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Chiral orbital current and anomalous magnetic moment in gapped graphene
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We present a low-energy effective-mass theory to describe a chiral orbital current and an anomalous magnetic
moment in graphenes with a band gap and related materials. We explicitly derive a quantum-mechanical current
distribution in general Bloch electron systems, which describes a chiral current circulation supporting the magnetic
moment. We apply the formulation to gapped graphene monolayer, bilayer, and ABC-stacked multilayers to show
that the chiral current is opposite between different valleys, and the corresponding magnetic moment accounts
for valley splitting of Landau levels. In a gapped bilayer and ABC multilayer graphenes, in particular, the
valley-dependent magnetic moment is responsible for huge paramagnetic susceptibility at low energy, which
enables a full valley polarization up to relatively high electron densities. The formulation also applies to the
gapped surface states of a three-dimensional topological insulator, where the anomalous current is related to the
magnetoelectric response in a spatially modulated potential.

DOI: 10.1103/PhysRevB.84.125427 PACS number(s): 81.05.ue, 75.20.−g, 75.70.Ak

I. INTRODUCTION

The magnetic moment in an electronic system consists
of two distinct factors due to the spin and orbital motion
of electrons. In solids, the spin magnetic moment is en-
hanced by an anomalous factor caused by the orbital effect,
resulting in an increase in the g factor.1,2 Graphene3–5 has
an intriguing counterpart of spin, which is associated with
valley pseudospins, i.e., the degree of freedom corresponding
to different points in the Brillouin zone called K+ and K−
valleys. Specifically, when the band gap is opened by an
asymmetric potential breaking the sublattice symmetry, the
graphene electrons have an anomalous magnetic moment,
which is opposite in different valleys and is similar to a real
spin.6–8 Generally, the anomalous magnetic moment is closely
related to the geometric nature of the Bloch band and has been
argued about in relation to the Berry phase.9–13 Previously, we
calculated the orbital susceptibility in gapped monolayer and
bilayer graphenes and showed that the susceptibility near the
K± point, where the dispersion is quadratic, is contributed from
the Pauli paramagnetism caused by the valley pseudospin.8

In this paper, to understand the physical origin of the
pseudospin magnetic moment and to investigate the pseu-
dospin magnetic moment in various electronic structures
other than quadratic dispersion, we develop a general low-
energy effective-mass theory to describe the anomalous current
density supporting the magnetic moment. We explicitly derive
a quantum-mechanical current distribution in general Bloch
electron systems, which describes a chiral current circulation
for each eigenstate. Using the formula, we actually calculate
the valley-dependent chiral current in a gapped graphene
monolayer, bilayer,14–17 and ABC-stacked multilayers.18–20

The valley-dependent magnetic moment exactly gives the
valley splitting of Landau levels, generalizing our previous
results limited to the quadratic dispersion.8 In particular, in
the gapped bilayer8 and ABC multilayers, the valley splitting
and diverging density of states at the band bottom result
in a huge paramagnetic susceptibility, enabling a full valley
polarization up to a relatively high electron density on the
order of 1012 cm−2 at a magnetic field of ∼1 T.

The formulation also allows inclusion of the external
potential field within the low-energy approximation and, thus,
is useful for investigating the chiral current in disordered
systems and also finite systems bound by the potential
barrier. It also applies to the gapped surface states of the
three-dimensional topological insulator, where the anomalous
current describes the magnetoelectric response in a spatially
modulated potential.21–24

This paper is organized as follows. In Sec. II, we present the
general effective-mass description of the anomalous current
density for Bloch electrons. We apply this to asymmet-
ric monolayer, bilayer, and ABC-multilayer graphenes in
Secs. III–V, respectively, to describe the chiral current cir-
culation, magnetic moment, and valley splitting of Landau
levels. In Sec. VI, we calculate the magnetic susceptibility and
argue about the role of the anomalous magnetic moment. In
Sec. VII, we describe the current distribution in a spatially
modulated external potential and formulate it in terms of a
response function analogous to the Hall conductivity. The
conclusion is given in Sec. VIII.

II. ANOMALOUS ORBITAL CURRENT

We consider a Bloch electron system described by an
effective-mass Hamiltonian matrix Hmm′(p), where p is the
crystal momentum and m and m′ are band indices. We assume
that the Hamiltonian is diagonalized at p = 0 as

Hmm′(0) = ε0
mδmm′ , (1)

and, for simplicity, that there is no degeneracy at p = 0. In the
presence of external potential V (r), the effective-mass wave
function F(r) obeys the Schrödinger equation,∑

m′
Hmm′(p)Fm′(r) = [ε − V (r)]Fm(r), (2)

where p = −ih̄∇ and ε is the eigenenergy. We assume |V | �
|ε0

m − ε0
m′ | so that the states of different bands are not strongly

mixed.
We focus on an eigenstate near ε = ε0

n of the particular
band n. Then, the wave function has its amplitude mainly on
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Fn. By the first-order perturbation, the amplitude at Fm�=n can
be written in terms of Fn as

Fm(r) ≈ Hmn(p)

ε0
n − ε0

m

Fn(r). (3)

The Schrödinger equation, Eq. (2), then becomes[
H(eff)

n (p) + V (r)
]
Fn(r) = εFn(r), (4)

with the effective Hamiltonian,

H(eff)
n (p) = Hnn(p) +

∑
m�=n

Hnm(p)Hmn(p)

ε0
n − ε0

m

. (5)

Correspondingly, we can define the effective velocity operator,

vμ(eff)
n = ∂H(eff)

n (p)

∂pμ

, (6)

and the local current density operator,

jμ(eff)
n (R) = − e

2

{
vμ(eff)

n ,δ(r − R)
} = − e

2

[{
vμ

nn,δ(r − R)
}

+
∑
m�=n

1

ε0
n − ε0

m

{(
vμ

nmHmn

+Hnmvμ
mn

)
, δ(r − R)

}]
, (7)

where {a,b} = ab + ba is the anticommutator and

v
μ

mm′ = ∂Hmm′(p)

∂pμ

. (8)

j
μ(eff)
n actually covers only part of the total current density

even in the low-energy limit. The original current density
operator is given by

jμ(R) = − e

2
{vμ,δ(r − R)} , (9)

where vμ is a matrix defined by Eq. (8). The expectation value
of jμ for a given state F near ε0

n is written as

〈jμ(R)〉 =
∑
mm′

∫
dr F ∗

m(r)[jμ(R)]mm′Fm′(r)

≈
∫

dr F ∗
n (r)jμ

n (R)Fn(r). (10)

In the second equation, we used Eq. (3) and defined

jμ
n (R) = − e

2

[{
vμ

nn,δ(r − R)
}

+
∑
m�=n

1

ε0
n − ε0

m

( {
vμ

nm,δ(r − R)
}
Hmn

+Hnm

{
vμ

mn,δ(r − R)
} )] = jμ(eff)

n (R)

− e

2

∑
m�=n

1

ε0
n − ε0

m

{
vμ

nm[δ(r − R),Hmn] + H.c.
}
.

(11)

j
μ
n is not equivalent to j

μ(eff)
n since Hmn and δ(r − R) do

not generally commute. As shown in the following, the
second term, called the anomalous current in the following,
is responsible for the chiral current circulation in gapped
graphenes.

A similar argument is available for the orbital magnetic
moment. The operator of the magnetic moment perpendicular
to the layer is defined as

m = − e

2c
(xvy − yvx). (12)

Similar to Eq. (10), the expectation value of m for a state of
band n can be written as

〈m〉 ≈
∫

dr F ∗
n (r)mnFn(r), (13)

where mn is the effective magnetic moment,

mn = − e

2c

(
xvy(eff)

n − yvx(eff)
n

)
−eh̄

2c

∑
m�=n

1

i

vx
nmv

y
mn − v

y
nmvx

mn

ε0
n − ε0

m

. (14)

The first term is the magnetic moment given by the orbital
current j

μ(eff)
n . The second term is the extra magnetic moment

coming from the anomalous current and coincides with the
expression of magnetic moment, which enhances the g factor
in a conventional semiconductor physics.1,2

While we include a diagonal scalar potential V (r) in the
above argument, an off-diagonal potential generally is possible
in systems, such as graphene with a random vector potential.
As long as the potential term enters the Hamiltonian in the
form of Hmn + Vmn(r), as in the random vector potential for
graphene, the expression of the chiral current Eq. (11) is not
influenced since Vmn commutes with δ(r − R) and does not
alter the velocity operator v

μ
mn.

III. MONOLAYER GRAPHENE

Graphene is composed of a honeycomb network of carbon
atoms, where a unit cell contains a pair of sublattices, denoted
by A and B. Low-energy electronic states are described by the
effective Hamiltonian,25–33

H(p) =
(

� vp−
vp+ −�

)
, (15)

where p± = ξpx ± ipy, ξ = ± is the valley index corre-
sponding to the Kξ point in the Brillouin zone, and p is
the momentum measured from Kξ . The matrix works on a
two-component envelope wave function [FA(r),FB(r)] at the
A and B sublattices, respectively. The diagonal terms ±�,
opening the energy gap at the Dirac point, are given by
the potential asymmetry between A and B sites, which, for
instance, can arise in a certain substrate material.34,35 The band
velocity is v ≈ 1 × 106 m/s.

The surface states of the three-dimensional topological
insulator of the Bi2Se3 family is also described by a similar
Hamiltonian to Eq. (15), where (px,py) is rotated to (py, −
px).23,24 The rotation of vector p is compensated by the spinor
rotation and does not affect the following argument. There is
only a single valley index, and the diagonal term � appears
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FIG. 1. (Color online) (a) Low-energy dispersion of gapped bilayer graphene given by Eq. (27). (b) Landau level spectrum of Eq. (39)
with some small n’s, plotted against the magnetic field. Dashed (red) and solid (black) lines represent the valleys ξ = + and −, respectively.
Numbers assigned to the curves indicate Landau level index n. A pair of dotted slopes represents the energy of the band bottom shifted by
pseudospin Zeeman energy, i.e., −ε0 ± h̄ω0/2. At � = 0.1 eV, the characteristic energy scale is ε0 = 13 meV, and the magnetic field for
h̄ω0/ε0 = 1 is 7.6 T.

only when the time-reversal symmetry is broken, for instance,
by attaching a ferromagnetic material.21,22

We assume � > 0 and consider a state near the electron
band bottom ε = �. Then, the wave amplitude is concen-
trated mainly on the first component F ≡ FA. The reduced
Hamiltonian for F excluding the constant energy becomes,

H(eff)(p) = p2

2m∗ , (16)

with the effective mass,

m∗ = �

v2
. (17)

Applying Eq. (11), the local current density is written as

〈j(r)〉 = − eh̄

m∗ Im(F ∗∇F ) − ξ
eh̄

2m∗ (−ez × ∇)|F |2,
(18)

where ∇ = (∂/∂x,∂/∂y,0) and ez = (0,0,1). The first term is
the usual current density, corresponding to j (eff) of Eq. (11).
The second term is the anomalous component and is denoted
as jc in the following. It flows perpendicularly to the gradient
of density |F |2, and thus, it circulates on a closed loop and
does not contribute to the electron transport. The direction is
opposite between ξ = ±. It is written in terms of the equivalent
local magnetic moment μ as

〈jc(r)〉 = c∇ × μ(r),
(19)

μ(r) = −ξ
eh̄

2m∗c
|F |2ez.

For the valence-band electron, a similar calculation shows that
the first term of Eq. (18) flips the sign, while the second term
remains unchanged.

The expression of the magnetic moment operator, Eq. (14),
becomes

m = − e

2m∗c
(xpy − ypx) − ξ

eh̄

2m∗c
, (20)

where the first and second terms correspond to those of
Eq. (18), respectively. The second term, now denoted as mc, is
the magnetic moment induced by the anomalous current and
coincides with the integral of μ(r) in Eq. (19) over the space.
It should be noted that mc is constant regardless of the details
of the wave function. This is analogous to the spin magnetic
moment of the bare electron system with ξ being the spin index,
while in graphene, this is mimicked by the valley-dependent
chiral orbital current. The expression of mc agrees with an
intrinsic magnetic moment in the semiclassical picture, which
is regarded as the self-rotation of the wave packet.6

The valley pseudospin magnetic moment mc produces the
pseudospin Zeeman energy in the presence of a magnetic
field, and this accounts for the valley splitting of Landau
levels in graphene.8 This can be checked by considering
the Hamiltonian in a uniform external field B, or H(π) in
Eq. (15), where π ≡ p + eA/c with the vector potential A
giving B = ∇ × A. Noting the relation [πx,πy] = −ih̄eB/c,
the reduced Hamiltonian for the A site near ε = � is
written as8

H(eff)(π) ≈ v2

2�
π−π+ = h̄ωc

(
n̂ + 1

2
+ ξ

2

)
, (21)

where ωc = eB/(m∗c), π± = ξπx ± iπy, n̂ = a†a, and a =
(2h̄eB/c)−1/2(πx − iπy) is the annihilation operator of the
Landau level and we used the relation π2 = (2h̄eB/c)(n̂ +
1/2). The term depending on ξ is the pseudospin Zeeman
energy, and it actually coincides with −mc · B. In graphene,
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the pseudospin Zeeman splitting is equal to the Landau level
spacing so that the nth Landau level at valley K+ has the same
energy (n + 1)-th level at K−.

The two terms in the current distribution of Eq. (18) can
be distinguished by a change in the two-dimensional mirror
reflection,

F (r) → F ′(r) ≡ F (r′), (22)

where r = (x,y) and r′ = (−x,y). Let j(r) and j′(r) be the
expectation values of the current density for wave functions
F and F ′, respectively. Each current component changes with
either s = ± in (

j ′
x(r′)

j ′
y(r′)

)
= s

(−jx(r)

jy(r)

)
, (23)

or equivalently,

r′ × j′(r′) = −sr × j(r). (24)

In Eq. (18), the first term j(eff) yields to s = +, i.e., the current
map is just mirror reflected in the same way as r. This is
a natural consequence, since H(eff) is invariant in the mirror
reflection.

The second term jc has the opposite sign s = −, or j′c
goes against the mirror reflection of jc and can be called
chiral in this sense. In gapped graphene, having this term
may look counterintuitive since the system is originally mirror
symmetric with respect to a line containing an AB bond. But
this real reflection exchanges valleys ξ = ± at the same time in
addition to Eq. (22) so that jc, then, simply is mirror reflected
as it should be. Therefore, the chiral term is necessarily
accompanied by factor ξ .

Two current components also behave differently in the
effective time-reversal operation F → F ∗ within a single
valley. The first term obviously reverses in this operation as a
consequence of the effective time-reversal symmetry forH(eff).
The second term only depends on the absolute value of the
wave amplitude and, thus, remains unchanged in the same
operation. But it reverses in the real time-reversal operation,
which switches ξ = ±. We will see that the same argument
will apply to bilayer graphene as well.

IV. BILAYER GRAPHENE

Bilayer graphene14–17 is a pair of graphene layers arranged
in AB (Bernal) stacking and includes A1 and B1 atoms
on layer 1 and A2 and B2 on layer 2.36–43 The states at
B1 and A2 are coupled by γ1 ≈ 0.39 eV.44 The low-energy
states are described by the Hamiltonian matrix for the basis
(|A1〉,|B1〉,|A2〉,|B2〉),36,37

H(p) =

⎛
⎜⎜⎜⎝

� vp− 0 0

vp+ � γ1 0

0 γ1 −� vp−
0 0 vp+ −�

⎞
⎟⎟⎟⎠, (25)

where � describes potential asymmetry between layers 1
and 2 (not A and B sites), which gives rise to an energy
gap.36–40,42,45,46 Experimentally, the potential asymmetry can
be induced by applying an electric field perpendicular to the
layer,15–17,47,48 and the asymmetry as large as � ∼ 0.1 eV was

actually observed in spectroscopic measurements.15,47,48 For
simplicity, we neglected the trigonal warping effect due to the
extra band parameter.36,41

Let us assume � > 0 in the following. At p = 0, the
Hamiltonian gives four eigenenergies,

ε0
1 = −

√
γ 2

1 + �2, ε0
2 = −�,

(26)
ε0

3 = �, ε0
4 =

√
γ 2

1 + �2.

We consider a state near the conduction-band bottom ε = ε0
3,

of which wave amplitude is mostly concentrated on the first
component FA1 ≡ F . The effective Hamiltonian for F is37

H(eff)(p) ≈ 1

2�

v4p4

γ 2
1

− 2�
v2p2

γ 2
1

≡ p4

4m0p
2
0

− p2

2m0
, (27)

where the energy is measured from ε = � and

m0 = γ 2
1

4v2�
, p0 = h̄k0 =

√
2�

v
. (28)

The term with p2 comes from the off-diagonal elements H34

and H31 in the Hamiltonian matrix diagonalized for p = 0. To
have the p4 term, in Eq. (5), we need the higher-order term for
the off-diagonal matrix element between j = 2 and 3; i.e., use
instead of H32,

H̃32 = H32 +
∑

m=1,4

H3n

1

ε0
3 − ε0

n

Hn2. (29)

The dispersion is plotted in Fig. 1(a). It is a nonmonotonic
function of p, and the band minimum appears at off-center
momentum p = p0 and energy ε = −ε0, where

ε0 = 2�3

γ 2
1

. (30)

For instance, the asymmetric energy of � = 0.1 eV gives ε0 =
13 meV. The density of states is given by

D(ε) = gsgv

m0

2πh̄2

1√
1 + ε/ε0

×

⎧⎪⎨
⎪⎩

0 (ε < −ε0),

2 (−ε0 < ε < 0),

1 (ε > 0),

(31)

where gs = gv = 2 is the spin and valley degeneracies.
The local current density of Eq. (11) is written in the same

level of approximation as

〈j(r)〉 = Im u + ξ (−ez × Re u), (32)

where the vector u is defined by

uμ = − eh̄

2m0

1

k2
0

∑
ν=x,y

[
2(∂νF

∗)∂μ(∂νF ) − ∂μ

(
F ∗∂2

ν F
)]

+ eh̄

m0
F ∗∂μF. (33)
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The second component of 〈j(r)〉 is the chiral current and is
expressed as

〈jc(r)〉 = c∇ × μ(r),

μ(r) = ξez

eh̄

2m0c

{
− 1

k2
0

[|∇F |2 − Re(F ∗∇2F )] + |F |2
}
.

(34)

The equivalent magnetic moment μ(r) now depends on F and
its derivative. The magnetization of Eq. (14) becomes

m = − e

2c
(xvy(eff) − yvx(eff)) − ξ

eh̄

m0c

(
p2

p2
0

− 1

2

)
.

(35)

The second term mc is the valley magnetic moment induced
by the chiral current. The valley-splitting energy at the band
bottom can be estimated by inserting p = p0,

2|mc(p0)| B = h̄eB

m0c
≡ h̄ω0. (36)

The effective g factor for this pseudospin splitting is given
by g∗ = 2m/m0 where m is the bare electron mass. g∗ is
proportional to �, and it approximates 30 at � = 0.1 eV.

When the valley splitting exceeds εF , the system is fully
valley polarized with a single kind of chiral particle. Using
the density of states of Eq. (31), the condition for full valley
polarization is estimated in the low B-field limit,

n < ncrit = gs

1

π

�

h̄v

√
2eB

ch̄
, (37)

where n is the electron density. We have ncrit ≈ 5 × 1011 cm−2

at � = 0.1 eV and B = 1 T. For the gapped monolayer
graphene, the condition is

n < ncrit = gs

eB

h
, (38)

which is approximately 5 × 1010 cm−2 at B = 1 T. In the
bilayer, the critical density is proportional to

√
B rather than

B, and thus, the valley polarization is achieved in much lower
magnetic fields than in the monolayer in a small electron
density. This property is caused by the divergence of the
density of states at the band bottom.

Similar to the monolayer, the valley splitting of Landau
levels in asymmetric bilayer graphene16,36,49 is correctly given
by the pseudospin Zeeman energy due to the magnetic moment
mc. The original Hamiltonian in a magnetic field is given by
Eq. (25) with p replaced by π . Near ε = �, it is reduced to

H(eff)(π) ≈ 1

2�

(vπ−)2(vπ+)2

γ 4
1

− 2�
(vπ−)(vπ+)

γ 2
1

= (h̄ω0)2

4ε0

[(
n̂ + 1

2
+ ξ

)2

− 1

4

]

− h̄ω0

(
n̂ + 1

2
+ ξ

2

)
, (39)

where ω0 = eB/(m0c). The pseudospin Zeeman energy, i.e.,
half the energy difference between ξ = ±, is transformed to

EZeeman = ξ
eh̄

m0c

(
π2

p2
0

− 1

2

)
B, (40)

which coincides with −mc · B in the limit of B = 0.
The first and second terms in Eq. (39) correspond to

p4 and p2 terms in the zero-field Hamiltonian, respectively,
and become dominant when h̄ω0(n + 1/2) � ε0 and �ε0,
respectively. In the lower Landau levels where the second term
dominates, the nth level at valley K+ and the (n + 1)-th level at
K− approximately degenerate. In higher levels where the first
term becomes dominant, the nth Landau level at valley K+ and
the (n + 2)-th level of K− degenerate. Figure 1(b) plots the
Landau level energy of Eq. (39) as a function of the magnetic
field, where dashed and solid lines represent the valleys ξ = +
and −, respectively. At � = 0.1 eV, for instance, the magnetic
field corresponding to h̄ω0/ε0 = 1 is 7.6 T. A pair of dotted
slopes represents the energy of the band bottom shifted by
pseudospin Zeeman energy, i.e., −ε0 + ξh̄ω0/2. In a small B

field, they actually serve as the envelope curves for Landau
levels of ξ = ±. Full valley polarization occurs below the
upper slope.

V. ABC MULTILAYER GRAPHENES

For the structure of bulk graphite, there are two known
forms called ABA (AB, hexagonal, or Bernal) and ABC
(rhombohedral) with different stacking manners.18–20 The
ABA phase is thermodynamically stable and common, while
it is known that some portion of natural graphite takes the
ABC form.18 The low-energy band structure of a finite ABC
graphene multilayer is given by a pair of surface bands
localized at the outermost layers,37,50,51 and the interlayer
potential asymmetry opens an energy gap between those
bands.51–54

Now, we attempt to argue about the chiral magnetic
moment of gapped low-energy bands of ABC N -layered
graphene in a parallel way to the bilayer graphene. If the
basis is taken as |A1〉,|B1〉; |A2〉,|B2〉; . . . ; |AN 〉, |BN 〉, the
low-energy effective Hamiltonian can be written as37,50,51,53,54

HABC =

⎛
⎜⎜⎜⎜⎝

H1 V

V † H2 V

V † H3 V

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠, (41)

and

Hj =
(

Uj vp−
vp+ Uj

)
, V =

(
0 0

γ1 0

)
, (42)

where Uj is the electrostatic potential at the j th layer. For
simplicity, we neglected the trigonal warping effect due to the
extra band parameter.54

The potential asymmetry Uj can be induced by applying an
electric field E perpendicular to the layer. When E is uniform,
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the potential energy with respect to the middle of the stack is
written as

Uj =
(

N + 1

2
− j

)
eEd, (43)

where d ≈ 0.334 nm is the interlayer spacing. The bilayer
graphene of Eq. (25) is a special case of Eq. (41) with N = 2
and eEd = 2�. The actual field E can be smaller than the
externally applied electric field due to the screening by the
electrons in the graphene.51 We assume E > 0 and |Uj | � γ1

in the following.
At p = 0, there are two low-energy eigenenergies at ε = U1

and UN originating from |A1〉 and |BN 〉, while all other
states appear near ε = ±γ1 through the dimerization between
|Bj 〉 and |Aj+1〉 for each j = 1, . . . ,N − 1. The effective
Hamiltonian for the states near ε = U1 is derived as

H(eff)(p) ≈ γ 2
1

(N − 1)eEd

(
vp

γ1

)2N

− eEd

(
vp

γ1

)2

≡ 1

N

p2
0

2m0

(
p

p0

)2N

− p2

2m0
, (44)

where the energy is measured from ε = U1 and

m0 = γ 2
1

2v2(eEd)
, p0 = γ1

v

(√
N − 1

N

eEd

γ1

)1/(N−1)

.

(45)

The term with p2 comes from the direct coupling with the
neighboring dimers formed by |B1〉 and |A2〉, and the p2N term
is from the N th-order coupling with the other low-energy state
of |BN 〉. All other terms are neglected in low energies as long
as vp0/γ1 � 1. The band minimum appears at p = p0 and
energy ε = −ε0, where

ε0 = N − 1

N

p2
0

2m0
. (46)

The density of states diverges at ε = −ε0 as

D(ε) ≈ gsgv

m0

πh̄2

1√
2N

N

N − 1

1√
1 + ε/ε0

. (47)

For example, we show the energy dispersion of N = 3 and
4 in Fig. 2(a). Note that units p0 and ε0 depend on N . At
eEd = 0.2 eV, for instance, the characteristic energy scale is
ε0 = 54 meV and is 86 meV for N = 3 and 4, respectively.

The magnetization of Eq. (14) becomes

m = − e

2c
(xvy(eff) − yvx(eff))

−ξ
eh̄

m0c

[
N

2

(
p

p0

)2(N−1)

− 1

2

]
, (48)

where the second term mc is the valley magnetic moment. The
valley-splitting energy at the band bottom can be estimated by
inserting p = p0,

2|mc(p0)| B = (N − 1)h̄ω0, (49)

where ω0 = eB/(m0c). The splitting is greater for larger N

under the same electric field E . The condition for full valley
polarization in the low B-field limit is

n < ncrit = gs

1

π

√
eB

ch̄

γ1

h̄v

(√
N − 1

N

eEd

γ1

)1/(N−1)

. (50)

In the small-field region eEd � γ1, which is currently as-
sumed, ncrit increases for larger N , i.e., the valley polarization
is achieved up to higher electron densities in the larger stack.
In the large N limit, ncrit approaches a value independent of E ,

n∞
crit = gs

1

π

√
eB

ch̄

γ1

h̄v
, (51)

which approximates 1.5 × 1012 cm−2 at B = 1 T.
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FIG. 2. (Color online) (a) Low-energy dispersion of gapped three- and four-layer ABC graphene given by Eq. (44). (b) and (c) Corresponding
Landau level spectrum of Eq. (52) with some small n’s, plotted against the magnetic field. A pair of dotted slopes represents −ε0 ± h̄(N − 1)ω0/2.
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The low-energy Landau level spectrum near ε = U1 is

H(eff) ≈ γ 2
1

(N − 1)eEd

(vπ−)N (vπ+)N

γ 2N
1

− eEd
vπ−
γ1

vπ+
γ1

= (N − 1)N−1

NN

(h̄ω0)N

εN−1
0

N∏
j=1

[
n̂ + j − 1 − ξ

2
N

]

−h̄ω0

(
n̂ + 1

2
+ ξ

2

)
. (52)

Again, the valley splitting in the limit of B = 0 is shown
to be equivalent to −mc · B of Eq. (48). In higher Landau
levels where the first term becomes dominant, the nth Landau
level at valley K+ and the (n + N )-th level of K− degenerate.
Figures 2(b) and 2(c) plot the Landau level spectra of Eq. (52)
for the cases of N = 3 and 4, respectively. The Landau levels
in small magnetic fields are well bound by dotted lines or the
energies of −ε0 + ξh̄ω0/2. At eEd = 0.2 eV, for instance, the
magnetic field corresponding to h̄ω0/ε0 = 1 is 33 and 52 T for
N = 3 and 4, respectively. As argued above, we can see that,
for greater N , the full valley polarization is possible up to a
greater electron density (i.e., more Landau levels) at the same
magnetic field.

VI. PSEUDOSPIN PARAMAGNETISM

The pseudospin Zeeman splitting causes the Pauli para-
magnetism in an analogous way to a real spin. The magnetic
susceptibility was calculated previously for gapped monolayer
and bilayer graphenes,8 and it was shown that the susceptibility
in the quadratic dispersion near the K± point was expressed as
a sum of valley pseudospin paramagnetism and Landau dia-
magnetism similar to a bare electron. In monolayer graphene,
the pseudospin paramagnetism diverges in the zero gap limit,
leading to a singular orbital susceptibility where the strong
diamagnetism suddenly disappears off the Dirac point.8,33,55–60

Here, we extend the argument to general electronic struc-
tures other than quadratic and show that the pseudospin
splitting always accompanies a paramagnetic contribution in
any part of the dispersion. Let us consider a system in a
magnetic field B with the Landau level sequence,

εn = ε(xn,δ) (n = 0,1,2, . . .),
(53)

xn =
(

n + 1

2

)
δ, δ = h̄ωc = h̄eB

m∗c
,

where n is the Landau level index and m∗ is the effective
mass characterizing the system. The second argument δ in
ε(xn,δ) represents the dependence on B, which is not included
in xn. For example, the low-energy Landau level of gapped
monolayer graphene, Eq. (21), is given by

ε(xn,δ) = xn + ξ

2
δ, (54)

and that of bilayer graphene, Eq. (39), is given by

ε(xn,δ) = 1

4ε0

[
(xn + ξδ)2 − 1

4
δ2

]
+
(

xn + ξδ

2

)
, (55)

with m∗ replaced by m0.

By treating x(= xn) and δ as independent variables, we can
expand ε(x,δ) as

ε(x,δ) = ε(0)(x) + ε(1)(x)δ + 1
2ε(2)(x)δ2 + · · · . (56)

The zeroth-order term ε(0) is related to the energy spectrum
at B = 0. In particular, when the system is isotropic, the
dispersion is given by ε(0)(x) with x = p2/2m∗. The first-
order shift ε(1)δ can be regarded as a pseudospin Zeeman
term associated with magnetic moment −(eh̄/cm∗)ε(1), which
corresponds to mc in previous arguments.

The thermodynamic potential becomes

� = − 1

β

1

2πl2
B

∞∑
n=0

ϕ[ε(xn,δ)]

= − 1

β

m∗

2πh̄2

[∫ ∞

0
ϕ[ε(x,δ)]dx + δ2

24

∂ϕ[ε(x,0)]

∂x

∣∣∣∣
x=0

]

+O(δ3), (57)

where ϕ(ε) = ln[1 + e−β(ε−μ)], β = 1/(kBT ), μ is the chem-
ical potential, and we used the Euler-Maclaurin formula in the
second equation. Using Eq. (56), we can further expand � in
terms of δ ∝ B. The magnetization is given by

M = −
(

∂�

∂B

)
μ

, (58)

and the magnetic susceptibility is given by

χ = −
(∂2�

∂B2

)
μ

∣∣∣∣
B=0

. (59)

We end up with

χ (μ,T ) =
∫ ∞

−∞
dε

(
−∂f

∂ε

)
χ (ε), (60)

where

χ (ε)=
(

eh̄

cm∗

)2
[
D(ε)(ε(1))2 −

∫ ε

dε D(ε)ε(2)

− 1

12

m∗

2πh̄2 θ [ε − ε(0)(0)]
∂ε(0)(x)

∂x

∣∣∣∣
x=0

]
, (61)

and f (ε) = [1 + eβ(ε−μ)]−1 is the Fermi distribution function.
In Eq. (61), ε(1) and ε(2) are regarded as functions of energy ε

through ε = ε(0)(x). D(ε) is the density of states given by

D(ε) = m∗

2πh̄2

∫ ∞

0
δ[ε − ε(0)(x)]dx. (62)

The susceptibility at T = 0 is given by χ (μ). The first term
in Eq. (61) is regarded as the Pauli paramagnetism induced by
the pseudospin magnetic moment. It always is positive and is
determined purely by the density of states and the magnetic
moment at Fermi energy. The second term is the summation
of the second-order energy shift ε(2) over all the states below
Fermi level, and the third term gives a discrete jump at the
energy corresponding to p = 0.
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FIG. 3. Susceptibility (solid line) and density of states (dashed
line) near the band bottom of asymmetric bilayer graphene, plotted
against the Fermi energy.

For the low-energy spectrum of the gapped monolayer
graphene, Eq. (54), we obtain8

χ = χP + χL,

χP = Dμ∗2
B , χL = − 1

3Dμ∗2
B , (63)

where χP and χL come from the first and third terms in
Eq. (61), respectively, and the second term is zero. Here,
D = gsgvm/(2πh̄2)θ (ε) is the density of states, and μ∗

B =
eh̄/(2m∗c) is the effective Bohr magneton. Obviously, χP

and χL correspond to conventional Pauli paramagnetism
and Landau diamagnetism, respectively. The susceptibility
calculated above is the contribution from the conduction band,
while the valence band gives the exact opposite jump at the
valence-band top. The total susceptibility is diamagnetic at
χ = −χP − χL in the gap region and disappears in conduction
and valence bands.8

For gapped bilayer graphene, Eq. (55), we get

χ (ε) = gsgve
2

2πm0c2
×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 (ε < −ε0),

1

2

2 + ε/ε0√
1 + ε/ε0

(−ε0 < ε < 0),

1

4

2 + ε/ε0√
1 + ε/ε0

+ 1

6
(ε > 0).

(64)

The susceptibility diverges at the band bottom ε = −ε0.8 The
physical meaning of the divergence is obvious, since the Pauli
paramagnetism, i.e., the first term of Eq. (61) is proportional
to the density of states, which diverges at the band bottom.
The susceptibility of Eq. (64) is plotted in Fig. 3 together with
the density of states, Eq. (31).

The argument can be extended to ABC N -layer graphene
in a straightforward fashion. Using Eqs. (47) and (48), the
pseudospin paramagnetic susceptibility above and near the
band bottom ε = −ε0 is written as

χ (ε) ≈ D(ε)m2
c = gsgve

2

2πm0c2

N (N − 1)

2
√

2N

1√
1 + ε/ε0

,

(65)

where m0 and ε0 are defined in Eqs. (45) and (46), respectively.
The paramagnetic divergence is stronger for greater N .

VII. SPACE-DEPENDENT HALL CONDUCTIVITY

If the system is modulated by an external scalar potential,
the anomalous current term gives a response current in an
analogous way to the Hall effect. Here, we argue about the
relation of the associated Hall conductivity to the anomalous
magnetic moment. In graphenes, the Hall current exactly can-
cels between two valleys due to the time-reversal symmetry,
and the real current appears only when the valley populations
are differentiated, such as the Pauli paramagnetism. In the
odd-valley case, such as the surface states of a strong
topological insulator, it directly gives a net current and causes
a magnetoelectric response.21,22

We consider a current distribution in a finite and isolated
system modulated by an external potential V (r). In the current
densities of gapped monolayer and bilayer graphenes, given
by Eqs. (18) and (32), respectively, the first term cancels in
summation over the occupied states because it reverses the
effective time-reversal operation F → F ∗. Then, the total
current is given by a summation of the chiral term c∇ × μ(r) as

J(r) = c∇ × M(r),

M(r) =
∑

occupied

μ(r). (66)

When the potential V (r) is weak and slowly varying, the
Thomas-Fermi approximation gives

M(r) ≈ MF − ∂MF

∂εF

V (r), (67)

where MF is the total magnetization of a uniform system,

MF = 1

(2πh̄)2

∫
occupied

mc(p)d2p, (68)

and mc(p) is the anomalous magnetic moment at momentum
p. Then, Eq. (66) becomes

J(r) = ce
∂MF

∂εF

[ez × E(r)], (69)

where E(r) = −∇V (r)/(−e) is the electric field, leading to a
response function,

σxy = −ce
∂MF

∂εF

. (70)

By applying Eq. (70) to the conduction-band electrons of
gapped monolayer graphene, where mc(p) is given by the
second term in Eq. (20), we have

σxy = ξ
e2

2h
. (71)

For gapped N -layer ABC graphenes, including the bilayer,
of which mc(p) is given by the second term in Eq. (48), the
expression approximates in high energies ε � ε0 as

σxy ≈ ξ
Ne2

2h
. (72)

When the system is confined to a finite space, the above-
mentioned Hall current gives a chiral edge current at the
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boundary. When the confining potential is slowly varying in
space, the current circulation is

I = −1

e

∫ εF

σxy(ε)dε = cMF , (73)

as a natural consequence. This is equally true in a sharp
potential as well, where the current is distributed in a range of
the Fermi wavelength from the boundary. Figure 4 illustrates
the single-valley current distribution given by the conduction-
band electrons of gapped monolayer and bilayer graphenes.
The details of the derivation are presented in the Appendix.

From its definition, the Hall conductivity argued here,
Eq. (70), is the long-wavelength limit of the static Hall
conductivity, namely, limq→0 limω→0 σxy(q,ω). For the
original Hamiltonian of monolayer graphene, Eq. (15), this is
evaluated as61

lim
q→0

lim
ω→0

σxy(q,ω) = −ξ
e2

2h
θ (� − |εF |), (74)

where θ (x) = 1 (x > 0), 0 (x < 0) is the step function and
� > 0 is assumed here. The low-energy result, Eq. (71),
describes the contribution from the conduction-band electrons
and, indeed, coincides with the discontinuous jump at ε = �

in Eq. (74). The valence band gives an exactly opposite jump
at ε = −� so that we have the half-integer Hall conductivity
inside the gap and zero in the conduction and valance bands.

Note that usual Hall conductivity, relevant in the transport,
is given by a different limit, limω→0 limq→0 σxy(q,ω). This is
calculated for gapped monolayer graphene as62

lim
ω→0

lim
q→0

σxy(q,ω) =

⎧⎪⎪⎨
⎪⎪⎩

−ξ
e2

2h

�

|εF | (|εF | > �),

−ξ
e2

2h
(|εF | < �),

(75)

which differs from Eq. (74) except for the value inside the gap.
The Berry curvature is directly related to this transport Hall
conductivity.13,63

From the relationship between the local current and the
local magnetic moment, Eq. (66), the spatial-dependent static

Hall conductivity σxy(q) can be formulated as a magnetization-
density correlation function, i.e.,

M(q) = 1

e
σxy(q)V (q). (76)

In the low-energy region of gapped monolayer graphene,
it becomes a density-density correlation function because
the pseudospin magnetization, Eq. (20), is constant for each
eigenstate regardless of the details of the wave function. This
suggests that σxy(q) is insensitive to the disorder localization
effect since the magnetic moment of each eigenstate remains
even when the wave function is localized. This is in contrast to
the transport Hall conductivity, where the localized eigenstates
have zero contribution.

Last, we show that Hall conductivity, Eq. (70), is directly
related to index difference �n between degenerated Landau
levels of two valleys, which are argued about in the previous
sections. This is defined by the ratio of pseudospin Zeeman
splitting to Landau level spacing, or

�n = 2mcB

h̄ωc

,

h̄ωc = h̄eB

c
2π

(
∂S(εF )

∂εF

)−1

, (77)

and S(εF ) = πp2
F is the area of the momentum space at the

Fermi energy εF . Using Eqs. (68) and (70), we obtain

�n = 2hc

e

∂MF

∂εF

= −2h

e2
σxy. (78)

Indeed, we have �n = 1 for gapped monolayer graphene and
�n ≈ N for gapped N -layer ABC graphene (including bilayer
graphene) in high energies.

VIII. CONCLUSION

We presented systematic analyses of the anomalous chiral
current and magnetic moment in gapped graphenes and related
materials. Starting from the low-energy effective-mass theory,
we formulated a description of local current distribution
supporting anomalous magnetic moment in general Bloch
systems. In gapped monolayer, bilayer, and ABC multilayer
graphenes, we showed that the chiral current circulation
accounted for the valley-dependent magnetic moment and
valley splitting of Landau levels. The bilayer and ABC
multilayer graphenes exhibit a large paramagnetism at the band
bottom, and full valley polarization is possible in relatively
high electron densities.

Various mechanisms for valley polarization or valley filter-
ing have been suggested, which might be used to control elec-
tronic devices.6,7,64–67 The possibility of full valley polarization
in a graphene bilayer and ABC multilayers invokes a simple
mechanism for valley-dependent transport. For example, if we
could locally apply opposite magnetic fields to the left and
right sides of a gapped bilayer or ABC-multilayer strip and
could achieve different valley polarizations in two regions,
then the transport between two regions would be killed, as
long as the valley flipping is prohibited in the intermediate

125427-9



MIKITO KOSHINO PHYSICAL REVIEW B 84, 125427 (2011)

region, i.e., the impurity potential and the spacial magnetic
field change are smooth compared to the atomic scale. On
the contrary, electrons can travel almost freely when the same
magnetic field is applied to two regions.

While we focus on the family of ABC-stacked multilayer
graphenes in the present paper, the anomalous magnetic
moment arises in ABA-stacked multilayer graphenes as well
when the inversion symmetry is broken.49 In ABA multilayers
with an odd number of layers, the lattice structure originally is
lacking in the inversion symmetry so that the valley splitting
intrinsically exists even in the absence of the external field.68

The present analysis applies to every sub-band comprising the
total band structure, each of which is akin to gapped monolayer
or bilayer graphenes.68,69
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APPENDIX: CHIRAL EDGE CURRENT

Here, we calculate the edge current distribution of gapped
monolayer and bilayer graphenes bound by a sharp confining
potential. Let us consider a low-energy Hamiltonian gapped
monolayer graphene, Eq. (16), bound by a potential barrier,

V (x) =
{∞ (x < 0),

0 (x > 0).
(A1)

The eigenstates are given by

F (r) ∝ eikyy sin kxx. (A2)

The current density of Eq. (18), integrated over the occupied
states, is written in terms of the Bessel function as

Jy(r) = ξ
e

h

εF

x
J2(2kF x). (A3)

It oscillates and decays in the length scale of 2π/kF as shown
in Fig. 4. The total edge current is

I ≡
∫ ∞

0
dx Jy(r) = ξ

e

2h
εF , (A4)

which coincides with cMF .
A similar argument is available in bilayer graphene. For

simplicity, we consider high energies ε � ε0 and neglect
the p2 term in Eq. (27). The Schrödinger equation becomes
the fourth-order differential equation due to the p4 term,
and the boundary condition becomes F (0) = F ′(0) = 0. The
eigenstate then becomes

F (r) ∝ eikyy[cos kxx + sin kxx − e−kxx]. (A5)

The total current density, Eq. (34), integrated over the occupied
states, is numerically calculated and is plotted in Fig. 4. Again,
the length scale is characterized by its Fermi wavelength, but
it decays more rapidly than in the monolayer. The total edge
current is shown to be

I =
∫ ∞

0
dx Jy(r) = ξ

e

h
εF , (A6)

which is twice as large as the monolayer’s.
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