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Elasticity model for the evaluation of structural parameters in multilayer systems with applications
to transition metal and Si-based multilayers
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In this paper we present and evaluate a model based on elasticity theory for the calculation of in- and
out-of-plane lattice parameters in multilayer systems, which can be used for a wide selection of multilayers.
The model assumes perfect lattice matching at the interface between the different components in the multilayer.
The only input is the knowledge of the elastic and lattice constants of the different components in the bulk as
well as the relative thickness between the components in the multilayer. We show that the model is in good
agreement when compared to first-principles theory calculations and also that there is good agreement between
the model and experimental structures for several multilayer systems. The model is also shown to be more
appropriate in describing thicker multilayers with larger periodicities such that the lattice constants in the system
are independent on the periodicity. Furthermore, we provide results for the lattice parameters for a large body of
multilayers based on transition metals and semiconducting materials.
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I. INTRODUCTION

The ability to grow materials, layer by layer, in a con-
trolled way, has opened new opportunities and challenges in
materials research. It is now well established that almost all
combinations of elements can be grown on top of each other,
often epitaxially, i.e., in such a way that the same basic crystal
structure is preserved as one crosses the interface between
one element type to the next. One of the most frequently
studied classes of such human-made materials is the so-called
multilayer structure illustrated in Fig. 1. Part of the interest in
these systems is that by careful choice of components in the
multilayer, new and improved functionality can be obtained.
An example of this is the magnetic multilayers displaying the
giant magnetoresistance (GMR) effect. Typically magnetic and
nonmagnetic elements are chosen for the growth of a magnetic
multilayer, and, in combination with the unexpected interlayer
exchange coupling, the equally surprising GMR effect was
demonstrated.1,2 Other examples of where the fabrication of
multilayer structures have led to new or extreme properties are
the supermodulus effect, materials with dislocation blocking
under external strain,3 as well as quantum well states in
semiconductors.4 Recently, it has further been suggested that
the equilibrium doping solubility in III-V semiconductors can
be increased by the formation of multilayers.5

Experimentally the functionality of a multilayer has been
found to be coupled to its structural properties. Via experimen-
tal techniques such as x-ray diffraction and neutron scattering
experiments one can obtain information about the in-plane
lattice constant and the average out-of-plane lattice constant
of the multilayer (i.e., the average over all atomic planes of the
out-of-plane lattice constant). Often one observes a very strong
coupling between structural arrangement of the atomic species
and the functionality of the material. Possibly the best example
of this coupling is Fe, which is a ferromagnetic material in the
body-centered cubic phase and a nonmagnetic (or noncollinear
magnetic) material in the face-centered cubic phase. For
this reason it becomes important to not only have accurate
measurements of the crystal structure of these multilayers
but also to have accurate theoretical tools, preferably with

predictive power. Density functional theory is indeed such a
tool, and it is by now well established that the crystal structure
of almost any element, compound, or multilayer is well
reproduced by this theory.6 Unfortunately, such calculations
can be quite time-consuming, especially for multilayer systems
where the number of atoms necessary for the calculation
is large. Hence simpler and more efficient methods are
needed.

We explore in this paper a simple and fast approach
for obtaining information about the structural properties of
multilayers. The method relies on the theory of elasticity in
general and is expected to be accurate if the introduction of
interfaces, as indeed is done in multilayers, does not influence
the chemical bonding in a significant way. Hence we expect
our method to be accurate for thicker multilayers or for
multilayers where the electronic structure of the interface
atoms is not significantly altered from that of more bulk
like atoms of the multilayer. A preliminary study relying
on this approach has been published in Ref. 7. Here we
will present the model and test it against first-principles
theory calculations for different multilayers. Furthermore,
we have performed calculations of a large number of dif-
ferent metallic and semiconducting multilayers, the results
of which are presented here and will serve as a structural
database.

The rest of this paper is organized as follows. In Sec. II
we provide the details of our theoretical model. In Sec. III we
present the general features of the model using the example
of a V/Cr multilayer and evaluate its performance compared
to structures obtained using first-principles density functional
theory calculations, we will also present structural parameters
obtained using our model for a large set of various multilayers,
and in Sec. IV we will summarize our results and draw
conclusions.

II. THEORY

We calculate the lattice parameters of the multilayer by
use of an analytical model where the energy of the multilayer
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RÅSANDER, SOUVATZIS, HÖGLUND, AND ERIKSSON PHYSICAL REVIEW B 84, 125424 (2011)

FIG. 1. (Color online) Schematic illustration of a multilayer
structure, composed of two different atomic species, symbolized by
red and blue spheres. DA and DB are the thickness of layer A and B
respectively, and � is the periodicity. The arrows shows the in- and
out-of-plane directions of the multilayer.

structure is expressed as the sum of the energy from each
material building up the multilayer, i.e.,

Etot = EA + EB, (1)

where EA/B is the total energy of the multilayer component
A/B. The energy of each multilayer component is expressed as
contributions from strain along the epitaxial growth direction,
with corresponding strain in the perpendicular direction, and
volume distortions. For the case of cubic geometry multilayers
this corresponds to the tetragonal and volume distortions

of the cubic cell of each of the materials building up the
multilayer. We also assume that the multilayers are perfectly
lattice matched at the interface. The total energy of the system
is then the sum of the two constituent multilayers and the most
stable structure is given by the minimum of this total energy
with respect to changes in the lattice parameters. In this way the
overall structure is determined solely by the elastic constants
of the material in each component of the multilayer.

We now focus on the case of cubic crystals making up
the multilayer and that the interface between the different
components is any of the (100), (010), or (001) surfaces. For
this case the energy contribution from the tetragonal distortion
can be written as

Es = E0 + 6c′δ2V, (2)

where the tetragonal shear constant c′ is related to the elastic
constants c11 and c12 and δ is defined via the c/a ratio as

c

a
= 1

(1 + δ)3
. (3)

Furthermore, the energy for a change in volume can be
expressed as

Ev = E0 + ∂Ev

∂V
�V + 1

2

∂2Ev

∂V 2
(�V )2 + · · · , (4)

where the first term corresponds to the equilibrium volume,
the second term is zero since the distortion is made from an
equilibrium configuration, and the third term is related to the
bulk modulus, B. The change in volume is given by

�V = (
a⊥a2

‖ − a3
0

)
, (5)

TABLE I. Experimental bulk lattice parameters (a), elastic constants (cij ), tetragonal shear constants (c′), and bulk modulus (B) for each
element used in the calculations. Unless otherwise stated, the data are taken from Refs. 9 and 10. (Ga,In)As is an alloyed semiconductor with
chemical formula Ga0.47In0.53As. Data within parenthesis are obtained from first-principles calculations as explained in the text.

Element a (Å) c11 (GPa) c12 (GPa) c44 (GPa) c′ (GPa) B (GPa)

V 3.02 (2.98) 196 (260)a 133 (135)a 67 (17)a 32 (63)a 154 (177)a

Cr 2.88 (2.84) 350 (469) 68 (151) 101 (101) 141 (159) 162 (257)
Fe 2.87 237 141 116 48 173
Nb 3.30 240 126 28 57 164
Mo 3.15 (3.15) 470 (463)a 168 (163)a 107 (103)a 151 (150)a 268 (263)a

Ta 3.31 261 157 82 52 192
W 3.16 523 205 161 159 311
Ni 3.52 251 150 124 50 184
Cu 3.61 168 121 75 23 137
Rh 3.80 413 194 184 110 267
Pd 3.89 227 176 72 26 193
Ag 4.09 124 94 47 15 104
Ir 3.84 580 242 256 169 355
Pt 3.92 347 251 77 48 283
Au 4.08 193 164 42 15 174
Si 5.43 160 64 80 50 97
Ge 5.66 130 44 68 41 71
GaAs 5.65 120 53 60 33 75
InP 5.87 100 56 46 22 71
InAs 6.06 83 45 39 19 58
InSb 6.48 67 37 30 15 47
GaP 5.45 140 62 70 39 88
(Ga,In)As 5.87 100 49 49 25 66

aThe first principles elastic constants of V and Mo is taken from Ref. 17.
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FIG. 2. (Color online) Calculated in- (a‖) and out-of-plane (a⊥)
lattice parameters for V/Cr multilayers (a), relative changes in
volume (b), and c/a ratios (c) as obtained by our model. In (a) the solid
(black) curve is the in-plane lattice parameter and the dashed (red)
and semidotted (green) curves are the out-of-plane lattice parameter
for the V and Cr layers, respectively. The dotted (black) line is the
expected behavior derived from Vegards law. The data for the relative
changes in volume and c/a ratios for V and Cr layers is given by the
dashed (red) and semidotted (green) curves, respectively, in both (b)
and (c). All curves are given as a function of the relative concentration
of Cr, X, defined in Eq. (8).

where a‖ and a⊥ are the lattice parameters of the tetragonally
strained layers in and out of plane, respectively, where the
geometry refers to the plane of the interface between the
different layers (see Fig. 1) and a0 is the lattice parameter of the

unstrained cubic crystal. For actual calculations, c′ and B are
taken to be the bulk values of the constituent materials. This
is a reasonable approximation for relatively thick multilayers.
However, it has been shown that for multilayer thicknesses
of down to ∼2 Å, the model still gives close agreement to
experiment.7

The change in total energy of a component in the multilayer
is then given by

Ei = E0 + 6c′
[(

a‖
a⊥

)1/3

− 1

]2

a3
0 + B

2a3
0

(
a⊥a2

‖ − a3
0

)2
.

(6)

For a multilayer consisting of NA layers of material A and NB

layers of material B, the total energy is

Etot = NAEA + NBEB. (7)

The equilibrium configuration is finally found by minimizing
the energy with respect to the lattice parameters a‖, aA

⊥, and
aB

⊥, where the A and B superscripts are introduced to denote
the out-of-plane lattice parameters in the different multilayer
components.

It is now possible to calculate the lattice parameters for
any multilayer system composed of elements or alloys with
cubic symmetry as illustrated in Fig. 1. This model was
previously tested for Fe/V multilayers7,8 with good agreement
with experiments. We note here that with this model one
would obtain the same structural parameters for an ANA

/BNB

multilayer as for an A2NA
/B2NB

multilayer, since we consider
ideal crystalline lattices without defects. This means that the
model is less applicable in the ultrathin limit when NA or NB

is in the range of 1 or 2. The model is also not applicable in
the limit of NA or NB approaching bulk values. We also note
that the model is at this stage only appropriate for multilayers
with a 001 orientation. For other geometries or orientations
it is necessary to modify the expressions above, although the
basic idea would be the same. Since the model gives the same
structural parameters for multilayers with the same relative
thickness of components A and B, we have chosen to present
the calculated data for the various multilayers in terms of the
relative concentration of the different materials in the multi-
layer, where the relative concentration of material B is given by

X = NB

NA + NB

. (8)

Furthermore, we note that this model gives access to the out-
of-plane lattice constants for each component in the multilayer.
However, this information is not available in experiments since
an x-ray diffraction measurement, for example, will measure
only the average out-of-plane lattice constant, 〈a⊥〉, which for
an ANA

/BNB
multilayer is given by

〈a⊥〉 = NAaA
⊥ + NBaB

⊥
NA + NB

(9a)

= DA + DB

NA + NB

, (9b)

where DA and DB are the thickness of each component in the
multilayer.
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TABLE II. In-plane (a‖) and out-of-plane (a⊥) lattice parameters for Si/Ge and GaP/InP multilayers as obtained by our model and structures
obtained from first-principles calculations. DFT means that the lattice constants are evaluated for multilayer geometries using first-principles
calculations while exp means that the results is obtained using the elasticity model with experimental elastic constants as input. All lattice
constants are given in Å. The data for multilayer structures from DFT have been taken from Ref. 5.

A1−xBx a‖ (DFT) aA
⊥ (DFT) aB

⊥ (DFT) a‖ (exp) aA
⊥ (exp) aB

⊥ (exp)

Si0.5Ge0.5 5.50 5.30 5.71 5.53 5.35 5.75
(GaP)0.67(InP)0.33 5.68 5.10 5.97 5.69 5.24 6.08
(GaP)0.5(InP)0.5 5.61 5.17 6.05 5.62 5.30 6.17
(GaP)0.33(InP)0.67 5.54 5.24 6.12 5.55 5.37 6.25

III. RESULTS AND DISCUSSION

We have performed a series of calculations of the lattice
parameters for cubic metals and semiconducting multilayer
systems. Experimental elastic constants and lattice parameters
used in these calculations are shown in Table I. The results are
collected and presented in Tables II to XVIII. However, we
begin the presentation of our results with a discussion of the
general features of the multilayer model.

In Fig. 2 we present, as an example, the results for a
V/Cr multilayer calculation, as a function of the relative
concentration of Cr. As expected, the in-plane and out-of-plane
lattice parameter coincides with the bulk lattice parameter of
3.02 Å for V when there is no Cr present, i.e., for X = 0.
Similarly, when there is no V in the multilayer, corresponding
to X = 1, the lattice parameters becomes the same as that of
bulk Cr (2.88 Å). For cases when both V and Cr are present in
the multilayer, and with increasing relative concentration of Cr,
the in-plane lattice parameter decreases while the out-of-plane
parameter increases for both the V and Cr components. This
trend is general to all materials considered, when the relative
concentration of the smaller component increases, the in-plane
lattice constant will decrease while the out-of-plane lattice
constant will increase for both components, which is evident
in the case of V and Cr in Fig. 2, since Cr has a smaller
lattice constant than V. A simple approximation for the lattice
constants in multilayers is the assumption of Vegards law
behavior,11 i.e., a linear variation of the lattice constants as a
function of the relative concentration of the different species.
It is clear from Fig. 2 that the model deviates from a linear
type of behavior. This deviation is especially noticeable for
the out-of-plane lattice parameters.

An important observation is that the distortions are not
volume conserving. To illustrate this we show in Fig. 2 the
relative change in volume of the Cr and V layers. The relative
change in volume is obtained by dividing Eq. (5) by the
equilibrium volume V0 of the respective bulk component. From
the results shown in Fig. 2 it is seen that the relative volume
change lies in the range of 0–3 % for V and 0–8 % for Cr,
depending on the relative amount of V and Cr. We also note
that as the amount of Cr increases, the volume of the V layers
decreases while the volume of the Cr component increases
compared to the bulk value when put in a multilayer with V. It
is clear from the results presented in Fig. 2 that the volume of
each element of the multilayer is not conserved when varying
the composition. The fact that the relative change of the volume
of the Cr component is larger than the corresponding change
for V is due to the size difference between bulk V and bulk

Cr since the bulk modulus, B, of each metal is only slightly
larger for Cr than for V; see Table I.

We also show in Fig. 2 the tetragonal distortion for each ele-
ment in the V/Cr multilayer for various relative concentration.
The distortion from cubic symmetry is given by the c/a ratio
of each component in the multilayer. Important to note is that
the c axis in the model is identical to the out-of-plane direction.
According to our convention the tetragonal distortion will
therefore be smaller than unity when the out-of-plane lattice
constant, a⊥, is smaller than the in-plane constant, a‖, which is
the case for the Cr component as shown in Fig. 2. Compared to
the changes in the volume, the tetragonal distortions are found
to be larger, of the order of 0–12% for the V layer and 0–7%
for the Cr layer. These distortions are typical for most of the
materials studied by us here. In this case the c/a ratio varies
more for V than for Cr, which is reflected in the difference in
each metals value for the tetragonal shear constant as shown
in Table I.

We also note that the curvature of the lattice parameters
shown in Fig. 2 are greater for low concentrations of Cr,
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FIG. 3. (Color online) Calculated in- (a‖) and out-of-plane (a⊥)
lattice parameters for V/Cr multilayers obtained by first-principles
theory compared to our model calculation based on elastic constants
and bulk lattice constants for V and Cr obtained by first-principles
calculations. The full (black) line is the in-plane lattice constant, while
the dashed (red) and semidotted (green) lines are the out-of-plane
lattice constants for V and Cr, respectively, as obtained by the model
calculation. For the first-principles data the in-plane lattice constant
is shown with (black) full circles, while the out-of-plane constants are
shown using (red) crosses and (green) stars for V and Cr, respectively.
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TABLE III. Calculated structural parameters of V/A multilayers, where A is Cr, Nb, Mo, Ta, and W. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

V/Cr V/Nb V/Mo V/Ta V/W

X aV/Cr
‖ aV

⊥ aCr
⊥ aV/Nb

‖ aV
⊥ aNb

⊥ aV/Mo
‖ aV

⊥ aMo
⊥ aV/Ta

‖ aV
⊥ aTa

⊥ aV/W
‖ aV

⊥ aW
⊥

0.00 3.020 3.020 3.020 3.020 3.020 3.020 3.020 3.020 3.020 3.020
0.10 2.988 3.063 2.836 3.063 2.962 3.561 3.057 2.971 3.216 3.064 2.962 3.632 3.062 2.964 3.236
0.20 2.964 3.097 2.845 3.101 2.913 3.517 3.081 2.939 3.199 3.103 2.911 3.577 3.089 2.929 3.216
0.30 2.946 3.124 2.853 3.136 2.870 3.478 3.098 2.917 3.187 3.138 2.867 3.529 3.107 2.905 3.201
0.40 2.931 3.145 2.859 3.166 2.833 3.444 3.111 2.901 3.178 3.170 2.829 3.487 3.121 2.888 3.190
0.50 2.919 3.163 2.864 3.194 2.800 3.414 3.121 2.888 3.170 3.199 2.794 3.449 3.131 2.876 3.182
0.60 2.908 3.179 2.869 3.219 2.770 3.386 3.129 2.878 3.165 3.225 2.764 3.416 3.140 2.865 3.176
0.70 2.900 3.192 2.872 3.242 2.744 3.361 3.136 2.870 3.160 3.249 2.736 3.385 3.146 2.857 3.171
0.80 2.892 3.203 2.875 3.263 2.721 3.339 3.141 2.863 3.156 3.271 2.712 3.358 3.152 2.851 3.167
0.90 2.886 3.213 2.878 3.282 2.699 3.319 3.146 2.857 3.153 3.291 2.689 3.333 3.156 2.845 3.163
1.00 2.880 2.880 3.300 3.300 3.150 3.150 3.310 3.310 3.160 3.160

while it is almost linear for higher concentrations. This is
because the relevant elastic constants for Cr are larger than
for V, hence Cr is less inclined toward structural changes and
therefore forcing the V layers to change their lattices more
prominently. This trend also holds in general and applies to
all the materials considered.

Although relatively few degrees of freedom are used,
our simple model has been found to be in close agreement
to the results of first-principles electronic structure calcu-
lations. More specifically, accounting for the typical error
in the equilibrium lattice constant made by first-principles
theory, the elastic model presented here and first-principles
calculations on multilayers performed by Höglund et al.5

show an agreement to within 0.01 Å (0.03 Å) for the
in-plane lattice constant and within about 0.1 Å (0.05 Å)
for the out-of-plane constants in InP/GaP (Si/Ge) multilayer
structures, when experimental elastic and lattice constants
from Table I has been used as input to the model; see
Table II. For the metallic multilayers discussed previously we
will here give a detailed comparison between our model and
results obtained from first-principles theory. For this reason,
we have performed first-principles density functional theory
calculations on a series of V/Cr and V/Mo multilayers. These

calculations have been performed with the Vienna ab initio
simulation package12,13 using the projected augmented wave
method14 for supercells consisting of 10 and 20 atomic layers.
The generalized gradient approximation15 was used for the
exchange correlation functional and we have used a k-points
mesh of 20 × 20 × 1 and a plane wave cutoff of 300 eV.
In these calculations, we have neglected the possibility for
a magnetic solution for the multilayers. There is practically no
difference between our first-principles calculations made using
10 and 20 atomic layers, so in what follows the discussion will
be based on the results obtained using 20 atomic layers.

In order to perform a fair comparison between our model
and first-principles theory there are a few points that need
to be considered. Since the model uses bulk elastic and
lattice constants of the different components in the multilayer
as input, its accuracy when compared to first-principles
calculations of a multilayer will depend on how well the
input to the model compares with bulk elastic and lattice
constants obtained by first-principles calculations. It is known
that first-principles calculations may over- or underestimate
the lattice constants of bulk materials depending on the
material and which approximation for the exchange and
correlation functional that has been used. Furthermore, the

TABLE IV. Calculated structural parameters of Cr/A multilayers, where A is Nb, Mo, Ta, and W. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Cr/Nb Cr/Mo Cr/Ta Cr/W

X aCr/Nb
‖ aCr

⊥ aNb
⊥ aCr/Mo

‖ aCr
⊥ aMo

⊥ aCr/Ta
‖ aCr

⊥ aTa
⊥ aCr/W

‖ aCr
⊥ aW

⊥

0.00 2.880 2.880 2.880 2.880 2.880 2.880 2.880 2.880
0.10 2.908 2.869 3.748 2.915 2.866 3.311 2.908 2.869 3.866 2.920 2.864 3.345
0.20 2.937 2.857 3.711 2.948 2.852 3.290 2.938 2.857 3.819 2.956 2.849 3.318
0.30 2.969 2.843 3.673 2.978 2.839 3.270 2.970 2.843 3.770 2.988 2.834 3.293
0.40 3.004 2.827 3.631 3.007 2.826 3.250 3.005 2.827 3.718 3.019 2.820 3.270
0.50 3.041 2.810 3.587 3.034 2.813 3.231 3.043 2.809 3.662 3.047 2.807 3.248
0.60 3.083 2.790 3.539 3.060 2.801 3.214 3.085 2.789 3.602 3.072 2.795 3.228
0.70 3.128 2.767 3.487 3.084 2.789 3.197 3.132 2.766 3.538 3.097 2.783 3.209
0.80 3.179 2.742 3.430 3.107 2.778 3.180 3.184 2.739 3.469 3.119 2.772 3.192
0.90 3.236 2.712 3.368 3.129 2.767 3.165 3.242 2.708 3.393 3.140 2.761 3.175
1.00 3.300 3.300 3.150 3.150 3.310 3.310 3.160 3.160
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TABLE V. Calculated structural parameters of Fe/A multilayers, where A is V, Cr, Nb, and W. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Fe/V Fe/Cr Fe/Nb Fe/W

X aFe/V
‖ aFe

⊥ aV
⊥ aFe/Cr

‖ aFe
⊥ aCr

⊥ aFe/Nb
‖ aFe

⊥ aNb
⊥ aFe/W

‖ aFe
⊥ aW

⊥

0.00 2.870 2.870 2.870 2.870 2.870 2.870 2.870 2.870
0.10 2.881 2.857 3.220 2.871 2.868 2.881 2.920 2.811 3.734 2.939 2.790 3.331
0.20 2.893 2.843 3.202 2.873 2.867 2.881 2.969 2.757 3.675 2.989 2.734 3.293
0.30 2.905 2.828 3.183 2.874 2.865 2.881 3.015 2.706 3.619 3.028 2.692 3.263
0.40 2.919 2.813 3.164 2.875 2.864 2.881 3.060 2.658 3.566 3.059 2.659 3.239
0.50 2.933 2.797 3.143 2.876 2.863 2.881 3.104 2.614 3.515 3.084 2.634 3.219
0.60 2.948 2.780 3.121 2.877 2.862 2.880 3.146 2.572 3.468 3.105 2.613 3.203
0.70 2.964 2.762 3.098 2.878 2.861 2.880 3.186 2.533 3.422 3.122 2.596 3.190
0.80 2.981 2.743 3.073 2.879 2.860 2.880 3.225 2.496 3.380 3.136 2.581 3.178
0.90 3.000 2.722 3.047 2.879 2.859 2.880 3.263 2.461 3.339 3.149 2.569 3.169
1.00 3.020 3.020 2.880 2.880 3.300 3.300 3.160 3.160

elastic constants calculated using first-principles theory may
differ compared to experiments with 5–10%.16 In the case
of Cr, V, and Mo, Table I also shows the lattice and elastic
constants obtained by first-principles calculations. Here the
elastic constants of V and Mo were obtained by Koči et al.,17

while the data for Cr as well as the lattice constants of V and
Mo are obtained by us. The elastic constants of Cr have been
obtained in a similar fashion as in Ref. 17. As can be seen in
Table I the bulk lattice parameters obtained by first-principles
calculations underestimate the lattice constants by 0.04 Å for
both V and Cr compared to the values in Table I, while there
is perfect agreement in the case of Mo. At the same time, the
elastic constants show substantial differences between theory
and experiment for Cr and V. For the constants that are relevant
for our model, c′ and B, this is especially true for the tetragonal
shear constant in the case of V and for the bulk modulus
in the case of Cr. For Cr, these differences are attributed
to the neglect of the magnetic properties of Cr, which is an
antiferromagnet, in the calculation of the elastic constants. By
incorporating these effects in the first-principles calculations
a better agreement is obtained.18

Judging from these discrepancies, the best way to assess the
accuracy of our model is to use first-principles calculations

to obtain elastic and lattice constants and to use those as
input to the model and then compare the structural properties
from the model with first-principles theory of the geometry
of the multilayer. The result of such a calculation for a
V/Cr multilayer is shown in Fig. 3, where we have used the
theoretical values listed in Table I. As is clearly shown, the
model and first-principles data are in an overall good agree-
ment. Calculations on V/Mo multilayers performed by us give
similar variations as the V/Cr system discussed here and with
the same overall agreement when elastic constants obtained by
first-principles theory has been used in the model. Therefore
we conclude that the model captures the essential behavior
of the multilayer when it comes to its structure and that the
influence of interface effects is in this regard not essential.

A detailed comparison between our model and experimen-
tal multilayer structures is complicated due to the interaction
between the multilayer and the substrate in the experimental
setup, since the substrate will affect the structural parameters
in the multilayer, yielding structural parameters that slightly
differ from the ones obtained by us. Therefore, in order to
make a clear evaluation of the accuracy of our model, we
have focused in this paper on the comparison between our
model and first-principles calculations on selected multilayers.

TABLE VI. Calculated structural parameters of Nb/A multilayers, where A is Mo, Ta, and W. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Nb/Mo Nb/Ta Nb/W

X a
Nb/Mo
‖ aNb

⊥ aMo
⊥ a

Nb/Ta
‖ aNb

⊥ aTa
⊥ a

Nb/W
‖ aNb

⊥ aW
⊥

0.00 3.300 3.300 3.300 3.300 3.300 3.300
0.10 3.271 3.331 3.063 3.301 3.299 3.321 3.271 3.331 3.074
0.20 3.247 3.356 3.080 3.302 3.298 3.320 3.248 3.356 3.092
0.30 3.227 3.377 3.094 3.303 3.297 3.319 3.229 3.375 3.106
0.40 3.211 3.395 3.106 3.304 3.296 3.317 3.214 3.392 3.118
0.50 3.197 3.410 3.116 3.305 3.295 3.316 3.201 3.406 3.128
0.60 3.185 3.423 3.125 3.306 3.294 3.315 3.190 3.417 3.136
0.70 3.175 3.435 3.132 3.307 3.293 3.314 3.181 3.428 3.143
0.80 3.165 3.445 3.139 3.308 3.292 3.312 3.173 3.436 3.150
0.90 3.157 3.454 3.145 3.309 3.291 3.311 3.166 3.444 3.155
1.00 3.150 3.150 3.310 3.310 3.160 3.160
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TABLE VII. Calculated structural parameters of Mo/A multilayers, where A is Fe, Ta, and W. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Mo/Fe Mo/Ta Mo/W

X a
Mo/Fe
‖ aMo

⊥ aFe
⊥ a

Mo/Ta
‖ aMo

⊥ aTa
⊥ a

Mo/W
‖ aMo

⊥ aW
⊥

0.00 3.150 3.150 3.150 3.150 3.150 3.150
0.10 3.138 3.158 2.579 3.158 3.145 3.503 3.151 3.149 3.167
0.20 3.125 3.168 2.593 3.166 3.138 3.491 3.152 3.148 3.166
0.30 3.109 3.179 2.608 3.176 3.131 3.479 3.153 3.148 3.165
0.40 3.091 3.192 2.626 3.187 3.124 3.464 3.154 3.147 3.165
0.50 3.070 3.206 2.648 3.200 3.114 3.448 3.155 3.146 3.164
0.60 3.045 3.224 2.674 3.215 3.104 3.429 3.156 3.146 3.163
0.70 3.015 3.245 2.706 3.232 3.091 3.406 3.157 3.145 3.162
0.80 2.978 3.270 2.747 3.253 3.076 3.380 3.158 3.144 3.161
0.90 2.931 3.301 2.799 3.278 3.058 3.349 3.159 3.144 3.161
1.00 2.870 2.870 3.310 3.310 3.160 3.160

Even so, the model is in good agreement with experimental
structures, for example, in the case of Fe/V multilayers7 but
also for other systems. Liebig et al.19 reported experimental
in- and average out-of-plane lattice parameter of 2.977 Å and
3.016 Å, respectively, for a V/Cr multilayer with relative
thickness, X, of 0.47, while our model in this case yields
2.916 Å and 3.009 Å for the in- and average out-of-plane
lattice constants, respectively. For V/Mo multilayers with X =
0.354, Birch et al.20 have reported in-plane lattice parameters
of 3.05–3.09 Å and evaluated out-of-plane lattice parameters
of 2.98 Å for the V layers and 3.09 Å for the Mo layers.
Our model yields in this case 3.105 Å for the in-plane lattice
parameter and 2.908 Å for the out-of-plane lattice parameter
of the V layers and 3.182 Å for the in-plane lattice parameter
of the Mo layers. As represented by these examples, the model
yields lattice parameters that are in good agreement with
experimental structures with a maximum deviation of less than
0.092 Å.

Birch et al.21 have also reported epitaxial growth of V/Mo
multilayers with various superlattice periodicities, � (see
Fig. 1), with � ranging from 1.3 to 10.0 nm for systems

TABLE VIII. Calculated structural parameters of Ta/A multi-
layers, where A is Fe and W. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane
lattice constants is given in Å.

Ta/Fe Ta/W

X a
Ta/Fe
‖ aTa

⊥ aFe
⊥ a

Ta/W
‖ aTa

⊥ aW
⊥

0.00 3.310 3.310 3.310 3.310
0.10 3.270 3.358 2.454 3.278 3.349 3.068
0.20 3.230 3.409 2.491 3.253 3.380 3.087
0.30 3.189 3.462 2.530 3.233 3.405 3.103
0.40 3.146 3.518 2.571 3.217 3.425 3.115
0.50 3.103 3.577 2.614 3.204 3.443 3.126
0.60 3.059 3.639 2.660 3.192 3.457 3.135
0.70 3.013 3.704 2.708 3.182 3.470 3.142
0.80 2.967 3.774 2.759 3.174 3.481 3.149
0.90 2.919 3.847 2.813 3.167 3.491 3.155
1.00 2.870 2.870 3.160 3.160

with relative Mo concentration, X, of 0.5. From these data the
evaluated average out-of-plane lattice parameters are 3.00 Å
(� = 5.0, 7.2, and 10.0 nm) to 3.25 Å (� = 1.3 nm) depending
on the periodicity. The result obtained using our model,
presented in Table III, is, in this case, 3.025 Å. Considering that
the agreement is significantly better for the multilayers with
larger periodicities confirms our expectation that the model
is more accurate for systems where the individual layers are
thicker.

Hence, we have demonstrated the ability to predict the
geometry of a large group of multilayers using the model
theory outlined here. We therefore provide calculated data
using our model for a large number of different multilayers in
Tables III to XVIII. The calculations have been performed us-
ing experimental elastic constants and lattice parameters given
in Table I as input. In Tables III to VIII, we show the values pre-
dicted using our model of the in-plane and out-of-plane lattice
parameters of multilayers composed of body-centered cubic
metals from the transition metal series. The face-centered cu-
bic based materials are shown in Tables IX to XVI, for various
combinations of 3d, 4d, and 5d elements from the transition
metals. In this study, we have chosen not to include the simple
metals as well as any of the rare-earth elements. Finally, we
display the geometry of Si-based multilayers in Tables XVII
and XVIII. The data shown in Tables III to XVIII serves as a
structural database.

In Tables III to XVIII we show the in- and out-of-plane
lattice parameters for each component as well as the relative
concentration of material B in each respective case. The
average out-of-plane lattice parameter, 〈a⊥〉, is not given
explicitly but can easily be calculated by rewriting Eq. (9)
so

〈a⊥〉 = (1 − X)aA
⊥ + XaB

⊥ (10)

and by using the information provided in Tables III to XVIII.
When regarding the structural parameters in Tables III to

XVIII, we note that a linear dependence of the different lattice
parameters as the relative concentration in the multilayer varies
is not to be expected unless the tetragonal shear constant and
bulk modulus in the different components are very similar.
A perfect linear behavior is, however, never achieved, even
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TABLE IX. Calculated structural parameters of Ni/A multilayers, where A is Cu, Pd, Ag, Pt, and Au. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Ni/Cu Ni/Pd Ni/Ag Ni/Pt Ni/Au

X a
Ni/Cu
‖ aNi

⊥ aCu
⊥ a

Ni/Pd
‖ aNi

⊥ aPd
⊥ a

Ni/Ag
‖ aNi

⊥ a
Ag
⊥ a

Ni/Pt
‖ aNi

⊥ aPt
⊥ a

Ni/Au
‖ aNi

⊥ aAu
⊥

0.00 3.520 3.520 3.520 3.520 3.520 3.520 3.520 3.520 3.520 3.520
0.10 3.525 3.514 3.737 3.544 3.492 4.505 3.542 3.494 5.111 3.564 3.468 4.506 3.542 3.493 5.212
0.20 3.530 3.508 3.728 3.569 3.462 4.453 3.568 3.464 5.053 3.607 3.418 4.427 3.568 3.463 5.146
0.30 3.536 3.500 3.719 3.597 3.430 4.399 3.597 3.430 4.988 3.649 3.371 4.352 3.598 3.429 5.072
0.40 3.543 3.492 3.709 3.627 3.395 4.340 3.632 3.391 4.913 3.691 3.326 4.280 3.632 3.390 4.987
0.50 3.551 3.483 3.697 3.661 3.358 4.278 3.673 3.345 4.828 3.731 3.283 4.212 3.673 3.345 4.890
0.60 3.560 3.473 3.684 3.697 3.318 4.211 3.722 3.292 4.728 3.770 3.241 4.148 3.722 3.292 4.777
0.70 3.569 3.462 3.669 3.738 3.275 4.139 3.783 3.228 4.610 3.809 3.202 4.087 3.783 3.229 4.646
0.80 3.581 3.448 3.652 3.783 3.228 4.062 3.859 3.152 4.470 3.847 3.164 4.029 3.858 3.153 4.491
0.90 3.594 3.433 3.633 3.833 3.177 3.980 3.958 3.057 4.300 3.884 3.128 3.973 3.954 3.061 4.305
1.00 3.610 3.610 3.890 3.890 4.090 4.090 3.920 3.920 4.080 4.080

if the elastic constants are identical. Also, for those cases
where the differences in the bulk lattice parameters between
the components are small, as in the case of Fe/Cr multilayers,
the variations in the lattice constants depending on the relative

thickness in the multilayer are also small. Even so, the behavior
of the variations discussed previously is still present, although
in order to see those changes a much higher accuracy in the
lattice constants is required.

TABLE X. Calculated structural parameters of Cu/A multilayers, where A is Pd, Ag, Pt, and Au. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Cu/Pd Cu/Ag Cu/Pt Cu/Au

X a
Cu/Pd
‖ aCu

⊥ aPd
⊥ a

Cu/Ag
‖ aCu

⊥ a
Ag
⊥ a

Cu/Pt
‖ aCu

⊥ aPt
⊥ a

Cu/Au
‖ aCu

⊥ aAu
⊥

0.00 3.610 3.610 3.610 3.610 3.610 3.610 3.610 3.610
0.10 3.642 3.564 4.312 3.644 3.561 4.887 3.669 3.527 4.317 3.645 3.561 4.957
0.20 3.673 3.521 4.255 3.681 3.510 4.810 3.717 3.461 4.235 3.681 3.510 4.871
0.30 3.703 3.480 4.200 3.720 3.457 4.732 3.758 3.408 4.169 3.720 3.457 4.782
0.40 3.733 3.441 4.149 3.762 3.402 4.650 3.792 3.365 4.114 3.762 3.402 4.690
0.50 3.761 3.404 4.100 3.807 3.345 4.565 3.821 3.328 4.069 3.807 3.346 4.596
0.60 3.788 3.369 4.054 3.855 3.286 4.477 3.846 3.297 4.030 3.854 3.287 4.498
0.70 3.815 3.335 4.010 3.907 3.224 4.386 3.868 3.271 3.997 3.905 3.227 4.398
0.80 3.841 3.304 3.968 3.963 3.160 4.291 3.887 3.247 3.968 3.959 3.164 4.295
0.90 3.866 3.273 3.928 4.024 3.093 4.192 3.905 3.227 3.942 4.017 3.100 4.189
1.00 3.890 3.890 4.090 4.090 3.920 3.920 4.080 4.080

TABLE XI. Calculated structural parameters of Rh/A multilayers, where A is Ni, Cu, Pd, and Ag. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Rh/Ni Rh/Cu Rh/Pd Rh/Ag

X a
Rh/Ni
‖ aRh

⊥ aNi
⊥ a

Rh/Cu
‖ aRh

⊥ aCu
⊥ a

Rh/Pd
‖ aRh

⊥ aPd
⊥ a

Rh/Ag
‖ aRh

⊥ a
Ag
⊥

0.00 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800
0.10 3.785 3.814 3.225 3.795 3.805 3.359 3.803 3.797 4.029 3.806 3.795 4.567
0.20 3.769 3.830 3.242 3.788 3.811 3.367 3.807 3.793 4.023 3.813 3.788 4.555
0.30 3.750 3.847 3.261 3.781 3.818 3.377 3.811 3.790 4.016 3.821 3.780 4.539
0.40 3.729 3.867 3.283 3.772 3.826 3.389 3.816 3.785 4.008 3.831 3.771 4.520
0.50 3.706 3.889 3.308 3.761 3.837 3.403 3.821 3.780 3.998 3.845 3.758 4.496
0.60 3.679 3.915 3.337 3.747 3.850 3.421 3.829 3.773 3.987 3.862 3.742 4.464
0.70 3.648 3.945 3.372 3.728 3.868 3.446 3.838 3.765 3.972 3.887 3.720 4.421
0.80 3.612 3.980 3.412 3.703 3.892 3.480 3.850 3.753 3.953 3.922 3.687 4.360
0.90 3.570 4.021 3.460 3.667 3.927 3.529 3.866 3.738 3.927 3.980 3.636 4.263
1.00 3.520 3.520 3.610 3.610 3.890 3.890 4.090 4.090
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TABLE XII. Calculated structural parameters of Rh/A multilayers, where A is Ir, Pt, and Au. The first column shows the relative concentration
of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Rh/Ir Rh/Pt Rh/Au

X a
Rh/Ir
‖ aRh

⊥ aIr
⊥ a

Rh/Pt
‖ aRh

⊥ aPt
⊥ a

Rh/Au
‖ aRh

⊥ aAu
⊥

0.00 3.800 3.800 3.800 3.800 3.800 3.800
0.10 3.806 3.795 3.869 3.807 3.793 4.090 3.806 3.794 4.595
0.20 3.811 3.790 3.865 3.815 3.786 4.078 3.813 3.788 4.580
0.30 3.815 3.786 3.861 3.823 3.778 4.065 3.821 3.780 4.562
0.40 3.820 3.782 3.857 3.833 3.770 4.050 3.832 3.770 4.541
0.50 3.824 3.778 3.854 3.843 3.760 4.034 3.845 3.758 4.513
0.60 3.827 3.774 3.850 3.855 3.749 4.017 3.863 3.741 4.478
0.70 3.831 3.771 3.848 3.868 3.737 3.997 3.887 3.719 4.430
0.80 3.834 3.768 3.845 3.883 3.723 3.974 3.922 3.687 4.363
0.90 3.837 3.765 3.842 3.900 3.708 3.949 3.978 3.637 4.259
1.00 3.840 3.840 3.920 3.920 4.080 4.080

We also want to note that, even though the structural
variations in the different materials are considerable for a
number of cases in Tables III to XVIII, such as, for example,
in the Fe/Ta, Ni/Ag, or Ni/Au multilayers, with a respectable

change in the c/a ratio, a transition from body-centered cubic
to face-centered cubic structure or vice versa following Bain’s
path in any multilayer component is not obtained through any
of the multilayer structures presented. For such a transition

TABLE XIII. Calculated structural parameters of Pd/A multilayers, where A is Ag, Pt, and Au. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Pd/Ag Pd/Pt Pd/Au

X a
Pd/Ag
‖ aPd

⊥ a
Ag
⊥ a

Pd/Pt
‖ aPd

⊥ aPt
⊥ a

Pd/Au
‖ aPd

⊥ aAu
⊥

0.00 3.890 3.890 3.890 3.890 3.890 3.890
0.10 3.902 3.871 4.394 3.895 3.882 3.956 3.902 3.871 4.403
0.20 3.916 3.850 4.371 3.899 3.876 3.950 3.915 3.851 4.378
0.30 3.930 3.828 4.346 3.903 3.870 3.945 3.929 3.830 4.350
0.40 3.946 3.804 4.319 3.906 3.865 3.940 3.945 3.806 4.321
0.50 3.964 3.778 4.289 3.909 3.860 3.936 3.962 3.781 4.289
0.60 3.984 3.749 4.257 3.912 3.856 3.932 3.981 3.754 4.254
0.70 4.006 3.718 4.221 3.914 3.853 3.928 4.002 3.724 4.217
0.80 4.031 3.683 4.182 3.916 3.850 3.925 4.025 3.691 4.175
0.90 4.058 3.644 4.139 3.918 3.847 3.923 4.051 3.655 4.130
1.00 4.090 4.090 3.920 3.920 4.080 4.080

TABLE XIV. Calculated structural parameters of Ir/A multilayers, where A is Ni, Cu, and Pd. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Ir/Ni Ir/Cu Ir/Pd

X a
Ir/Ni
‖ aIr

⊥ aNi
⊥ a

Ir/Cu
‖ aIr

⊥ aCu
⊥ a

Ir/Pd
‖ aIr

⊥ aPd
⊥

0.00 3.840 3.840 3.840 3.840 3.840 3.840
0.10 3.828 3.850 3.181 3.836 3.844 3.308 3.841 3.839 3.967
0.20 3.814 3.861 3.195 3.830 3.848 3.315 3.843 3.838 3.965
0.30 3.799 3.875 3.211 3.824 3.854 3.323 3.844 3.836 3.962
0.40 3.780 3.890 3.230 3.816 3.860 3.333 3.846 3.835 3.959
0.50 3.758 3.909 3.254 3.805 3.869 3.346 3.849 3.833 3.955
0.60 3.730 3.932 3.282 3.791 3.881 3.364 3.852 3.830 3.949
0.70 3.697 3.960 3.318 3.772 3.897 3.388 3.857 3.826 3.942
0.80 3.654 3.997 3.366 3.744 3.920 3.425 3.863 3.821 3.932
0.90 3.597 4.044 3.429 3.698 3.959 3.486 3.873 3.813 3.917
1.00 3.520 3.520 3.610 3.610 3.890 3.890
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TABLE XV. Calculated structural parameters of Ir/A multilayers, where A is Ag, Pt, and Au. The first column shows the relative
concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Ir/Ag Ir/Pt Ir/Au

X a
Ir/Ag
‖ aIr

⊥ a
Ag
⊥ a

Ir/Pt
‖ aIr

⊥ aPt
⊥ a

Ir/Au
‖ aIr

⊥ aAu
⊥

0.00 3.840 3.840 3.840 3.840 3.840 3.840
0.10 3.843 3.837 4.498 3.843 3.837 4.034 3.843 3.837 4.517
0.20 3.848 3.834 4.491 3.847 3.834 4.028 3.848 3.834 4.509
0.30 3.853 3.829 4.482 3.851 3.831 4.022 3.853 3.829 4.498
0.40 3.859 3.824 4.470 3.856 3.826 4.014 3.859 3.824 4.485
0.50 3.868 3.817 4.455 3.862 3.822 4.005 3.868 3.817 4.468
0.60 3.879 3.807 4.434 3.869 3.816 3.995 3.880 3.807 4.445
0.70 3.896 3.793 4.404 3.878 3.809 3.982 3.897 3.793 4.412
0.80 3.923 3.771 4.358 3.888 3.800 3.966 3.923 3.771 4.361
0.90 3.972 3.731 4.276 3.902 3.788 3.946 3.971 3.732 4.273
1.00 4.090 4.090 3.920 3.920 4.080 4.080

to occur, it is required to have a smaller relative amount
of, for example, Ni in Ni/Ag or Ni/Au from what is shown
in Table IX or to grow multilayers of different materials,

which are not considered here, where the components have a
considerable size difference and where one of the components
are considerably stiffer than the other.

TABLE XVI. Calculated structural parameters of Ag/A multilayers, where A is Pt and Au, and of Pt/Au multilayers. The first column
shows the relative concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Ag/Pt Ag/Au Pt/Au

X a
Ag/Pt
‖ a

Ag
⊥ aPt

⊥ a
Ag/Au
‖ a

Ag
⊥ aAu

⊥ a
Pt/Au
‖ aPt

⊥ aAu
⊥

0.00 4.090 4.090 4.090 4.090 3.920 3.920
0.10 4.047 4.157 3.744 4.089 4.092 4.065 3.926 3.912 4.357
0.20 4.016 4.205 3.785 4.088 4.093 4.067 3.932 3.902 4.345
0.30 3.993 4.242 3.816 4.087 4.095 4.068 3.940 3.891 4.330
0.40 3.976 4.270 3.841 4.086 4.096 4.070 3.949 3.878 4.313
0.50 3.962 4.293 3.860 4.085 4.098 4.072 3.960 3.862 4.292
0.60 3.950 4.312 3.877 4.084 4.099 4.073 3.974 3.843 4.267
0.70 3.941 4.328 3.890 4.083 4.101 4.075 3.991 3.820 4.237
0.80 3.933 4.342 3.902 4.082 4.102 4.077 4.012 3.791 4.198
0.90 3.926 4.354 3.911 4.081 4.104 4.078 4.041 3.753 4.148
1.00 3.920 3.920 4.080 4.080 4.080 4.080

TABLE XVII. Calculated structural parameters of Si/A multilayers, where A is Ge, GaAs, InP, and InAs. The first column shows the
relative concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å.

Si/Ge Si/GaAs Si/InP Si/InAs

X a
Si/Ge
‖ aSi

⊥ aGe
⊥ a

Si/GaAs
‖ aSi

⊥ aGaAs
⊥ a

Si/InP
‖ aSi

⊥ aInP
⊥ a

Si/InAs
‖ aSi

⊥ aInAs
⊥

0.00 5.431 5.431 5.431 5.431 5.431 5.431 5.431 5.431
0.10 5.449 5.417 5.801 5.447 5.418 5.841 5.456 5.411 6.357 5.462 5.407 6.765
0.20 5.468 5.402 5.789 5.464 5.405 5.825 5.484 5.390 6.322 5.497 5.380 6.720
0.30 5.488 5.386 5.775 5.483 5.391 5.808 5.514 5.366 6.284 5.536 5.349 6.671
0.40 5.509 5.370 5.761 5.502 5.375 5.790 5.548 5.340 6.243 5.580 5.315 6.616
0.50 5.531 5.353 5.746 5.523 5.359 5.771 5.586 5.310 6.197 5.631 5.276 6.553
0.60 5.554 5.335 5.730 5.545 5.342 5.751 5.629 5.277 6.146 5.689 5.230 6.482
0.70 5.578 5.316 5.713 5.569 5.323 5.729 5.677 5.240 6.089 5.758 5.178 6.400
0.80 5.603 5.297 5.696 5.595 5.303 5.706 5.731 5.198 6.024 5.839 5.116 6.305
0.90 5.630 5.276 5.677 5.623 5.282 5.680 5.795 5.150 5.952 5.937 5.042 6.192
1.00 5.658 5.658 5.653 5.653 5.869 5.869 6.058 6.058
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TABLE XVIII. Calculated structural parameters of Si/A multilayers, where A is InSb, GaP, and (Ga,In)As. The first column shows the
relative concentration of material A in the multilayer. The in- and out-of-plane lattice constants are given in Å. (Ga,In)As is an alloyed
semiconductor with chemical formula Ga0.47In0.53As

Si/InSb Si/GaP Si/(Ga,In)As

X a
Si/InSb
‖ aSi

⊥ aInSb
⊥ a

Si/GaP
‖ aSi

⊥ aGaP
⊥ a

Si/(Ga,In)As
‖ aSi

⊥ a
(Ga,In)As
⊥

0.00 5.431 5.431 5.431 5.431 5.431 5.431
0.10 5.474 5.397 7.736 5.433 5.430 5.466 5.458 5.410 6.289
0.20 5.524 5.359 7.666 5.434 5.428 5.465 5.487 5.387 6.258
0.30 5.580 5.315 7.588 5.436 5.427 5.463 5.519 5.363 6.225
0.40 5.646 5.264 7.498 5.438 5.426 5.462 5.554 5.335 6.188
0.50 5.723 5.204 7.394 5.440 5.424 5.460 5.592 5.305 6.148
0.60 5.816 5.134 7.273 5.442 5.423 5.458 5.635 5.272 6.103
0.70 5.928 5.049 7.129 5.444 5.421 5.456 5.683 5.235 6.054
0.80 6.067 4.946 6.956 5.446 5.419 5.454 5.737 5.194 6.000
0.90 6.244 4.818 6.744 5.448 5.418 5.453 5.799 5.147 5.938
1.00 6.479 6.479 5.451 5.451 5.869 5.869

IV. SUMMARY AND CONCLUSIONS

We have, using a simple analytical model based on
the theory of elasticity, calculated the lattice parameters
and thereby the structure of a wide range of metal and
semiconductor multilayer structures. The model is shown
to be in good agreement with first-principles calculations.
The structure variations for the multilayer components are,
in general, found not to be volume preserving nor does
it preserve a cubic symmetry. The deviation from a linear
dependence with varying composition is also explained by the
difference in elastic constants of the constituting elements of
the multilayers. By comparing experimental data for systems
with varying periodicities it is also shown that the model
is more appropriate in describing thicker multilayers with
larger periodicities. We conclude that the model has predictive
power, yielding structural parameters that are in quantitative
agreement with first-principles calculations, while at the same
time keeping the computations to a minimum, for example,

the results shown in Fig. 2 was obtained within seconds
on a regular workstation. Furthermore, we note that even
though the theory outlined here is valid for multilayers with
interfaces being any of the (100), (010), or (001) surfaces and
based on cubic materials, the methodology can be adjusted
to be valid for any type of crystal structure and growth
direction. With the predicted geometries of a large number
of multilayers we hope to shed light on the experimental
growth of such systems and the mechanisms that govern their
structures.

ACKNOWLEDGMENTS

We wish to acknowledge the Swedish Research Council,
SSF, KAW, and ERC (grant 247062-ASD) for financial
support. First-principles calculations were made possible due
to computational resources provided by the Swedish National
Infrastructure for Computing.

*mikael.rasander@gmail.com
1M. N. Baibich, J. M. Broto, A. Fert, F. NguyenVan Dau, F. Petroff,
P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev.
Lett. 61, 2472 (1988).

2P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers,
Phys. Rev. Lett. 57, 2442 (1986).

3H. W. Hugosson, U. Jansson, B. Johansson, and O. Eriksson,
Science 293, 2434 (2001).

4M. Kelly, Low-Dimensional Semiconductors (Clarendon Press,
Oxford, UK, 1995).
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