id
€m N
=07 Zaqj,oA_iW,(P), (12)
j=Id

where Wj(P) is the Wilson line (or string operator) around
plaquette P carrying the representation j. For representations
which have trivial braiding statistics with the ¢ flux, g; =0,
and the second sum on the right-hand side (in the parentheses)
just gives an overall factor of Q. If g; # 0 (mod Q), then the
second sum leads to complete destructive interference, and the
Wilson line j is eliminated from the plaquette term.

Similarly, the effect of the vortex creation term V on the
edge label i on edge e is:

—ZVT@ i) Z G iy = 8.0li).  (13)

nO 110

Hence —aye,, Ve effectively assigns an energy cost aye€,
to any (electric flux) label i on edge e for which ¢; # 0.
This creates a confining potential for any label that braids
nontrivially with the flux ¢ of the condensed boson ® =
Or X L.

In addition to the Levin-Wen point a7 = l,ay =0, we
therefore have a second special point in the phase diagram
at oy = 0,ay > 0 where the Hamiltonian is again exactly
solvable. This point represents the exactly solvable (and
fully topological) limit of the condensed phase, in which
labels with ¢; # 0 (which do not braid trivially with ¢)
have been completely eliminated from the theory. This can
be consistently done because the plaquette term (which now
contains only raising operators with ¢; = 0) does not mix edge
labels with different g;. Hence states containing only edge
labels with ¢; = 0 comprise the entire low-energy space of the
Hilbert space in this limit.

Restricted to these states, at a7 = 0,a0y = 1, the Hamil-
tonian (7) has a particularly simple form. Since V, =1 on
all remaining states, we may drop it from the Hamiltonian,
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leaving
6171
Her = —€, ZPV -0 27’“” (14)
where
Py =" AWi(P) (15)
qi=0

has the general form of a plaquette projector onto 0 flux,
as per Eq. (3). As 75}0) and Py commute, Eq. (14) is again
a Hamiltonian consisting of commuting projectors, of the
same general form as our initial Levin-Wen Hamiltonian. The
difference here is that the labels i for the edges are now drawn
from the subset of the original labels for which ¢; = 0. We
will study the consequences of this restriction on the model’s
excitations in Sec. IV.

C. Effective Potts model of the phase transition

We have thus argued that (7) can be tuned through a phase
transition between two solvable Hamiltonians of the Levin-
Wen form, with each of the solvable models capturing exactly
the topological features of one of the two phases. (See Ref. 45
for a discussion of an analogous family of achiral solvable
lattice Hamiltonians inspired by Kitaev’s toric code models. )
Here we will exploit a natural mapping between the long-
wavelength dynamics of Eq. (7) and the Potts model to identify
the phase transition as that of the transverse-field Potts model.

To carry out this program, we define an effective low-energy
Hilbert space that we will map exactly onto the Hilbert
space of the Potts model. Specifically, since all excitations
other than ®" remain gapped (with a minimum energy of
min{ev,e’” }), we need only consider the subspace of states
contaimng the ground states of the initial Levin-Wen model,
together with states that can be derived from these by
adding some number of magnetic ® (and ®") excitations.
We emphasize that this subset is closed under the dynamics
of Eq. (7) for all parameter values of the Hamiltonian,
and this subspace contains all modes that become critical
at the phase transition. Hence this low-energy subspace
can be consistently separated from the rest of the Hilbert
space in order to understand the dynamics of the critical
point.

Because there is a unique way to combine such excitations
(P4 x Ob = plathmodQ) " 5 gtate in the Hilbert space is
uniquely determined by specifying the topological ground-
state sector and the number np of ¢ fluxes on each plaquette
P. Hence we may define the basis

lg;ni,no, ... nN), (16)

where and n; € 0,...,0 — 1 denotes the number of ¢ flux
quanta through plaquette i (i.e., the plaquette contains ex-
citation ). Here, g labels a ground-state sector of the
unperturbed Levin-Wen model [Eq. (1)] in cases where
the manifold has handles. Our mapping to this Q-state
model on plaquettes (i.e., on the dual lattice) is illustrated
in Fig. 2(a).

Readers familiar with the general theory of TQFT’s should
note that a state of the form (16) uniquely identifies a state in the
original lattice model because ® is a simple current. For other
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types of magnetic excitations, such as Fibonacci anyons,*

to specify the state of the lattice model uniquely requires
additional information about the relative fusion channels of
the excitations.

The terms in the first line of Eq. (7) act as the identity on
our effective Hilbert space. In the basis (16), the two terms in
the second line have the matrix elements:

0
n1|7)() Zp(¢)|”1

n=1
(.5 VE (@)n1na) = Su s S, (18)

with the &£ in the second line given by the chosen orientation
of the bond e5. In this reduced Hilbert space, below the gap to
excitations out of this Hilbert space our Hamiltonian Eq. (7)
is then precisely

—GﬂaT ZZ(Z&,,
—GmOINZZZMz +knj—

(i,j)ni,nj k

n’l,n1(28n1,0_ 1) (17)

Hspin = — Dln;)(n;|

k)(nin;l.  (19)

The Hamiltonian (7) keeps the gap to all powers n =
1,...Q — 1 of ® the same, reflected in the first term in Hgpiy,.
The second term gives equal amplitudes for transitions that
increment and decrement fluxes by any k, in accordance with
the creation operator (8). These choices will give us precisely
an effective Q-state transverse-field Potts model (TFPM) of
the phase transition. In Sec. III A below we will consider how
we may modify Hgp, to obtain many possible Hamiltonians
for Z o Potts-like spins (for example, the Q-state clock model),
and discuss how this may affect the phase diagram.

To obtain a more convenient representation of the TFPM,
we re-express Egs. (17) and (18) in the basis

)= —=» ™ oln). (20)

The matrix elements (18) become precisely the Potts interac-
tion:

0LV 10, DY = 8 1,818, -0 21
while Eq. (17) becomes the appropriate transverse-field term*°:

(151Py) — ZP“" ) = 5 — S (22)

This maps the long-wavelength description of the phase
transition precisely onto the conventional representation of
the transverse-field Potts Hamiltonian:

— L)l I)

Hspin = - o5T Z (

— €moty 251;,1j|lialj><li’l_i|- (23)

(ij)
(Our choice of notation now becomes clear: a7 is the
transverse field term and oy is the neighbor interaction.) Here
ay > 0 is used to promote condensation, so the model has
a ferromagnetic phase in which all of the /-spins are aligned
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and a paramagnetic phase where they align with the transverse
field.

In terms of the Potts model description, the labels that
become confined in the condensed phase correspond to domain
walls of the ferromagnetic Potts model. Specifically, if the edge
e;;j separating plaquettes i and j is labeled i;;, then the Potts
interaction is

Ve liij) = 84, 0liij) = 8-1,.0lli- 1) (24)

Hence if g.,; # 0, then in the basis of Eq. (20),; —1; # 0 and
there is a domain wall in the ferromagnetic Potts representa-
tion. Thus these labels become confined since domain walls are
confined in the ferromagnetic phase [see Fig. 2(b)]. (Though
the full Hilbert space of the lattice model also includes open
strings, for €y > 0 these do not occur in the zero-temperature
phase transition, due to the fact that all terms in H commute
with Py).

There is one important difference between the lattice model
and its spin analog: while the latter has Q symmetry-related
ferromagnetic ground states, the former has only one. The
topological model is only sensitive to the locations of the
domain walls in the Potts model, not to the orientation of
the Potts spins in the basis (20). (This loss of ground-state
degeneracy also occurs in the dual loop-gas representation of
the Ising model.) This is because the Hilbert space of Eq. (7)
has the restriction that

N
> n; =0mod Q. (25)
i=1

That is, the Hilbert space we use is not identical to that of
the Potts model; rather, since vortices can be created only in
vortex-antivortex pairs in the topological theory, it contains
only states connected to the vacuum by the action of the Potts
interaction (or pair-wise spin flips, in the Ising case). Since the
spin Hamiltonian connects only states within this subspace,

-3

(a)

PO =
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this difference does not affect the system’s dynamics or the
nature of the phase transition. However, the Q-fold degeneracy
of ferromagnetic ground states in the Potts model is absent
in the topological model: in the latter, there is no operator
that measures the eigenvalue of / on a particular plaquette,
since such an operator would necessarily change the number
of vortices on only one plaquette. We note that this difference
renders certain interesting modifications of these models*’*®
difficult to realize in the present context.

We may therefore conclude that the phase transition of
Eq. (7) is precisely that of a ferromagnetic transverse-field
Potts model in 2 + 1 dimensions, since we have constructed
an explicit mapping between the two. The original string-net
model maps to the paramagnetic phase o7 >> oy, where the
transverse field dominates to ensure that vortices are relatively
rare. In the ferromagnetic phase of the Potts model, the
vortex creation term dominates in Eq. (7). In this regime
®" vortices have condensed and certain edge labels become
confined. The transition between the two will be in the 2 4 1D
transverse-field-Potts universality class (which is first order
for Q > 3)'49,50

The notion that a phase transition that changes the topo-
logical order can be described by a spin model, in which a
global symmetry is broken when a local variable obtains an
expectation value, is somewhat counterintuitive. To understand
this correspondence, note first that after projecting onto the
states relevant to the critical theory, we arrive at an effective
description in a pure (matter-free) discrete Abelian gauge
theory. That is, the vortices that we condense behave exactly
like vortices of a discrete Abelian gauge theory, both in terms
of how multiple vortices combine and from the way in which
the operators which create them act on the gauge-invariant
states. The mapping to the spin model then simply exploits
the fact that this discrete Abelian gauge theory without matter
sources is dual to a spin model®!? (a model of matter without
magnetic vortices). This duality has been exploited previously

300

)-8 CO -0

FIG. 2. (Color online) Effective mapping from the low-energy sector of the string-net model to the Potts model, illustrated here for the
Ising case. (a) In the low-energy sector, we retain only magnetic excitations of flux ¢”, as all other excitations remain gapped throughout the
phase transition. Up to an index specifying the topological ground state sector, the relevant states are specified uniquely by assigning a Potts

PO

spinn € {0...
we identify these with S, = 1 and

Q — 1} to each plaquette. In this figure, an arrow pointing right (left) indicates n = 0 (1) on that plaquette. (In the spin model
—1, respectively.) (b) The terms in the second line of the Hamiltonian Eq. (7) act nontrivially on these states:

the plaquette term controls the energetic cost of creating a flux, which we identify with the Potts transverse field. The flux-creation term V,
gives a ferromagnetic Potts interaction in the basis of Eq. (20), indicated here by arrows pointing up (down) to denote the states/ =0 (/l = 1)
on that plaquette (or S, = 1 and —1). The eigenvalue of V, is 1 if the edge ¢ is labeled by a representation i with ¢; = 0, and 0 otherwise. This
indicates that any edge label i with ¢; # 0 (mod Q) signals a domain wall in the Potts model.
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to study phase transitions in the Toric code.’>* Once matter
sources are added to the gauge theory, the dual theory is
again a discrete gauge theory: since itinerant charges will
always feel the Berry’s phase of the condensing vortices, we
must include gauge fields in the dual-spin model such that
the true gauge-invariant order parameter is nonlocal in both
representations.

D. Example

To make the discussion of the previous section concrete, let
us give here an example. Other, more general, examples are
discussed in Sec. IV D.

First, as described in Ref. 55, we may construct the
initial Hamiltonian from representations of the Chern-Simons
theory SU(2),. In this case there are three possible values
0(=1d),1/2, and 1 of the total spin. The (commutative and
associative) fusion rules of these spins are similar to angular-
momentum addition, except that the rules are truncated such
that no value greater than 1 is ever obtained:

Oxj=j, 1/2x1/2=0+1,
1/2x1=1/2, 1x1=0.

(26)

Note that the particle 1 here is a Z, simple current.

The vertex projectors of the Levin-Wen model, based on
these fusion rules, have eigenvalue 1 if the edges incident on
a vertex are in one of the following three combinations (here
the order in which they appear is not important):

(0,0,0) (0,1/2,1/2) (0,1,1) (1/2,1/2,1), 27

and the vertex projector gives zero for any other combination
of edge labels.

The Wilson lines, whose action is also based on the
rules (26), raise and lower the edge labels according to:

Woli) = li)  W;l0) = |i)
Wipl1/2) ocal0) + BI1)  Wipll) oc|1/2)  (28)
Wil1/2) oc [1/2)  Will) o |0).

Here the constants of proportionality depend in general on
the labels of adjacent edges, as well as the edge being acted
upon (see Ref. 36 for details); however, their precise value is
unimportant for our purposes. The last line reflects the fact that
the spin 1 particle is an order 2 (Z,) simple current: raising the
edge label 1 by W, necessarily gives the trivial label 0.

We condense the spin-1 magnetic excitation (1 x 1),
which is a Z, bosonic simple current. As described in the previ-
ous section, the effective theory below the gap can be mapped
precisely onto that of a 2D transverse-field Ising model. To do
so, we assign a spin variable S* = —1 to every plaquette con-
taining a spin-1 vortex, and S* = 1 to vortex-free plaquettes.
The relevant components of the S matrix have the form:

So=Su=1 S1=v2 1 ==v2. (29

In particular, we have:

PP +PY)=1+W, (30)
5(Pp) = Py)) = V2, GD
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and the term that creates a pair of vortices (and hence flips
the spins) on adjacent plaquettes is

Ve, = (=1)* = S75%, (32)

~

where § measures the total spin of the representation on
the edge ¢;;. Thus we identify the spin-1/2 label with the
domain wall in the Ising model: an edge carrying the spin-1,/2
representation necessarily separates two plaquettes with
oppositely oriented Ising spins.

In the solvable limit of the condensed phase, we are left
with only the edge labels 0 and 1. The vertex condition is now
that an even number of edges labeled 1 must enter each vertex,
while the plaquette projector (30) flips the label on all edges
surrounding the plaquette from O to 1 or vice versa. Some
readers may recognize this as the Hamiltonian for Kitaev’s
Toric code (or Ising gauge theory with matter). We will return
to this point in Sec. I'V.

III. UNIVERSALITY IN TOPOLOGICAL
SYMMETRY-BREAKING TRANSITIONS

Thus far, we have established a precise mapping between
a family of Hamiltonians with the special property that they
are exactly solvable at two points in the phase diagram and
(at energies below the minimum gap to excitations at these
solvable points) the transverse-field Potts model. However,
our choice of Hamiltonian (7) is quite nongeneric: we would
expect that any real physical system whose long-wavelength
dynamics are described by the lattice model would include
perturbations away from the solvable Levin-Wen limit every-
where in the phase diagram. Hence to apply our understanding
of the phase diagram of the topological lattice model to more
general systems, we must understand the effect of generic
perturbations on its behavior.

Ideally, we would like to achieve a framework analogous to
the Landau approach to symmetry-breaking phase transitions.
There are two important elements to this analogy. First, a
phase can change its symmetry only by a phase transition.
Specifically, in a gapped system small perturbations to the
Hamiltonian that do not close the gap necessarily leave the
symmetries intact. (The exceptions to this rule are systems
that undergo first-order transitions, or second-order transitions
associated with the formation of microscopic domains,*® in
which case the gap itself need not close, but there are other
singularities associated with the phase boundary). Second,
near a second-order phase transition the long-wavelength
behavior is largely determined only by the symmetry being
broken. Specifically, symmetry dictates the nature of the field
theory at the transition. There can be specific choices of
parameters for which not all relevant operators compatible
with the symmetries of the two phases appear in the critical
theory; however, these nongeneric systems lie at unstable
critical points that flow to different critical theories if the
perturbation is added.

We emphasize that although the present work treats tran-
sitions in which a simple current (or Potts spin) condenses,
these questions are relevant to more general TSB transitions.
It is also possible to deform Levin-Wen Hamiltonians (by
adding appropriate analogs of V,, and modifying the plaquette
projectors appropriately) to condense other types of bosonic
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vortices, such as the Fibbonaci anyons for which a transition
of this type has been discussed by Ref. 32. This can be done
without closing the gap to electric sources, so again we may
imagine studying an effective “spin model” that describes
only the ground states and condensing vortices. (The resulting
spin models will not be Potts-like, however). However, not
all such constructions yield a second set of parameter values
(analogous to a7 = 0,y = 1) at which the Hamiltonian is
again exactly solvable; hence it is more difficult to establish
the properties (or existence) of the condensed phase. To
grasp completely the phase portrait of achiral topological
phases would require an understanding of these more complex
transitions and their universality, which we do not undertake
here.

The notion that a system cannot change its symmetry
without undergoing a phase transition has a well-understood
analog for topologically ordered phases. Specifically, it is
known>”3® that any deformation to a topologically ordered
phase that does not close the quasiparticle gap cannot change
the topological order. Working within the Hilbert space of
the model at hand, this means that we may include small
perturbations that admix some number of electric or magnetic
sources with the ground states, which nonetheless do not
change the topological ground-state degeneracy or long-range
braiding statistics that we associate with the topological order
of the solvable Hamiltonian. Hence topological order in the
present context plays the role of symmetry in the more
familiar Landau paradigm. (Since topological orders can often
be associated with gauge theories, this is very natural. The
symmetry broken at the phase transition, in these cases, is
simply a gauge symmetry rather than a global one).

The second question, whether the critical theory is robust
against such perturbations, is less well understood in the
topological context. In the previous section we chose a
special trajectory through the phase transition in which the
degrees of freedom implicated in the phase transition could be
mapped exactly to those of a transverse-field Potts model. This
suggested that the critical theory is dictated by the nature of
the condensing boson. Specifically, when this obeys Z ; fusion
rules, we expect to find critical theories in the universality
class of a Q-state spin model (a Potts model or similar). To
understand whether this conclusion about the critical theory is
valid more generally, we must consider the effect of generic
perturbations to the Hamiltonian (7).

It is convenient to separate the possible perturbations into
two classes. For Q > 3, it is possible to introduce a special
type of perturbation which changes the parameters of the Potts
Hamiltonian (23). As we explain below, if Z  contains proper
subgroups (i.e., for Q not prime), this results in a richer
phase diagram than the one described above. Other types of
perturbations may not have analogs in the Potts description;
our chief concern here we will be to consider their effect on the
critical theory perturbatively in the lattice model. The lattice
model can be viewed as a prototype model for any system
with the topological orders involved in the transition. There-
fore, if the critical theory is robust in the lattice model, this
suggests that there is no continuous family of transitions
connected to the transition we study. We may then conjecture
that there is in fact only a discrete set of possible critical
theories between phases with the specified topological orders.
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Even more optimistically, one may hope that the critical
properties that we find are the only ones that can exist for
a transition between phases with the given topological orders.

A. Perturbations within the Potts model subspace

Let us begin by considering perturbations whose effect is
to change the relative strengths of the ferromagnetic couplings
or transverse-field terms for the various powers of ¢ in Eq. (7).
For Q > 3 this allows considerable scope to modify the
spin model, leading to a rich phase diagram. A thorough
understanding of the behavior of these more general spin
models is in itself an interesting question, whose general
features we will outline here by reference to the existing
literature where possible.

We consider perturbations of the form

SH = Zaﬂp - Z(SHKU,
P

€ij

(33)
0-1 1 0-1
SHp = Z 6’(1P)'P§J¢ ) 5He,-j — 5 Z er(le)Vi/_(qsn)’
n=0 n=0

where €7 can be chosen arbitrarily provided that
()€ = e(Q‘))_ , (required for hermiticity), (ii) the sign of the net
transverse field term for any power of ¢ remains positive, and
(iii) that all Potts interactions remain ferromagnetic. Provided
these three conditions are met, the perturbed Hamiltonian will
still undergo (one or more) TSB-type phase transitions. Here
we will consider the case where €{") and €'© are real, though
the complex case has also been studied in the context of spin
models.>

Since the perturbations (33) clearly have no impact on the
mapping to Q-state spins, we may consider the effect of these
perturbations within the spin picture. In terms of the spin state
[np) on the dual lattice (recall that a state |np) indicates a
vortex particle ®” on the plaquette P in the original model),
the operators in Eq. (33) are mapped to the operators:

0-1
1
& Hypin = 0 Do Y el —nnj+n)(nin;l

<i,j> n;,n;,n=0

0-1
+ Y Pl (il (34)
i n;=0

The first term flips pairs of spins on neighboring plaquettes;
the second is the (transverse) magnetic field. To make the
correspondence to the Potts and clock models, we re-express
these in the basis (20), where the Hamiltonian has the general
form:

0-1
, . 2nn(ly — 1)
(BISHelE) = 8081, Y €l cos == —=

n=1
0-1
<1/|5lel) = Z Er(lp)e%rz(l’_[)g .

n=1

(35)

The Q-state clock model is obtained for (&) = e(Qg’_l? = 8u1;

n

the Potts model occurs for €'¢) = l,e(()P ) — 1,eP = —1(n >
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0), as described above. More generally, we may consider any
nearest neighbor Z ¢ spin interactions.

Tuning the magnetic field leads to an even wider range
of possibilities. If €7 = G(QP,)H, then the field is again a
superposition of clock-model type fields in different directions.
If e’(f’) £ e(QPjn, the model is chiral, in the sense that the
transverse field has either a left- or a right-rotating eigenstate
(but not both). This can produce, for example, a special case of
the chiral Potts model first described by Ref. 59. While we
do not expect the choice of transverse field to affect the
symmetry-broken phases, it could have an impact on the loci
and nature of the phase transitions, which we will not attempt
to describe. We note, however, that there is no such freedom
in the Ising or Q = 3 Potts case—and that for Q > 2 the Potts
transition is in any case first order in 3D.

We therefore focus on the various possible interaction terms
and briefly describe the different possible phases allowed
by symmetry breaking in the spin model. There are two
possibilities: if Q is prime, then condensing ®" for any n
will result in (@) = 0 for all k. In this case all ferromagnetic
symmetry-broken ground states in the spin model are related
by a global Z ( rotation. The Potts Hamiltonian (7) is special
since it represents the unique choice of transverse field term
and ferromagnetic coupling corresponding to a Hamiltonian
that is exactly solvable in the limit o7 = 0,a > 0. However,
there are many choices of Hamiltonian which all undergo
transitions breaking the same Z, symmetry. Thus even for
vanishing transverse field, there is a large family of parameters
€' for which the Hamiltonian is in the same phase but not
exactly solvable. For Q > 3 the clock model is one such
Hamiltonian.

If O is not prime, then there will be some choices of k for
which we can have both (®*) # 0 and (®) = 0, giving two or
more distinct phases in which different subgroups of Z o have
been broken. In the Potts basis of Eq. (35), this means that

ok
H=w) ()", (36)
j=1

where we have taken the simplest case (®/*) = v, for all
j=1...0/k. Because Q/k is an integer, this results in a
configuration of expectation values that is invariant under shifts
in [ by a subgroup of Z .

To illustrate this possibility, we take Q = 4. We may indi-
vidually set the values of the transverse field and ferromagnetic
interaction for the two Z4 fields ®,®3 (whose couplings must
be the same for the Hamiltonian to be Hermitian), and the Z,
field ®2. The ferromagnetic coupling of the spin Hamiltonian
is

H=1 (®;0]+ 0], + Jy y_ ®}®%. (37
<ij> <ij>
(Note that we are considering @3, 2, and @ to be three
independent fields here). Taking

eirr/4

V2

—0S = ¢?

(S+io)= @

—im/4 (38)

V2

e . 3
S—io)=

PHYSICAL REVIEW B 84, 125434 (2011)

we see that Eq. (37) is equivalent to the Ashkin-Teller model:
H=10Y (S5S+0i0)+Js Y 0i0;5S;.  (39)

If we choose the transverse field term
H' =B (S +0") + B,S"o", (40)

then the quantum problem in nonvanishing transverse field is
equivalent to the 3D Ashkin-Teller model.

The phase portrait of the classical 3D Ashkin-Teller model
has been studied, for example, in Ref. 60. If all couplings are
ferromagnetic, there are two distinct phases: for J, 7 0 the full
Z4 symmetry is broken, whereas if J, = 0, then there is a “Pp2»
phase with (®2) # 0 but (®) = 0. There are two Ising-like
second order phase transitions separating the ®> phase from
both the paramagnet and the fully symmetry-broken phase.
The two phase boundaries end at a tricritical point, after which
the phase boundary separating the paramagnet from the fully
broken phase is first order.

In summary, there are a wide range of Hamiltonians which
will ultimately condense the same simple current in the
topological lattice model, corresponding to different choices of
€79 in Eq. (33). Equally, if Q is not prime we may condense
simple currents of order Q' = Q/n, leading to new distinct
symmetry-broken phases.

B. Perturbations outside of the Potts model subspace

Perturbations of the form (33) are special in that they
do not introduce any excitations other than ®™ vortices
into the ground states of the system. In this case the task
of understanding the phase transition reduces to one of
understanding a spin model. This statement is, at second
glance, a rather surprising one: we have reduced a question
about topological orders, where the long-ranged statistical
interactions mediated by gauge fields dictate the interparticle
interactions, to one about a spin model in which there are
no gauge fields at all. Essentially this is because the magnetic
particles we condense behave like vortices in an Abelian gauge
theory, so that we may exploit an electric-magnetic duality to
map the theory of vortices on the lattice onto a theory of
“charges” (here Z ¢ spins) on the dual lattice.

A generic perturbation to the Hamiltonian (7) will introduce
excitations outside of this pure " vortex sector into the ground
state, however. Here we consider the question of whether such
perturbations qualitatively alter the phase diagram or critical
behavior. We present general arguments that terms that weakly
mix electric excitations with the ground states do not alter the
critical behavior, although for Q > 2 the pure Potts transition
is, in any case, first order. Perturbations generating other types
of vortices correspond to annealed disorder in the (classical
3D analog of the) spin system, which we also expect to be
irrelevant at the critical point.

We begin with a slightly perturbed version of our Hamilto-
nian:

H = Hyw+ HY +eH®, (41)

Here, Hyy is the original Levin-Wen model and H M includes
the terms that tune the system through the condensation
transition [for example, those given in Egs. (7), or any
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perturbation discussed in Sec. III A]. H®) contains perturba-
tions that cannot be described in the effective spin model. The
possible perturbations fall into three classes: H‘€) may create
deconfined electric excitations, magnetic excitations (which
are always deconfined), or confined electric excitations. We
consider each possibility in turn to determine whether any of
these are relevant perturbations at the critical point.

Sources of deconfined electric excitations have no effect on
the Z spin state; they act as the identity operator on the Z
spin model subspace. Hence a perturbation that excites only
such sources merely changes the short-distance characteristics
of the topological ground states over which the transition
occurs. The altered ground states will still be compatible with
our mapping to the spin model, however; hence the critical
theory will be unaffected by this perturbation.

Perturbations exciting magnetic sources v # ¢" also fall
into two categories, depending on whether ¢” x v = v for
some r < Q. These map onto dynamical dilutions in the
transverse field and in the sites of the spin model, respectively.
Specifically, suppose a plaquette P is occupied by a generic
vortex with flux v in the uncondensed ground state. Acting
with the operator that creates ® on this plaquette will produce
anew vortex with flux v = ¢ x v. Since the product is unique,
we may map this state onto a spin state by identifying v’ on this
plaquette with the Z spin normally associated with ¢. The
resultant mapping onto states of a spin model is qualitatively
no different from the one used above, provided that ¢" x v
is distinct for each r = 0... O — 1. However if v # ¢", then
plaquettes carrying flux v and ¢ x v both have the same energy
cost €,,. In this case the effective Hamiltonian for the spin
model now contains dynamical disorder in the form of sites at
which there is effectively no transverse field.

When ¢" x v =v for some r, the mapping to Potts
spins cannot distinguish between pairs of Z spins x,x +r
and is hence no longer one to one. For example, in the
SU(2), x SU(2), example of the previous section, plaquettes
with flux % are unaffected by the addition of a spin-1 vortex.
These thus effectively act like (dynamic) dilutions in the
lattice, meaning that on some sites the ferromagnetic Potts
interaction is always satisfied and thus adds a constant to the
overall energy, independent of the spin configuration. (In the
more general case these dilutions become sites where the NN
interaction is satisfied provided that the Z ; spins differ by any
multiple of r). This is reminiscent of the effect of annealed
vacancies on the classical 3D Potts model, which has been
studied in the context of the Blume-Emery-Griffiths®' model.
In this case, for small perturbations the vacancies are irrelevant
at the Ising critical point® but can drive the transition first
order at larger vacancy concentrations. We therefore expect
that this will be an irrelevant perturbation at the Ising fixed
point, and that it will not alter the first-order character of the
Potts transition.

When electric sources for the confined edge labels are
present in the ground state, the mapping to the Zg spin
model necessarily breaks down. These labels are associated
with domain walls in the ferromagnetic Potts phase; including
sources for these labels amounts in the Potts language to
having open domain walls, which is impossible in the purely
statistical mechanical picture. To include these excitations we
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must include gauge fields in the dual theory, which account
for the phase winding of branch cut singularities at the end of
each domain wall. In the presence of gauge fields the Landau
framework no longer strictly applies as the order parameter is
necessarily nonlocal.

When H® contains source terms for confined excitations,
therefore, we must explicitly consider whether these source
terms are relevant at the critical point. To do this, we consider
the effect of such source terms on expectation values of local
operators in perturbation theory. Specifically, we may expand
the ground-state wave function in powers of € according to

€
W) = W) + ) mwiwww%w)

€2

+
12]: (Ei — Eo)(E; — Eo)

(W | HE ;)

X (W HE W) W) + ... (42)

The expectation value of an operator O in the ground state (42)
can be evaluated to a specified order in €:

€

(V|0|v) = (‘%l@‘%)—f-Zm

x (Wo| H'E|W;) (¥;] 0 |Wp) + H.c.
2

€
o H P,
2 B, By )

x (W;|O|W;) (¥; | HE|wy)
2
€

YL R E, B

(W; | HE|w;)

X (W HE W) (WO W) + ... (43)

Here we imagine working in a geometry where the ground
state is unique; we will return to the more general case
presently. The specific form of the higher-order terms will
not be important for the qualitative arguments we present
here; the germane point is that the order €” term in Eq. (43)
contains n powers of the unperturbed electric source gap ey
in the denominator and n powers of H®) in the numerator
sandwiched between various excited states.

Since H® creates open electric strings that do not exist
in the unperturbed ground state, inner products involving the
unperturbed ground state are nonvanishing only when the net
effect of these applications of H®) is to create some number
of sources, move them some distance along the lattice, and
reannihiliate them. Thus all of the nonvanishing terms in
Eq. (43) can be expressed in terms of closed Wilson loop
operators Wé for a confined source i along some curve C in
the lattice:

(WIO1W) = D" Y ol (W WE, W W),
{in,ein} {Cr,. G
44)

i

where " are coefficients that must be determined by
the perturbation theory. Here n is determined by the order
in perturbation theory to which the result will be computed.
A term where the total length of all the Wilson lines is
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length m can only occur at order m or higher in perturbation
theory.

Since the Wilson loop operators Wé can be mapped exactly
onto operators in the Z spin model, we may study the fate
of the critical theory by asking what effect these have on
the expectation of the spin model’s Landau free energy. This
amounts to asking whether the Wilson loop maps to a relevant
or irrelevant operator near the critical point.

To answer this question, we must first consider in detail
the form of the operators in the Zy spin description. We will
assume that H®) contains only local terms, which either pair-
create or move sources within some fixed radius on the lattice.
This implies that longer Wilson lines are suppressed by higher
powers of € /ey . A single non-self-intersecting Wilson line Wé
maps to an operator that flips a set of Z spins to generate a
domain wall in which the Z spin changes by i across the
curve C on the dual lattice. Likewise, multiple nonintersecting
Wilson lines map to an operator creating multiple domains.
To deal with intersecting Wilson lines, we must account not
only for the positions of the domain walls, but also in general
for an extra phase that occurs in the gauge theory when two
Wilson lines cross. This phase is dictated by the topological
properties of the Wilson lines, and depends on the ordering
of the Wilson line operators, as illustrated in Fig. 3. If H®
creates only a small density of defects, then such crossings
can occur only at relatively high orders in perturbation
theory and are consequently suppressed by a high power
of €/ey.

In Eq. (42) we used nondegenerate perturbation theory,
ignoring the topological ground-state degeneracy. This is an
appropriate starting point in general since the ground states
in any case do not mix at low orders in perturbation theory.
For any finite-sized system, however, there will be some order
in perturbation theory at which it becomes possible to create
a Wilson line that wraps around one of the noncontractible
curves (where these exist). For confined sources this maps
the Zo spin model into a sector with twisted boundary
conditions; for deconfined sources it simply introduces a
different ground-state sector into the problem. Here we assume
that for local operators such effects occur at sufficiently high
order in € /€y that they do not play an important role in the
physics; indeed if they did, the ground-state degeneracy of
the topological phase would not be robust to their presence,
indicating that the perturbation has altered the underlying
topological order before H" tunes the system through the
critical point of interest to us.

Restricting ourselves to orders in perturbation theory at
which such operators cannot occur, we may assess the
importance of H®) at the critical point by considering whether
the operator flipping clusters of spins is relevant. When H ‘€ is
local, at finite order in perturbation theory the maximum size of
the clusters to be flipped is finite, and hence the operator is local
at sufficiently long wavelengths so that the Landau paradigm
applies. In the Ising model, where the phase transition is second
order, the Wilson line operators that flip clusters of spins are
irrelevant at the critical point, and hence generically we expect
that H®) is as well. This is in agreement with the results of
Fradkin and Shenker’? and has been verified numerically for
the Ising transition between the Toric code and the vacuum by
Ref. 63, who established that electrical sources are irrelevant
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(b)

FIG. 3. (Color online) Mapping intersecting Wilson line opera-
tors to Z o domain walls. (a) We specify a set of Wilson lines by their
contour on the lattice and their linking. Here the red line crosses once
over and once under the blue line, so that the Wilson lines are linked.
(b) Up to constants, which are scale independent and determined by
the topological order, the effect of a pair of linked Wilson lines is
to flip all Z, spins encircled by each Wilson line by an appropriate
amount. (Here we show this for O = 2, where there is only one type
of domain wall.) Spins encircled by two domain walls will be flipped
twice.

to the critical theory up to the point where the Z, topological
order itself is destroyed.

Thus the fate of the phase diagram described in the previous
section in the presence of generic perturbations is as follows.
The topological order of the gapped phases is unchanged so
long as the perturbation does not close the excitation gap. If the
phase transition is second order, we may evaluate the effect of
perturbations on the critical theory by leveraging the Landau-
Ginzburg theory of the corresponding phase transition in the
spin model and considering whether the dual perturbation is
relevant at the critical fixed point. A small density of dynamic
electric sources, which is dual to flipping clusters of spins,
gives an irrelevant operator in the Zg spin description. A
small density of dynamic magnetic sources is dual to annealed
disorder in the corresponding 3D classical spin model and is
also not expected to alter the nature of the phase transition.
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IV. TOPOLOGICAL ORDER OF THE CONDENSED PHASE

In Sec. I we described a lattice Hamiltonian that we
could tune exactly through a phase transition in which a
magnetic bosonic excitation condensed. We showed that the
long-wavelength behavior near the phase transition could be
mapped onto that of a ferromagnetic Z ¢ spin model and that
in the condensed phase certain string labels—corresponding
to domain walls in the spin description—became confined. In
fact, we found that there is a special point in the confined
phase at which the Hamiltonian (7) again becomes exactly
solvable, as we may consistently project out the edge labels
that become confined. Here we study in more detail the
physics of the confined phase, which can be understood by
studying this second solvable point in the phase diagram. Our
objectives in doing this are twofold: first, we will see how
the features of the final-state spectrum (identified by Ref. 31)
arise in the lattice model and discuss the explicit form of the
final-state quasiparticle operators. Second, we comment on the
general structure of the lattice models that can be obtained as
condensates of doubled Chern-Simons theories.

To understand the physics of the condensed phase, it is
useful to consider the topological properties of an s-wave
superconductor.®* Before the onset of superconductivity (in
the uncondensed phase), the system is well described in terms
of electrons and holes (or Fermi liquid quasiparticles with
charge +e), and the electromagnetic gauge field. In the super-
conducting phase, the low-energy degrees of freedom are the
Bogoliubov-deGennes quasiparticles and the superconducting
vortex of flux % Electrons and holes of the original Fermi
liquid theory are indistinguishable in the superconductor, since
they are mixed by the condensate. Further, the Meissner
effect confines any gauge field flux unless it is appropriately
quantized in units of % This is necessary for the condensate
to be single valued as it winds around the vortex; smaller flux
quanta would necessarily result in a costly branch cut in the
condensate wave function.

Returning to the question of more general topological
symmetry-breaking transitions, a general prescription for
obtaining the topological properties of the condensed phase
is given by Bais and Slingerland,*' who identify three effects
of condensation on the excitations of the original model. These
consist of confinement of excitations which braid nontrivially
with the condensate (the Meissner effect), identification of
pairs of excitations which are mixed by their interactions with
the condensate (analogous to mixing of electrons and holes via
scattering from Cooper pairs), and possible splitting of some
excitations into multiple distinct quasiparticle types. Here we
will describe how these effects arise in the condensed phase
of the lattice model, explaining how the spectrum predicted
by Ref. 31 arises in practice from the excitations of the initial
Levin-Wen model.

A. String operators and excitations

Before studying the excitations in the condensed phase, we
must understand in more detail excitations in the uncondensed
model. These are most simply described in terms of the
quasiparticles of the solvable Levin-Wen Hamiltonian, which
we will describe briefly here.
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As mentioned in the previous section, we may, loosely
speaking, divide the excitations of the Hamiltonian [Eq. (1)]
into constituents that carry electric charge and those that carry
magnetic flux. Operators creating electric charges on vertices
V; and V; are open Wilson lines running from V; to V;
(Fig. 4). For every edge label i there is such a Wilson line, and
consequently a distinct electric source. As one would expect
from lattice Yang-Mills theory, the Wilson line of the source i
raises the value of the electric flux on the edges that it traverses
by i.

Magnetic sources, such as the ® = ¢p x ¢, particle
described above, are created by an operator that essentially
assigns a phase to each configuration of edge labels. There
is one type of magnetic source for each allowed edge label
i. Unlike in Yang-Mills theory, however, in the doubled
Chern-Simons theory the elementary magnetic source (i) also
carries electric charge.*> What we refer to as a magnetic i
vortex is the achiral particle iz x iy.

When i is a simple current, this is an excitation that violates
only the plaquette terms of the Hamiltonian, exactly as we
expect for a vortex. When i is not a simple current, however,
its action on an edge e involves a superposition of terms, each
of which raises e by an element of i x i. The precise form of
this edge operator for a magnetic source is described in detail
in Appendix A and in Ref. 43.

AR E iixs

(a)

~

= Z jeixy 6jkei((yijx+ail§/)

S
2xyess keix X

(b)

FIG. 4. (Color online) Quasiparticle creation operators in the
Levin-Wen model are “string” operators that act on states to create
excitations at each of the string’s end points. (a) These strings can
carry electric flux, in which case the string operator raises or lowers
the label on each edge it runs parallel to, as shown. In this figure a
string operator with label s acts on an edge carrying flux i to form
an edge with flux i x s. (b) Strings can also carry magnetic flux,
in which case the operator assigns a label-dependent phase to the
wave function each time the string crosses an edge separating two
plaquettes. In the doubled Chern-Simons theory that we begin with,
all quasiparticle strings are composed of composites of right (electric
only) and left (composite electric and magnetic) components. In this
figure a magnetic string operator labeled s x § acts on an edge i. The
net electric flux is thus the combined flux from the two s operators,
which in general may take on multiple values. Thus the vortex string
operator is the sum of the string operator ), . For each X,Y
in the superposition the operator acts on the edge by raising its flux
by X and incurring a phase, as shown on the right. This operation
comes with an overall numerical prefactor not shown here. The chief
importance of this prefactor is to ensure that only diagrams in which X
and Y raise the label i by the same amount occur in the superposition.
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B. Confinement and identification in the condensed phase

We begin by understanding how the first two phenomena
(identification of some excitations, and confinement of others)
occur in the condensed phase of Eq. (7). Essentially, this is no
different than in the superconductor. First, as we have already
seen, excitations that braid nontrivially with the condensate
(those for which g; # 0) are confined in the condensed phase.
This is analogous to the Meissner effect, since their braiding
statistics with the condensate ensure that they engender
branch cuts (or domain walls, in the Z spin picture) in the
condensate wave function. Further, after condensation, pairs of
particles that are mixed by scattering with the condensate are
indistinguishable (or identified) in the final topological theory,
much like electrons and holes in a superconductor.

We have already demonstrated confinement explicitly in the
previous section. Specifically, the arguments used to show that
closed domain walls incur a linear energy cost apply equally
well to static sources: though their energy can exceed the
cost 2ey of spontaneously creating a new pair of sources, the
number of these sources is conserved by the Hamiltonian (7)
and such processes cannot occur. At the solvable point where
edge labels with ¢g; = 0 do not appear in the ground state,
the energetic cost of adding a pair of sources with g; # 0 is
linear in the length of the string separating them, as there
must be a string of edges with confined labels that connects
the pair. Away from the solvable point there is in general
a small admixture of closed strings of the confined ¢; # 0
labels in the ground state, but as this is relatively small
(domain walls are confined), the energetic cost of a pair of
confined sources will still scale linearly with their separation.
[As in QCD, perturbations mixing confined sources (or open
confined strings) with the ground state lead to difficulties in
identifying the confinement potential, as the string joining a
pair of test sources can be broken into shorter segments by
creating confined particle-antiparticle pairs.]

To show in detail how identification occurs, we note that in
the ground state of Eq. (7) at oy = 0,ay = 1 each plaquette
is in a superposition of states with excitations Id, ®, ... ®¢~!.
Hence any string operator Wan ., applied to this phase will
result in the same superposition of sources with the labels
5,® xs,...®27 " x 5. (Here s is a particle of the doubled
theory). In the condensed phase, therefore, there is a single
string operator associated with the sources

s, x5, ... 0% xs (45)

and correspondingly all of these should be identified as
creation operators for the same quasiparticle.

The rules for mixing here are inherited from the “fusion”
rules, which specify how to combine representation labels
on the edges of the lattice. In a topological theory there are
rather stringent consistency constraints on these rules (see, for
example, Ref. 40), but for the present discussion the important
point is that the excitations naturally mix with the condensate
in a specific way. When @ is a simple current, the fusion rules
specify that ® x s is a single quasiparticle species.

We illustrate the effect of confinement and identification on
the spectrum with a few examples. It is convenient to define
the notational convention

(r,s) =rgp X st (46)
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for excitations in the doubled Chern-Simons theory. In this
notation, the magnetic ® = ¢ x ¢, particle that we condense
has the form (¢, ¢).

1. SUQ)y for k odd

The labels appropriate to SU(2); Chern-Simons theory are
the total spin of representations s = 0(= Id),1/2, ...k/2. We
condense the (k/2,k/2) excitation, which is an achiral simple
current of order 2 (i.e., a Z, boson).

To find the confined particles, we note that the S-matrix
elements are A%Sg, = (=1)* [see discussion near Eq. (5)].
Hence edge labels with half-integer spin are confined (they
all are effectively mapped to domain walls of the Ising
model), while those with integer spin remain deconfined. In
the solvable limit, this implies that the plaquette projector
also contains only integer spin labels. Since the edge label (or
electric flux) depends on the combined electric fluxes from
the right- and left-handed components of each excitation, the
deconfined particle types are

s

(rs) and (5.5) @)
r,s) an —,=
2°2
for r and s integer.

Fusing the (k/2,k/2) particle with other excitations in the
theory gives

(k/2,k/2) x (r,5) = (k)2 — r.k/2 — 5). (48)

As promised, the rules for adding angular momenta in the
Chern-Simons theory have been deformed such that the
product on the left-hand side gives a unique result on the
right. Equation (48) therefore identifies pairs of excitations

k—2r k—2s
(r,s)=< ) ) 49)

When £ is odd, if r and s are integers, then both labels on the
right are half-integers. Thus we may eliminate the half-integer
labels from the theory completely and identify each excitation
by the appropriate integer labels.

In this case, this is the whole story: condensation has merely
eliminated all half-integer spin labels from the theory. The
result is a doubled SO(3); Chern-Simons theory.®

2. SUQ2)i for k even

After condensing the (k/2,k/2) boson, if k is even our
result will differ from that described above because k/2 is
an integer. In this case fusion with the condensate identifies
integer pairs with integer pairs, and half-integer pairs with
half-integer pairs. Hence we can no longer eliminate the half-
integer labels entirely from the theory, as they may still appear
in the guise of excitations of the form (r/2,s/2) with » and
s odd, even though they will no longer enter as deconfined
edge labels. This suggests that the topological description of
the condensed phase is not a doubled Chern-Simons theory as
we shall see further below.

A second peculiarity of the identifications is that the
quasiparticle (k/4,k/4) maps to itself under fusion with the
condensed (k/2,k/2). We will see that this is not unrelated
to the fact that the quasiparticle spectrum cannot be simply
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separated into right- and left-handed components when we
discuss splitting.

C. Splitting

The final possible effect of condensation is that some
excitations will split into multiple distinct quasiparticle
species. (This phenomenon occurs in spontaneously broken
non-Abelian gauge theories but not in the superconducting
example discussed above.) It is important to note that this
splitting does not change the total dimension of the low-energy
Hilbert space. Instead, it splits a two- (or more generally d-)
dimensional internal Hilbert space of the excitation in the
uncondensed phase into multiple one- (or d/n-) dimensional
Hilbert spaces.

An intuitive understanding of this splitting can be gained
by considering how it arises in non-Abelian gauge theories.
Essentially what happens is that the excitation in question
transforms under a d-dimensional representation of an in-
ternal symmetry that is broken in the condensed phase into
multiple lower-dimensional representations of the residual
symmetry group. For example, in a theory with unbroken
SU(2) symmetry, a spin-1/2 particle is associated with a
two-dimensional internal Hilbert space. (In other words,
we may express particles transforming in the fundamental
representation of SU(2) as two-component vectors.) If we
break the SU(2) symmetry by condensing a spin-1 Higgs field,
this two-component vector can be separated into its spin-up
and spin-down constituents, which are now no longer related
by symmetry. The residual U (1) gauge transformation acts on
these as:

c} — e"gcg CI — eiieci. (50)
In other words, the two-dimensional representation of SU(2)
has separated into two one-dimensional representations of
U(1) (here carrying opposite charges). The total dimension
of the Hilbert space associated with each particle creation
operator ¢! is still 2, though we now have distinguishable
spin-up and spin-down excitations.

One indicator that such a splitting had to happen in the
above example can be found in the rules for combining the
representations of SU(2). Combining two spin-1/2 excitations
gives:

Ixl=0+1, (51)

which is a superposition of the (gauge-neutral) singlet and
the spin-1 triplet excitations. Before condensation, these are
distinct excitations, as they transform in different representa-
tions of the symmetry group. After condensation, however, the
residual U (1) symmetry group cannot distinguish between the
singlet and triplet states. Instead it is sensitive only to the [,
eigenvalue of each state, rather than to /. Labelling states on
the right-hand side of (51) by their /, eigenvalues, we have:

5x3=0+0+14(=D), (42

which is to say, on the right-hand side we obtain two distinct
copies of the singlet (I, = 0) representation of U(1). (In this
case, these are c;[ch ' + chcj ¢). The rules of representation
theory dictate that two copies of the singlet can be obtained on
the right-hand side only if there are two distinct excitations
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on the left (which we may choose to be cT,c*). Hence
we conclude, solely by examining the rules for addition of
angular momenta, that the spin-1/2 excitation had to split into
two distinct one-dimensional representations (and hence two
distinct quasiparticle types) in the condensed phase.

This same logic about combining representations in the
condensed phase applies to the more general framework of
topological symmetry breaking.?’=! This will indicate that,
in some of the examples of the type discussed here, certain
excitations split into multiple distinct quasiparticles after
condensation. We will first review the criteria for splitting
to occur and then explore how it arises in practice in the lattice
models.

1. Determining whether quasiparticles split

The generalization of the criteria we found above in SU(2)
Yang-Mills theory for splitting after condensation is as follows.
Suppose @ is a simple current (with ®¢ = 1) which we will
condense. Then an excitation r will be split in the condensed
phase if

O xr=r (53)

fork < Q. Asinthe example above, the reason for the splitting
is that in the condensed phase, r x 7 contains multiple copies
of the trivial representation and hence must be split into
multiple particle types if the representation theory is to remain
consistent. Specifically, the representation 7 is by definition the
one that combines with r to give the the singlet representation
(plus some other representations, in general). Thus we have:

Id+---
=Fx(rxd)=0 ... (54)
=Fx(rxdH=094...,

rxr=

which implies that

Fxr=Id4+ o + 0% 4 ...+ 02+ ... (55)

That is, the tensor product of representations r and 7 contains
(among other things) all powers of ®F (mod Q). Since in the
condensed phase any power of @ is identified with the trivial
representation (since, as before, the condensate is by definition
in the singlet representation of the residual symmetry group),
this gives % singlet representations on the right-hand side of
Eq. (55). Excitations in representation r before condensation
consequently split into % distinguishable particle types in the
condensed phase.

It is a feature of the representation theory that the total
dimension of the Hilbert space (total quantum dimension) is
preserved by this splitting. In particular, if  is one dimensional,
then it follows that k = Q and the excitation cannot split. This
is rather obvious in the case that r is truly a representation of a
non-Abelian symmetry group; however, it also holds true in the
truncated representation theory germane to the Chern-Simons
lattice models considered here.’!

2. Splitting on the lattice

Armed with this simple criterion to understand when some
excitations in the condensed phase will split, we now turn to the
question of how this splitting manifests itself on the lattice. In
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the example given above, we could explicitly identify the two
split spin-1/2 particles as we knew precisely the form of the
residual symmetry generator’s action on the members of the
original SU(2) multiplet. In the lattice model (7) we do not have
access to this information. However, we will be able to identify
a set of labels (analogous to S* in the example above) that are
indeterminate before condensation but separately conserved in
the condensed phase.

Though this may seem like a rather trivial exercise in
practice, since we have already argued on general grounds
that such splittings must occur, it is actually important to
demonstrate that splitting occurs in order to conclude that
the condensed phase does indeed represent a consistent
topological theory. As we discuss briefly in the conclusions,
there are situations where it is not clear that this is the case.

Let us begin with an example and consider condensing
the spin-1 excitation in doubled SU(2), Chern-Simons theory.
The fusion rules for this theory are given in Eq. (26) and, in
particular, stipulate that

a0 x ()= (1) (56)

so the achiral spin-1/2 particle must split into two distinct
excitations after condensation of the (1,1) boson. To identify
these distinct excitations, we first note that the achiral spin-1,/2
particle carries a magnetic flux from its 1/2; component,
and an electric flux from the combination of its 1/2; and
1/2g components. Since 1/2 x 1/2 = 0 + 1, the electric flux
associated with this excitation can be either O or 1 on a
particular edge. The precise form of the string operator dictates
that it may change between 0 and 1 when the string crosses
between two plaquettes over an edge carrying a spin-1/2 label
(see Appendix A). At the solvable point in the condensed
phase, however, the spin-1/2 edge labels have been completely
eliminated from the Hilbert space. Thus in this limit, a (%%
particle is associated with an electric flux which is either 0
or 1 at all points along the string operator (and consequently,
also at the vertices on which the string terminates). We may
therefore identify two distinct quasiparticle types, (%, %)o and
(.31

The key point here is that prior to condensation, a string that
is purely of the (%, %)0 or (%, %)1 type is not topological. That
is, even at the exactly solvable point this string is physically
observable, whereas the string operators of Ref. 36 create
strings for which only the end points have physical meaning.
The (%,%)0 and (%,%)1 strings, however, create a spin-1/2
vortex at each end point, together with a string of plaquettes
in a superposition of the ground state and the spin-1 vortex
[the (1,1) boson] excited along its trajectory, as explained in
Appendix A. Hence in the uncondensed phase, the eigenstate

%, %) is associated with a two-dimensional Hilbert space (of
electric flux 0 or 1). In the condensed phase, where the string
of possible spin-1 vortex excitations is undetectable, (%,%)0
and (%,%)1 are two distinct topological quasiparticle creation
operators.

This example, though relatively simple, illustrates precisely
how splitting occurs in general condensates. First, note that
if (%, ¢%) x (r,5) = (r,s), then we must have both ¢ x r =
r and ¢* x s =s. The electric flux associated with this
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excitation is a superposition of
rxs=y L. (57)

After condensation, we find that the sum on the right-hand
side will split into subsets of labels that do not mix once the
confined edge labels have been projected out of the theory. It
is possible to deduce from the fact that Ok x (r,5) = (r,5), and
that ® acts as the identity in the condensed phase, that there are
% excitations that are topological in the condensed phase. (As
above, in the uncondensed phase there is only one). A (rather
technical) proof of this fact is given in Appendix B. Thus
we find that the excitations in the condensed phase split into
% distinct species of excitation, as required for a consistent
topological phase.

D. Structure of the final theory: Examples

Having established the nature of the spectrum in the
condensed phase, it is worth pausing to take stock of the
variety of possible topological phases that can be created in
this way by condensing a magnetic simple current in a doubled
Chern-Simons lattice model. We will illustrate this with a
series of examples.

1. Theories without splitting

The simplest case we may consider is that of a theory
in which no particles split in the condensed phase. The
properties of the spectrum here are determined by confinement
and identification alone. Depending on the nature of the
condensed excitation, the final theory may be a new doubled
Chern-Simons theory (with a gauge group that is a quotient
group of the original, as generally occurs when vortices are
condensed).’® Alternatively, it may be a theory in which not
all excitations can be decomposed into separate right- and
left-handed chiral components.

The difference between these two cases is determined by
2rikqg

Serg = e @, where we condense (¢,¢). If gy # 0 for all
k < Q, then in the condensed phase each set of identified
quasiparticles either is confined or contains one element that
is a composite of deconfined right- and left-handed labels.
Specifically, any deconfined excitation (a,b) has q, = gp.
Since charge is additive under fusion with ¢*, and since by
assumption the charge of ¢* spans all possible values, there
is some r for which g4 = —q,. Hence (¢",¢") x (a,b) is
composed of two string types that both have g charge 0. Hence
every excitation in these theories can be viewed as a composite
of two deconfined particle types. In this case, the condensed
theory is just two opposite chirality copies of a subset of the
particles of the original chiral Chern-Simons theory.

If g4« = 0 for some k < Q, however, the above result need
not hold. It is easy to construct examples of this in Abelian
Chern-Simons theories. For example, the k particle in U (1)
has

kxk=1d S =(—1), (58)

If k is odd, then all deconfined excitations can be expressed
in terms of pairs (2j,2/) of deconfined excitations, and the
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theory is again a tensor product U(1); x U(1), of identical
right- and left-handed Abelian Chern-Simons theories. If k is
even, the deconfined excitations fall into two classes: (2j,2])
and (2 + 1,2[ 4 1) that are not equivalent under fusion with
(k,k). (When k is odd these odd and even sectors are identified.)
Hence here the spectrum is not a direct product of two chiral
components, as neither component of the odd excitations can
exist in isolation.

2. SU(2),

The simplest case where splitting does occur is after
condensation of the achiral spin-1 excitation in a doubled
SU(2), Chern-Simons theory.>> As noted above, the (1/2,1/2)
excitation splits into two components in the condensed phase,
distinguished by their electric flux (which may be that of
the spin singlet or spin triplet). Since the chiral spin-1/2
excitations are confined, this leaves us with the following three
quasiparticles in the condensed phase:

11 11
0,1) = (1,0) (5,5) (55) . (59)
0 1

The first of these, which is a purely electric source in our
lattice model, is a fermion. The other two (which we identify
as purely magnetic and both magnetic and electric) are bosons
(but here with relative semionic statistics).

These excitations give precisely the spectrum of Kitaev’s
Toric code® (or Z, gauge theory with matter). Indeed, at the
solvable point in the condensed phase, where we eliminate all
spin-1/2 edge labels from the theory, we may use the edge-
labeling scheme:

L1 =0 )
T i Q=1

In this basis, and dropping the terms —(—1)"> (which we take
always to be —1, since n, = 0) the Hamiltonian is precisely
that of the Toric code:

H:-XV:]_[U;‘—XP:]_[U;. 61)

In matching the excitation spectra to that of the Toric code,
we must contend with one subtlety of the condensed phase:
the purely electric source is fermionic, rather than bosonic as
it should be for the Z, gauge theory. The reason is that the
operator that creates the (1,0) excitation is an electric-type
string that raises the spin on each edge by 1 (mod 2); however,
it also obtains a phase of ¢ for each edge e it crosses. The
operator creating (%, %)0 excitations is a magnetic-type string
that assigns a phase of —1 for each edge of spin 1 (mod 2).
(%, %)1 is the operator that raises the spin by 1 without inducing
any phases and is mutually semionic relative to both (1,0) and
(%, %)0. In the spin basis, this gives the quasiparticle operators
the final form:

Sapme=[]0s Sapym =[]oi
e e

. . A (62)
81,00 = S(1/2,1/2)05(1/2,1/2); »
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which identifies (%, %)1 as the electric source of the Z, gauge

theory, (%,%)0 as the Z, magnetic source, and (1,0) as their
(fermionic) composite.

3. SUQ2)i for k even

We may generalize some of the features of the SU(2),
example above to SU(2); for general even k, condensing the
(k/2,k/2) vortex. The deconfined excitations here have net
integer spin on each link and, hence, must have the form (i, j)
with i and j either both integer or both half-integer spins.
This gives 2(’%)2 + 2’% + 1 excitations before identification.

Of these excitations, all but (%, %) get identified in pairs; (%, %)
in fact splits into two excitations. Thus we obtain a total of
(’%)2 + % + 2 excitations. For k > 2 the number of excitations
is generally not a perfect square, so the topological order
cannot be that of a doubled Chern-Simons theory (or any
double 7 x T of a valid topological theory).

When k = 2, we showed above that the condensed phase is
the topological limit of a discrete gauge theory. For k = 4, the
condensed phase is also described by a discrete gauge theory,
in this case a twisted version of the non-Abelian gauge group
Ds.For k > 4, however, the topological order of the condensed
phase cannot be that of a discrete gauge theory, since some of
the deconfined particles have noninteger quantum dimensions.

We can nonetheless write the complete set of string
operators for these theories. There is an even sector of
string operators that are composed entirely of the integer
spins of the uncondensed phase, and an odd sector of string
operators composed of pairs i;, x jg of half-integer spins of
the uncondensed theory. The even sector consists of excitations
that can be constructed using only strings that correspond to
deconfined labels. Specifically, we have:

) irig (=Id...5-1
simple: P

3 (nonchiral)

. 63

composite: ig X jr I < %,j <5
with i and j integer. Because of the identifications (which
identify even excitations with even, and odd with odd, unlike
the scenario for odd k), the excitations in the even sector
contain only some of the allowed composites that we can
construct from the chiral string operators i z. In addition,
there is only a single string operator ’% L= ’% r associated with
the g particle, whose chirality is no longer well defined after
condensation. Indeed, any particle of the form xz X (§ — X)L
is nonchiral in the sense that in the condensed phase it
is indistinguishable from the opposite chirality excitation
Xp X (’% — X)R.

In addition to these, there are excitations that cannot
be composed of simple string operators. That is, they are
composites of pairs of half-integer spin string operators.
These composites have become irreducible in the condensed
phase, where the individual half-integer spin strings have been
confined. These excitations are

k
, j<§ (64)

E N

ig X jL 1<

with i and j half-integer.
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The split ('43, f;f) particle is in the even sector for k = 0 (mod
4), and in the odd sector for k = 2 (mod 4).

4. Drinfeld doubling

The general structure of the construction here is as follows.
At the solvable point in the condensed phase, we may
project onto states composed only of deconfined edge labels
(those which braid trivially with the condensed magnetic
excitation), from which our fixed-point Hamiltonian for the
condensed phase [Eq. (14)] and its low-energy excited states
are constructed. When g4« # 0 for any k < Q, all excitations
in the final theory can be constructed from string operators
containing only these deconfined edge labels. When gy« =0
for some k < Q (which must occur if there is splitting but
may occur in other examples as well, such as the Abelian
theories discussed above), we generally find that not all
excitations in the final model can be expressed in terms of
strings corresponding to deconfined edge labels. Nevertheless,
the resulting topological theory is equivalent to a Levin-Wen
model built on the category of deconfined edge labels only. In
general, a Levin-Wen model built from a category produces
a topological theory known as the Drinfeld double of the
category. In our case we identify the “nonsimple” string
operators of Ref. 36 as those which cannot be constructed from
deconfined edge labels alone, but require additional phases
to account for the fact that they are composites of pairs of
confined electric sources.

The simple protocol outlined here shows how certain Drin-
feld doubles can be interpreted physically as the outcome of
condensation in a Chern-Simons theory. Many of the examples
given above are in any case discrete gauge theories, which
we could alternatively understand as the result of Higgsing
a continuous Maxwell or Yang-Mills theory. However, some
[for example, those obtained by condensing the (k,k) particle
in a doubled SU(2),; Chern-Simons theory with k > 2] are
not; this approach offers a physical mechanism for the origin
of these states from models that can at least be understood in
terms of continuous field theories. In general, our approach
suggests that we may view some Drinfeld doubles as arising
because an achiral excitation condenses in a doubled Chern-
Simons theory. Specifically, because the condensate is achiral,
time-reversal symmetry is preserved on both sides of the phase
transition, though the spectrum of the final theory cannot
always be decomposed into decoupled right- and left-chiral
sectors.

V. CONCLUSIONS

In this work we have given an explicit realization of topo-
logical symmetry breaking®' in lattice models. By constructing
a lattice Hamiltonian that can be tuned between two solvable
Levin-Wen points, via a condensation transition, we may map
the topological symmetry-breaking transition explicitly onto a
2 + 1D transverse-field Potts transition. The phase transition
can be understood by studying the dual Potts description,
to which the Landau formalism applies if the transition is
second order. Though this duality is precisely valid only for
a very special trajectory through the phase diagram, we argue
perturbatively that the effect of small deviations from this
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trajectory can be understood within the Landau theory of the
spin model and will be irrelevant at the critical point. This
gives a general framework to clarify the relationship between
phase transitions separating different topological orders (such
as those described by Ref. 34) and phase transitions of the
Landau type. Further, we have studied the properties of the
condensed phase, and identified the complete set of quasipar-
ticle creation operators required for a consistent topological
phase.

The type of transitions we discuss here are special in two
ways. First, in topological theories, two bosons of the same
type generally combine to give a variety of other species
of bosons. This is analogous to combining spins, where, for
example, 1/2 x 1/2 = 0D 1. It occurs because, in the same
way that particles can be classified by their transformation
properties under rotations (or total spin), excitations in a
topological theory are associated with representations of a
(quantum) group.®*When the group in question is non-Abelian,
most excitations will not be simple currents. The general
technique employed here to construct the Hamiltonian (7) by
adding a term that pair-creates vortices on adjacent plaquettes
still applies in such cases. Condensing bosons with non-
Abelian fusion rules will lead to a different critical behavior,
which is not equivalent to that of any statistical mechanical
model that the authors are aware of. The study of these
transitions is undoubtedly a rich subject for further study; one
interesting example is discussed in Ref. 32.

The second restriction we have imposed here is to consider
only achiral condensates by condensing plaquette violations
in the lattice model. An obvious question is whether chiral
condensates (or condensates of vertex violations, in the lattice
model) can also occur. From the purely topological viewpoint
there is no obstruction to forming these,' provided that the
excitation to be condensed is a boson. (This is always the case
for achiral excitations, but need not be for their chiral cousins.)
Further, the critical theory will again be of the transverse-field
Potts type if the condensed boson is a simple current. In the
lattice model, however, only when there is no splitting is it clear
that operators for all excitations in the condensed phase can
be constructed. In the absence of splitting, the Chain-Mail**
formulation of the partition function can be used to show
that the final theory is dual to an achiral condensate, and
the resulting duality mapping between the string operators
gives an explicit representation of all excitations in the final
theory. When splitting occurs, this duality fails and there
appear to be no conserved quantum numbers to differentiate
the split particle types, suggesting that the final topological
phase may not be fully realizeable by the lattice model.
We will discuss these results in more detail in a future
work.

The task of fully categorizing the possible phase transitions
and critical theories between phases of different topological
order remains a source of many open questions. The solv-
able Levin-Wen® models considered here provide a useful
framework in which to rigorously study such questions. Since
both topological order and properties of the critical theory are
relatively universal, conclusions drawn from the lattice model
also apply to real physical systems exhibiting the desired
topological characteristics, where these exist.
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APPENDIX A: MAGNETIC QUASIPARTICLE OPERATORS

Here we discuss in more detail the form of operators
creating magnetic quasiparticles that do not correspond to
simple currents. The precise form of the general magnetic
quasiparticle operators is complicated by the fact that, in
the uncondensed phase, if the label i does not correspond
to a simple current, there is no purely magnetic excitation
associated with i. Rather, what we will call the magnetic i
excitation is in fact a specific superposition of excitations that
all carry magnetic flux i, but also carry electric flux j € i x i.

The reason for this is that the fundamental excitations in
our Levin-Wen model are not electric and magnetic fluxes as
would be the case for a lattice-gauge theory but the sources of
the right- and left-handed Chern-Simons fields. As explained
in Ref. 43, the right-handed sources are precisely the electric
sources described above. The left-handed sources i; , however,
carry both the electric charge i and the magnetic flux i. The
best approximation to a purely magnetic excitation in this case
is the achiral source i x ig, which has magnetic flux i and
electricfluxi x i =Id+....In general, the individual electric
flux labels on the right-hand side are not conserved along the
length of a particular string, so the entire superposition is
required to construct the appropriate quasiparticle operator.

To illustrate how this works in practice, we consider the o
vortex in the doubled Ising anyon theory. [This is essentially
the same as the spin-1/2 vortex in a doubled SU(2), Chern-
Simons theory, though the signs in this case are somewhat
simpler to track.] The operator is represented diagramatically
in Fig. 5; it acts on the edge labeled i in the figure according
to

1
Say1pli) = 5(51/2,i|l'> +(=D" Sy pili x ¥))

" %[e—’f Fu@) + ¢ Fr(@)161s10).
where F; r = %1 are coefficients that depend on the labels of
adjacent edges at the left (L) and right (R) ends of the link,
respectively. This action can be decomposed into the action of
the four channels shown in the figure, as shown in Table I. The
coefficients F g come from the action of the v tail on the left
and right vertices.

It is important to note that if we keep only the (Id,Id) and/or
(¥,¥) fusion channels, the action of this operator on a given
edge is unchanged if we simultaneously act with the operator
(—1)" that creates a pair of ¥ vortices. This means that
keeping only the (Id,Id) and (,v) channels adds an indefinite
number of ¥ vortices to each plaquette. In the condensed
phase, where ¥ vortices are in any case not conserved, this
does not affect the energy of states this operator creates; in
the uncondensed phase, however, if the o vortices at the end

(A)
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FIG. 5. (Color online) The o vortex in the doubled Ising anyon
theory consists of a pair of electric sources (one right- and one left-
handed). Its action on an edge is given by a phase (depicted here
by the red ring) every time the string crosses between plaquettes,
together with an electric component that raises the edge label by
Id or y. This gives the four possibilities shown here each time the
string operator crosses between plaquettes. The labels (Id,1d), (1,1d),
(Id,v), and (¢,¥) denote the associated electric flux on the upper
and lower sides of the crossing.

points of the string are more than one plaquette apart, then
the state is not a single eigenstate but rather a superposition
over all eigenstates with some number of i vortices on the
intervening plaquettes. As a consequence, this operator is not
topological, since the location of these possible i vortices on
the lattice depends on its trajectory. Once we include the effect
of the (Id,y) and (y,Id) channels, which do not annihilate o
labels, this is no longer the case and the operator creates only
a pair of o vortices at each of its end points.

The case for general magnetic sources is similar: we find
that only when all of the fusion channels of i x i are included as
electric source lines is the string operator topological. If some
of these are omitted, then the operator has some probability of
creating extra vortices on the plaquettes separating the two i
vortices and hence is not topological as the number of possible
violations scales with the separation between the string’s end
points.

APPENDIX B: SPLITTING IN GENERAL CONDENSATES

Having detailed the form of composite operators a; X ag in
the previous section, we now present a proof that condensing an
achiral simple current will always lead to the correct splitting
of string operators in the condensed phase. It is useful to begin
with the example discussed above and consider the splitting of
the o, x oy particle in the doubled Ising theory.

TABLE I. Action of the four possible combinations of fusion
channels for the o; x oy excitation (the o vortex). Here we have
omitted any factors associated with labels on adjacent edges.

i (Id,1d) (Id,y) (¥, 1d) ¥, ¥)
1 1

v —AY 0 0 7!

o 0 %e¥a %e%o 0
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FIG. 6. (Color online) String operators creating topological ex-
citations can slide freely over vertices without altering the state
of the system. String operators with this property are said to
obey the hexagon relation®®; the corresponding excitations are
topological because their energy is independent of the trajectory
that the string takes through the lattice. String operators that are not
topological leave behind a trail of excitations. After condensation,
some achiral particles may split, meaning that subsets of the possible
edge labels associated with a particle a; x ag separately obey the
hexagon relation. This happens because the trail of excitations
that these string operators leave behind are vortices which have
condensed.

From the action of the possible fusion channels of the o
vortex in Table I, it is easy to see that when the edge label o is
eliminated in the topological limit of the condensed phase, the
(Id,1Id) and (v, 1) channels do not mix. One way to understand
why this happens is to note that before condensation these
string operators were nontopological because they created a
trail of plaquettes containing a superposition of no vortex and
the i vortex; hence their average energy depends linearly
on the string length in this regime. After condensation,
however, the presence of a i vortex does not change the energy
of a state, and these become legitimate topological string
operators.

This basic argument can be generalized to other condensates
of achiral simple currents. To do so, we exploit the fact that
topological excitations of the (solvable) Levin-Wen Hamilto-
nian describing the condensed phase must obey the hexagon
relations. From the point of view of the lattice model, these

> Fieay

Here X indicates that each a loop is encircling a la-
beled edge in the lattice, as is appropriate for the phase
operator R,,. After re-expressing the operator locally in
terms of the two strings a; and dg, the resulting operator
may be pulled over a vertex at which the two edges X
join. This ensures that the hexagon relation (Fig. 6) is
obeyed.

Before condensation, only when the dashed line carries the
label 0 can we pull the a-loop on the right-hand side over a
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simply state that any string operator creating a topological
excitation can slide freely over vertices, as shown in Fig. 6.
As in the case of the o 0y particle, string operators that do
not satisfy the hexagon relation are not topological because
they leave a trail of excitations along their length rather than
just at their end points. In some cases, however, this trail of
excitations consists entirely of the vortices that we condense.
When this happens the corresponding string operators are
topological in the condensed phase. Our purpose here will
be to show that this process accounts exactly for the splitting
expected from the TSB criterion. Readers should note that to
do this we will make reference to tensors F (the 6 symbols)
and R (the universal R matrix) that are determined by the
choice of topological order. We will not explain their meaning
here but a useful introduction can be found in Refs. 40-43
and 67.

Before condensation, in the doubled Chern-Simons theory
all string operators have the form a4, x bg. These can be
expressed in the form of a phase operator Ry, acting on each
edge that the string crosses [diagramatically a ring labeled
(a,b) encircling the crossed edges, as shown in Fig. 5], and
operators SySy that raise or lower the electric flux on each
edge by b; and by to either side of the ring. We will focus on
the configuration shown in Fig. 6, in which the string operator
crosses over a pair of edges. For example, a; x dr has the
form:

4R ®ap = Ryy Y  FL %, (B1)
where Fu”a“,? is a coefficient (6 symbol) dependent on the
labels a and b. The reason that this particle satisfies the
hexagon relation is that since the sum runs over all values
of b allowed by fusion, we may “undo” the process of
making the composite operator to depict this operator as
two separate strings, labeled dg and a; respectively. In the
doubled Chern-Simons models, it is easy to show that the string
operators dy ,dg do obey the hexagon relation.** Graphically,
we may depict the situation as follows:

vertex, and hence there is only one topological string operator
associated with d; x dg. After condensation, however, any
combination of coefficients on the left-hand side that results
in the dashed line carrying powers of ¢ gives an operator that
satisfies the hexagon relation and hence a valid topological
quasiparticle. Here we assume that there are no other labels in
the category that braid trivially with all of the deconfined edge
labels; hence, we wish to find all linearly independent sets of
coefficients C(b) such that
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2., C(0)

where the coefficients o, are arbitrary.

Our task now is to count the number of possible linearly
independent sets of coefficients C(b) will have the property
that

(B2)

> ChFLT = Z @S-
b

This will give us the number of different particle types, as each
dimension in the vector space of possible solutions to (B2).
Clearly, if ¢, x a # a, then o, = 0 as the diagram on the
right is not consistent with the fusion rules of the theory. This
leaves Q/ k possible linear combinations on the right-hand side
of Eq. (B2), corresponding to the Q/k-independent particle
types.

To show this explicitly, we will identify the Q/k linearly
independent sets of coefficients C(b). We begin with the

choice C(b) = F = F4  With this choice, we have:

a*ab

L0
1ZbW /\

and hence C(b) = NEVEEN certainly one of the allowed sets of
coefficients. Next, We ‘consider diagrams of the form.

If ¢F x

a = a, then the four external edges of the dia-
gram are still labeled a. Further, the vertical line on the
right-hand side clearly carries the label ¢*, and hence the
particle depicted obeys the hexagon relation in the con-
densed phase. Specifically, the identity above is equivalent to

a a
a a oF
> Cr(b) - =
a b a a

e
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= Zn Qn

with b = ¢* x b and

Ci(b) = \/ @) aa” polaa R¢ b (B3)

a*b*b a*bb*

We thus have a candidate choice of C,; for each of the Q/k
possible values of n. These must all be linearly independent,
since the vertical lines of the diagrams on the right carry
different powers of ¢. Any other choice of coefficients either
gives a superposition of these Q/k possibilities, vanishes, or
produces a quasiparticle type that does not obey the hexagon
relation. In particular, a x a contains ol only if ¢/ xa=a,
so no other powers of ¢ may appear on the right-hand side.

It is useful to express this statement in matrix form. We can
write

Co(b1)  Co(b2) Co(b,)
Ci(b1) Ci(b) Ci(by)
Copb1) Coslba) ... Copulby),

where r is the number of possible fusion outcomes of
a @ a and, inparticular,» > Q/kasa ® a =Id+ ¢F + .- +
¢N %+ ... The Q/k orthogonal linear combinations of
coefficient vectors that can be formed from these ensure the
existence of Q/k distinct string operators. In general, these
string operators will generate linear combinations of the true
quasiparticle types in the theory; to identify these requires
additional physical input (such as their self-braiding statistics).

It is useful to illustrate how the above counting procedure
works for the case of SU(2),. Here the coefficients are

Co(j) = sm[(sz)”}
M= SGnr/k +2) k+2
; Q2j+hHm B
Cl(])Z(_l)jsinn/(k—i-Z)sm[ k+2 ]

Thus we see that there are indeed two linearly independent
combinations of coefficients which will produce the desired
result. The particle types are given by taking the sum and
difference of these to obtain either all even integer or all odd
integer spins on the edges. [For example, in SU(2),, this gives
the quasiparticle operators (%,%)1 and (%,%)0.] As we have
seen by direct computation, these are indeed the two expected
particle types.
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