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Velocity dependence of kinetic friction in the Prandtl-Tomlinson model
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The Prandtl-Tomlinson model for friction has been used extensively for the interpretation of atomic force
microscopy data during the past decade. Up to this point, the kinetic friction Fk has nevertheless not been
studied in a range of velocities v that would be sufficiently broad to cover the crossover from the high-velocity
logarithmic to the low-velocity linear Fk(v) dependence. This gap will be closed here through a combination
of an asymptotic analysis and direct simulations of the relevant Langevin equation. The simulations span three
decades in temperature T and up to six decades in v. All numerical data can be fit quite accurately with a
Fk = a(T )arsinh[v/vc(T )] law, where the prefactor a(T ) scales with T 2/3. Correction terms proportional to odd
powers of arsinh(v/vc), only need to be included at v � vc. Reasons are given as to why it is difficult to confirm
meticulously the (ln v)2/3 dependence of kinetic friction predicted by recent rate theories, although they can be
easily modified to produce the correct prefactor to the a(T ) ∝ T 2/3 law.
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I. INTRODUCTION

The simplest functional forms for the force resisting the
motion of a solid body with respect to some other medium
were proposed by Stokes and Coulomb. Stokes found a drag
force linear in the relative velocity v between a solid and
a fluid, while Coulomb suggested that the kinetic friction Fk

between two lubricated solids is independent of velocity. Later
analysis1 showed that solid friction tends to be weakly, i.e.,
logarithmically dependent on v, which will still be referred
to as Coulomb friction in this work. Both laws are well
understood from microscopic principles;2 a system close to
thermal equilibrium will exhibit Stokes damping (unless it is
close to a critical point), while the same system will show
Coulomb friction when it is driven so quickly that instabilities
are induced that push the system far away from thermal
equilibrium. These two limiting cases can be best rationalized
within the Prandtl-Tomlinson (PT) model,2,3 which is the most
generic model exhibiting the logarithmic dependence of Fk on
v known from Coulomb friction as well as the linear friction
known from Stokes.

The PT model describes a point particle of mass m that
is dragged through a one-dimensional, sinusoidal potential
V (x) with a spring of stiffness k moving at a velocity v. In
the original interpretation, the point particle corresponded to
an atom and the spring represented the elastic coupling of a
surface atom to the equilibrium site in the host solid. It was also
used to study the mean-field dynamics of driven charge-density
waves.4 When applied to atomic-force-microscopy (AFM)
experiments,5–12 the point particle is associated with the AFM
tip and k corresponds to the combined tip-cantilever stiffness.
If k is less than the maximum value of −V ′′(x), the mass point
will become unstable at given instances of time, which then,
as described in much detail in the literature, leads to stick-slip
motion and thus hysteresis, or in other words to significant
friction. The predominant interest in the PT model during
the last decade stems from the possibility to rationalize—if
not to reproduce quantitatively—AFM experiments with it. If
properly parameterized and/or generalized by a series coupling
of two springs or by including higher-order harmonics to

the substrate potential, it produces stick-slip curves in close
similarity to those obtained with AFMs.5–13

The velocity dependence of the average (or kinetic) friction,
as opposed to the average maximum friction during stick slip,
has been evaluated surprisingly little in theoretical treatments
of the PT model over more than two decades in velocity.
In the few works covering two or more decades, see, e.g.,
Refs. 14 and 13, only overdamped dynamics were considered
in the regime where Coulomb’s friction law is applicable.
Discussing kinetic friction over broad velocity ranges was yet
central to Prandtl’s original work. He proposed that one should
distinguish between two regimes; in one, the spring moves so
slowly that the point particle has enough time to jump back and
forth across the barrier (i.e., it is in the linear response regime,
in today’s terminology) and in another, the spring moves so
quickly that thermal fluctuations will make the atom cross
the barrier once before the true instability is reached, at which
point the old (meta)stable site disappears. In these two regimes,
the following functional dependencies were postulated:

Fk =
{

γeq(T )v − O
(
v3

)
, for small v,

Fref(T ,vref) + a(T ) ln(v/vref), for large v,
(1)

see Eqs. (26) and (18) in the original work,2 which has recently
been translated by Popov and Gray into English and will soon
appear in press.15 In Eq. (1), γeq(T ) is the equilibrium damping
felt by the driving stage or spring. When instabilities are
present, this (equilibrium or “effective”) damping γeq much
exceeds and is usually at most logarithmically dependent on
the damping that is put explicitly into the interaction between
mass point and substrate16 (see also model and result section).
Unless the temperature is high, the logarithmic regime tends
to span many decades, until v becomes so large that inertial
effects set in, or until the ad hoc damping dominates the
merely logarithmically increasing friction. In this latter regime,
Fk starts to depend on many details (overdamped versus
underdamped, explicit damping between mass point and
substrate versus damping within the spring). For this reason,
the regime of extremely large velocities shall not be of interest
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MARTIN H. MÜSER PHYSICAL REVIEW B 84, 125419 (2011)

here. Moreover, it would be beyond v = 0.1 in reduced units,
which corresponds to difficult-to-reach ≈1 mm/s in AFM
experiments or ≈100 m/s in atomistic interpretations of the
PT model, at which point the starting assumptions of the PT
model such as negligible local heating and the absence of wear
would automatically break down anyway.

The remaining terms in Eq. (1) are a friction force Fref

measured at a reference velocity vref , which can be chosen
at will within the ln v regime, and a factor a(T ) stating
how quickly Fk changes with ln v. In a first approximation,
Prandtl found a(T ) to be linear in T , while in a more
refined treatment, he suggested that a(T ) should scale with
temperature according to

a(T ) ∝ T 2/3, (2)

see Eq. (23) in Prandtl’s work.2

What Prandtl discussed only little is the question of how
the small-velocity response crosses over to the large-velocity
regime. This crossover, however, is of interest in a variety of
fields. For example, in the mathematical description of tectonic
plate motion, the singularities that occur for ln v in the limit
of small v need to be removed.17 This can done by modifying
Eq. (1), e.g., through

Fk = F0 + a(T ) ln(1 + v/vc), (3)

where the new reference velocity vc cannot be chosen
arbitrarily anymore, because a change of vc can no longer be
compensated through a different value of F0. The velocity vc

lies in between the low- and high-velocity regimes of friction.
A disadvantage of this latter equation, at least when applied to
the PT model, is that it does not reproduce linear response in
the limit of small v, unless F0 = 0. In that case, the equilibrium
damping can be expressed as

γeq(T ) = a(T )/vc(T ). (4)

Please note that not every contact must reach the linear
response regime, for instance, when junction growth occurs
more quickly than the thermally activated lateral motion16 so
that choosing positive values for F0 may sometimes be a better
choice.17

Another disadvantage of Eq. (3) is that a Taylor series
expansion of Fk contains even powers of v. These, however,
would be symmetry forbidden in any systematic expansion of
Fk(v), as it can be done within linear response theory, at least
as long as the potentials used possess inversion symmetry. In
this context, it is interesting to note that Prandtl’s leading order
correction to linear response was negative and of order v3, see
Eq. (1).

In this work, I attempt to find a friction-velocity relationship
that possesses the proper symmetry and exhibits the correct
linear and logarithmic limits at small and large velocities,
respectively. This attempt will be complemented by numerical
solutions of the appropriate Langevin equation for the PT
model by molecular dynamics (MD) simulations. They allow
one to vary temperature and velocity over a broad range of
values without affecting the model parameters, something
that might be difficult to achieve experimentally, and more
importantly, one can produce reference data at absolute zero.
Another aspect of this work is to discuss the relevance of
the predicted {T ln v/v0}2/3 dependence of friction.18,19 The

underlying theories will be generalized to facilitate comparison
to experiment or numerics.

The remainder of this article will be organized as follows:
in Sec. II, I introduce the PT model, discuss the benefit
of well chosen units so that kinetic friction, damping, and
temperature can be expressed as meaningful dimensionless
numbers, and include some typical values for these numbers.
Section III contains details of the numerical implementation
for the solution of the Langevin equation, which proved to be
slightly more challenging than anticipated. In Sec. IV, I discuss
various asymptotic limits for the friction velocity relationship
and suggest an expansion for Fk(v). Section V contains the
results of the MD simulations. The last section contains, not
surprisingly, discussions and conclusions. The rate theory for
the PT model and some simple extensions are presented in
Appendix A.

II. MODEL

Terms entering the PT model are the amplitude V0 of the
sinusoidal corrugation potential V0 cos(2πx/L), the lattice
constant L, the stiffness k of the spring with which the point of
mass m is drawn, the “ad hoc” damping coefficient or inverse
slip time γ , the driving velocity v, and the thermal energy
kBT . As usual, one should first define a unit system to describe
the model so that a meaningful comparison between different
experiments and simulations can be made. SI units are not
really helpful, since stating that the velocity is, say 1 cm/s
leaves one clueless as to whether this should be considered
extremely large or extremely small. The reason is that such an
evaluation would depend on the remaining system parameters.
Conversely, in well chosen units, a velocity of 0.01 can safely
be assumed to be outside the extreme high-velocity regime
(unless the damping were less than 0.01), albeit not necessarily
small enough to be in the linear response regime.

Thoughtful theoretical studies4 tend to fix the units of
energy and length by choosing V0 = 1 and 2π/L = 1. (This
way all analytical formulas become compact, numerical solu-
tions require only the minimum possible amount of floating
point operations, and the static friction force automatically
equals unity.) One can still define the unit of time. When
considering the PT model in the overdamped limit, this can
only be done through the damping coefficient. However, in
the context of AFM tips and atomistic interpretations, it might
be more sensible to fix the mass to m = 1 and leave γ as a
system parameter. The rationale is that m would not change
significantly between different experiments, while γ can
change with load—and more importantly—γ is an interfacial
property rather than a property of the tip or tip/cantilever
system, and thus much more difficult to gauge. Moreover,
the choice of m as the unit of mass allows one to find more
easily estimates for how to translate typical AFM scanning
speeds into reduced units.

With the current choice of units, the equation of motion for
the PT model under white thermal noise then reads

ẍ + γ ẋ + k(x − vt) = sin x + �(t), (5)

where v is the sliding velocity of the tip and �(t) the white
random force satisfying the fluctuation dissipation theorem,
i.e., 〈�(t)�(t ′)〉 = 2γ kBT δ(t − t ′). From Eq. (5), one can
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learn that four independent, dimensionless variables remain:
(i) k, (ii) γ , (iii) v, and (iv) kBT , which are worth discussing
separately.

(i) When k is greater than unity, no instability can occur,2,6

which would be of little interest for our study. When k is much
less than one, there are always many different metastable sites,
which can lead to nonmonotonic behavior of the friction force
on velocity, in particular for underdamped systems. When k

is less but not much less than one, the number of sites where
the mass point is (meta)stable is one or two depending on
the position of the spring. The motion of the mass point
when pulled under suitable conditions is then a stick-slip
motion with the period of the underlying lattice. This is the
condition encountered in the majority of AFM experiments
and motivates the default choice of k = 0.4. I will mention
explicitly whenever k differs from that value. Note that some
experimentalists use η = 1/k as the dimensionless control
parameter7 and find values in the vicinity of η = 2, which
translates to k = 0.5.

(ii) A value of γ ≈ 1 subdivides the motion of the mass
point between underdamped and overdamped. This ad hoc
damping, which can be motivated and derived from quite
rigorous linear response treatments, reflects the direct coupling
of the point particle to phonons and potentially electronic
degrees of freedom of the substrate.16,20,21 Most theories focus
on the overdamped limit (e.g., by choosing the unit of time
to be 1/γ and then sending m to 0), partly because this
facilitates the solution of analytical theories. Conversely, AFM
tips do not seem to be overdamped. Otherwise, multiple slips
observed in AFM experiments using high loads, resulting in
small k, would not be observed.22 For this reason, I will
chose a value for damping that represents the underdamped
case, namely γ = 0.1, However, I will demonstrate explicitly
in one case, which should reflect room-temperature AFM
experiments reasonably well, that γ affects Fk(T ,v) at most
logarithmically as long as v is not extremely large.

Typical values of the ad hoc damping for AFM tips when
almost in contact in the substrate21 are close to 10−12 kg/s,
which would lead to friction forces of 10−18 N at AFM
velocities of 1 μm/s. The resulting direct damping forces
would thus be approximately nine decades smaller than the
usually observed friction forces. Of course, this gap decreases
when the tip is pressed harder against the substrate, and
it may even happen that the tip motion becomes slightly
overdamped. But even then would damping only matter at
velocities approaching unity in dimensionless units.

(iii) v and (iv) kBT are varied over a broad parameter range.
Both numbers are usually small in regular AFM experiments.
The advantage of the simulation is that T can be raised
sufficiently high so that the crossover from logarithmic-like
and friction linear in velocity can be simulated directly
quite easily. At the same time, MD simulations of the PT
model can reach velocities smaller than those achievable
experimentally. This claim certainly does not hold for explicit
atom simulations.

Typical numbers for AFM experiments are (static) friction
forces on the order of a few nano Newtons, say 10 nN, while
the distance between two adjacent metastable sites is around
3 Å. This makes the unit of energy be roughly 3 × 10−18/2π J,
which in turn moves room temperature kBT into the vicinity

of 10−2V0. It is difficult to determine accurate numbers for
the mass m, in particular as it seems necessary to use a series
coupling of two springs to describe dynamics properly.10 In
order to come up with some number, I shall assume that the
value of mtip ≈ 10−12 kg as used in Ref. 7 was nevertheless a
reasonable choice. This makes the unit of velocity become

[v] =
√

10 nN(3 Å/2π )

10−12kg
(6)

≈ 7 × 10−4m/s, (7)

so that the “natural” unit of velocity for AFM tips is in the
order of mm/s, although this value may vary with load by a
decade. Given the current number, one can argue that the range
of velocities from 10−7 to 10−1 analyzed in the result section
would then cover a range from 1 Å/s through 0.1 mm/s. If,
however, we compared the same calculations to the originally
intended atomistic interpretation of the PT model, then the
same dimensionless numbers should be interpreted as 10−7 to
10−1 times the speed of sound cs . The investigated velocity
range would then correspond to 0.1 mm/s through 100 m/s,
assuming that cs is on the order of 1000 m/s. Thus, depending
on the context, the velocity of 1 cm/s turns out very large in
reduced units for AFMs, approximately ten, and utterly small,
≈10−5, when comparison is made to atomistic dynamics.

Given the above considerations on the AFM, the unit of
time [t] becomes ≈0.1μs. A damping coefficient in the order
of unity in reduced units would thus damp out the oscillatory
motion of a tip after a stick-slip event during this time. Since
this is hardly ever the case, one can safely assume that γ

should almost always be less than unity in wearless friction
experiments.

The meaning of the thermal energy in reduced units also
needs to be addressed. As stated in a preceding paragraph,
room-temperature thermal energy would be ≈0.01 in re-
duced units. However, this does not necessarily imply that
temperature is small. As k approaches unity, the relevant
barrier is not twice the corrugation potential V0 but it is the
barrier �Eb that arises from the combined substrate-atom
and spring-atom potential when there are two degenerate
mechanical equilibrium sites. For our default value of k = 0.4,
�Eb turns out to be ≈ 0.6 V0, so that thermal energy would
have to be associated with kBT ≈ 0.01. The relevant barrier
can decrease drastically and thus the ratio kBT /�Eb can
become very large when the load on the tip is reduced as
done in Refs. 6 and 23. AFM experiments should therefore be
able to probe the transition from linear to logarithmic friction
too, although difficulties associated with proper sampling,
discussed in the model section, are likely to impede such an
analysis quite substantially, even if the resolution of lateral
forces were as high as in surface force apparatus experiments.

In the remaining part of this section, the athermal limit of
the k = 0.4 default PT model will be discussed. As it should
always be done when analyzing a PT model, be it the original
one or a generalization of it, the energy barrier �Eb mentioned
earlier should be ascertained as well as the instability energy
�Ei. The latter is the energy that is released nonadiabatically
when a slowly driven athermal particle becomes unstable. Both
energies can be easily obtained to a desired numerical accuracy
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FIG. 1. (Color online) Combined substrate and spring potential
Vtot for two selected positions of the k = 0.4 spring as a function of
position x. For xspring = 2nπ , the two mechanically stable sites are
degenerate, which allows one to read off the activation barrier �Eb =
0.6231(5). Near xspring = 2nπ + 1.132, the left minimum disappears,
which leads to an instability energy of �Ei = 1.87(8), from which the
athermal, low-velocity limit kinetic friction force Fk = �Ei/2π =
0.298(9) follows.

by plotting the total energy as a function of the position x of
the point particle, for different spring positions. This is done
in Fig. 1. There are also analytical solutions, which will be
discussed in Appendix A.

From �Eb = 0.62, one can conclude that it will be
impossible to find a logarithmic Fk(v) dependence unless
thermal energies are distinctly less than 0.62. Otherwise, the
likelihood of a particle to sit at the top of the barrier is (almost)
just as high as to sit in one of the minima, in particular as
the curvature near the barrier is small. From �Ei one can
ascertain that the athermal, low-velocity limit kinetic friction
will be Fk = �Ei/2π = 0.298(9). This is because the particle
is going to lose this energy irreversibly as heat, each time the
spring advances by one lattice constant, which is 2π in reduced
units. The kinetic friction as obtained by MD (see next section)
is shown in Fig. 2.

For small v, the Fk(T = 0,v) dependence can be well
approximated by the relation4

Fk = Fk,ideal + constv2/3, (8)

where the constant depends on k, γ , and m but not on velocity.
At large v, this relation breaks down, when the point particle
can no longer dissipate the energy that was meant to get lost
as heat from previous instabilities when it encounters the next
instability point, e.g., when γ v approaches unity. Specifically,
the point particle still has kinetic energy before an instability
point is reached so that it is crossed prematurely. For other
parametrizations of the PT model, there can be other reasons
for the breakdown of Eq. (8) at high spring velocities. However,
the only point that matters for the subsequent analyses is that
the extremely large velocity range starts at v ≈ 0.1 for our
model and that the suggested finite-temperature treatments
cannot be used for that regime.
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FIG. 2. Kinetic friction Fk as a function of velocity v for k =
0.4 and γ = 0.1. The low-velocity law Fk = Fk,ideal + constv2/3 is
accurate up to a velocity of v = 0.1, where inertial effects are starting
to play a role. The value for Fk,ideal is equal to that obtained from the
analysis of the instability energy in Fig. 1.

III. METHODS

The velocity Verlet algorithm was used to integrate the
equations of motion in the molecular dynamics simulations.
In this scheme, damping and random forces were treated
on equal footing with the conservative forces, which—at
least for the small values for the damping term γ used
in this study—gives faster convergence of thermodynamic
averages (such as internal energy when the spring is at rest)
than if they had been excluded from the corrector step of
the velocity Verlet scheme. The time step dt was chosen
much smaller than any intrinsic time scale inherent to the
system: dt = 1/{40(

√
1 + k + γ )}. (Remember that 1 + k is

the maximum curvature of the combined spring-substrate
potential in the given unit system.) The random forces were
uniformly distributed and deduced from the xorshift random
number generator (XOR),24 through � = �0(2uxor − 1). The
first moment of � disappears and �0 was chosen so that
it satisfied the fluctuation dissipation theorem, i.e., �0 =√

6γ kBT /dt . Owing to the law of large numbers in the limit
dt → 0, it suffices to produce the correct first and second
moment of the random force so that there is no need for
the generation of Gaussian random numbers. This makes it
unnecessary to take sine, cosine, and logarithms of random
numbers within the Box Muller algorithm. These would have
been expensive operations with additional potential “dangers”
when the uniform random numbers entering the Box-Muller
algorithm are too close to zero or too close to one.

Surprisingly, the r250 random number generator, which was
used in the first few production runs, frequently induced drifts
in the ratio of F (v)/v at very small v, i.e., the quotient first
went onto a plateau indicative of Stokes friction, but then either
decreased or increased quite substantially when v was further
reduced. This drift could not be related to a drift in the r250
itself. Even with the XOR shift random number generator,
one needs to be cautious and discard the first few million
random numbers in order to ensure that the algorithm has run
in. Without doing so, one risks to inject too much energy into
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the system during those first few steps, supposedly due to some
strong correlations that tend to occur during the warmup phase.

In the present study, the sliding velocity was varied over
more than six decades for small T , i.e., for kBT 
 �Eb, at a
maximum statistical noise in Fk of 5%. Here, �Eb denotes the
energy barrier between the two (degenerate) stable sites when
the pulling spring is located on a maximum of the corrugation
potential. At large temperatures, only three decades in sliding
velocity could be covered. The reason why it is difficult to
cover more decades at large T is that the linear response regime
at high T is reached already at moderate v. In this regime, the
signal and thus the signal to noise ratio goes down by a factor
of two, when the velocity is halved. Therefore one needs to
slide four times the distance in the low-velocity simulation as
compared to the simulation at the original velocity, in order
to compute Fk with a fixed (relative) stochastic error. An
additional factor of two arises due to the need for performing
twice as many MD time steps to slide the mass point at half
the velocity. Thus, dividing the velocity by two in the linear
response regime makes the number of required floating point
operations go up by a factor of eight. This implies that adding
a decade at small velocities cranks up the compute time by
a factor of thousand. To access one or two more decades,
one should therefore port these (low-memory) calculations to
graphical processing units.

The large number of time steps at small velocity and the
poor signal-to-noise ratio induces numerical problems. One
can no longer simply add up the instantaneous forces and then
divide by the number of observations. An extreme case would
be that the noise is on the order of unity and the signal is
in the order of 10−4. If all observations were stochastically
independent (which they are not when the mass point needs to
sample different valleys), one would need 108 independent (!)
observations to get an average with an error bar of 100% and
thus 1012 observations to reduce the error bar to 10%. In a naive
approach, one would therefore lose 16 relevant digits, which
is roughly the accuracy of a long double precision variable in
C++. It was therefore assured that subtotals were conducted
so that never more than two numbers were added up onto one
counter, and the result of two summands was passed up to the
next hierarchy.

Fitting the Fk(v) data to different functional forms did not
prove to be trivial either, because the fits should be sensitive
to Fk(v) at large v (low temperature) and to the effective
damping γeff(v) = Fk(v)/v at small v (high temperature). Due
to these two constraints, the function f (v) = Fk(v)/

√
v was

considered, which is sensitive to the velocity regime where the
response crosses over from linear to logarithmic. The reason
is that f (v) first increases with v in the linear response regime
and then decreases when Fk(v) becomes logarithmic in v.
Whenever the maximum of f (v) was inside the observation
window, the χ2 fits were based on f (v). Whenever f (v)
increased or decreased monotonically within the observation
window, χ2 calculations were based on γeff(v) and Fk(v),
respectively.

IV. ASYMPTOTIC ANALYSIS

In the introduction, it was argued that the function Fk(v) in
Eq. (3) contains the proper small- and high-velocity limits for

F0 = 0, however, it contains symmetry-forbidden even-power
terms in v. The inverse hyperbolic sine function arsinh(x)
behaves like ln(1 + x) but only contains odd powers in x.
It is linear in x at small x with the same prefactor as
ln(1 + x), while for large x, arsinh(x) approaches ln(1 + x)
asymptotically. The two functions never differ more than by
roughly 30%, although their inverse functions differ by a
factor of two when their arguments become large. This is a
small deviation given that the most serious attempts to date
to connect AFM experiments and all-atom simulations still
miss a little more than a decade in sliding velocity when
trying to match experiments and simulations.25 In fact, the
maximum 30% difference between ln(1 + v) and arsinh(v)
may be too small for us to discriminate clearly between the
two alternatives when fitting the two functions to experimental
or numerical data: The “fit” parameters a(T ) and vc(T ) will
turn out slightly different in each approach so that six decades
in velocity and numerical uncertainties in Fk(v) on the order
of 5% are insufficient to clearly reveal that the arsinh approach
is superior to the better known logarithmic dependence.

According to linear response theory, the response of any
finite-size and finite-temperature system in which particles
interact through well-behaved potentials is an analytical
function in the driving force and vice versa. It should thus
be possible to expand F (v) into powers of v, where only odd
powers are allowed for potentials with inversion symmetry. A
simple Taylor series expansion, however, will necessitate many
terms to reflect the logarithmic Fk(v) dependence at large v. It
will thus be more efficient to use kernels that automatically
ensure that each term does not grow too quickly when v

becomes large. Such an expansion would be

Fk(T ,v) =
∑

n

an(T ){arsinh[v/vc(T )]}n, (9)

where n only runs over odd integers when the potentials
possess inversion symmetry. The relation to the original Taylor
series expansion can be achieved as usual by expanding the
kernel function into powers of v and then by successively
matching the expansion coefficients; the first N orders in the
Taylor series will fix vc plus the N − 1 leading an coefficients.
As it will turn out later, one can usually truncate after the a3

term, unless the temperature is so small that the response starts
to resemble that of the athermal PT model. In that case, it is
easier to add a v2/3-type correction to the leading-order a1 term
rather than to add more higher-order an terms.

What has not yet been discussed in detail in this work is
how a(T ) and vc(T ) are expected to depend on temperature.
To investigate this issue, it is instructive to analyze how we
expect Fk(T ,v) to behave in the limit of small velocities and
in the limit of small temperatures. Interestingly, there is no
unique value for Fk(T → 0,v → 0).26 As long as T is finite,
there will always be a linear response term at small v, and thus

Fk(0 < T,v → 0) = lim
v→0

γeq(T )v (10)

= 0. (11)

Conversely, if we assume that v is small but finite and k is less
and not too close to one, then we can exploit the results for the
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athermal Prandtl-Tomlinson model:

Fk(T → 0,0 < v 
 1) = Fk,ideal + O(v2/3). (12)

By comparing Eqs. (10) and (12) one can see that Fk(0,0)
disappears when we first send velocity to zero and then
temperature, while it approaches Fk,ideal when the limits are
carried out the other way around. Any functional dependence
of a(T ) and vc(T ) should reflect this behavior.

Suggestions for the functional dependence for a(T ) have
been a(T ) ∝ T and a(T ) ∝ T 2/3, which can be written as

a(T )

aref
=

(
T

Tref

)α

, (13)

where α is supposed to be either unity or two thirds and Tref is
an arbitrary reference temperature. At small temperature, the
functional dependence for γeq(T ) can be assumed to follow an
Arrhenius dependence so that

γeq(T )

γref
= Tref

T
exp[β�Fb(T ) − βref�Fb(Tref)], (14)

where �Fb(T ) is a potentially temperature-dependent free
energy barrier and β, as usual, the inverse thermal energy
1/kBT .

We will now be concerned with the following question: if
one were to extend Eq. (14) to small T and assume that the
leading-order term in the arsinh expansion were dominant even
at large v, what would the functional dependence of �Fb(T )
have to be, so that we recuperate the correct value for Fk when
we first send T to zero and then v? To address this question,
one can write the first term in the arsinh series as

Fk(T ,v) ≈ a(T )arsinh[1 + γeq(T )v/a(T )], (15)

which in a first approximation would become

lim
T →0

Fk(T ,v) ≈ a(T )�Fb(T )

kBT
. (16)

Given that this should be close to the zero-velocity, athermal
Fk , it follows that

�Fb(T ) ≈ Fk

kBT

a(T )
. (17)

This result appears meaningful if a(T ) is linear in kBT

because the barrier �Fb would then converge to a constant
at T → 0. For the sublinear dependence, a(T ) ∝ T 2/3 one
would have to conclude that the leading-order term in the
arsinh series is not sufficient to describe the large velocity
response, because a vanishing barrier is unphysical. Yet, at
temperatures sufficiently high for the first term in the arsinh
series to be the leading-order term, one can express Fk(T ,v)
as a function of T and Fk as well as of the two parameters
aref and γeq(Tref) that need to be gauged at a given reference
temperature.

V. RESULTS

A. Functional form of Fk(v)

In this section, we will first be concerned with the question
if the expansion in inverse hyperbolic sine functions is
appropriate. For this purpose, MD results will be compared
to an arsinh(v/vc) expansion and to another expansion, in
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FIG. 3. (Color online) Fk/
√

v as a function of velocity v for the
default model at T = 0.2. The MD data are fit to two different model
functions.

which the kernel function is replaced with ln(1 + v/vc). This
comparison, in which the target function was Fk(v)/

√
v is

presented in Fig. 3.
As explained in the last section, the small difference

between the functions arsinh(x) and ln(1 + x) makes it
difficult to ascertain if an arsinh(v/vc) expansion really is
superior to one based on ln(1 + v/vc). As a matter of fact,
the χ2 deviations tend to be very similar to each other
between the two approaches. However, an important clue
that only odd powers in v should occur comes from the
observation that including arsinh(v/vc) or ln(1 + v/vc) terms
raised to the third power decreases the χ2 error distinctly more
than if the respective second-power terms are used. What
is nevertheless somewhat distressing is that the values for
a1(T ) and vc(T ) differ surprisingly much, specifically, the fits
yielded vc(arsinh) = exp(−6.47), a1(arsinh) = 0.0450, and
a3(arsinh) = 0.000936, as opposed to vc(ln) = exp(−5.95),
a1(ln) = 0.0838, and a3(ln) = 0.000 1096, i.e., the estimates
for the term a(kBT = 0.2) differ almost by a factor of two.
This might have been expected, as the thermal energy is not
much less than the energy barrier �Eb, and the curves do
not show much of a logarithmic dependence to begin with, as
the domain right of the maximum of Fk/

√
v barely covers a

decade. In contrast, the deduced equilibrium damping terms
come out within 10% of one another, that is, γeq(arsinh) = 29.1
versus γeq(ln) = 32.3.

As temperature decreases, the higher-order correction terms
can be replaced with the v2/3-corrections known from the
Fk(T = 0,v). This is demonstrated in Fig. 4, where the thermal
energy is kBT = 0.1.

A danger one has to be aware of when adding the
athermal v2/3-correction from the athermal PT model is that
it decays with a power smaller than unity. This correction
must therefore be damped off at small v, for example, with a
factor [1 − exp(−v/vc)], in order to ensure the proper linear
response. An introduction of such a correction factor for the
velocity range shown in Fig. 4 was not needed to obtain the
satisfactory agreement between theory and simulation. That
situation would have started to change if more decades had
been added at small velocities.
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FIG. 4. (Color online) Fk/
√

v as a function of velocity v for the
default model at T = 0.1. The MD data are fit to two different model
functions. The prefactor to the v2/3 correction was not a fit parameter
but identical to the value identified in Fig. 2.

For T = 0.1, the two competing fits now give values consis-
tent within 10% for both a1 and γeq, namely a1 = 0.0274 and
γeq = 485 for the regular third-order arsinh correction versus
a1 = 0.0317 and γeq = 445 when the power-law correction is
applied.

One might be concerned that the excellent agreement
between the (low-order) arsinh expansion and numerical data
is fortuitous, because of the particular value of k. In order to
investigate if this concern is true, additional simulations were
run at T = 0.133 for k = 0.3 (Fk = 0.20146) and k = 0.5
(Fk = 0.42065). The choice for T = 0.133 was motivated
by the observation that the maximum of F (v)/

√
v, i.e., the

crossover point between Stokes and Coulomb friction, was
close to the center of the accessible window on a logarithmic
velocity scale. For all curves, the quality of the fits was as good
as the ones shown so far. The ratios of the arsinh coefficient
r = a3/a1 turned out to be less than 0.03 in all three cases,
specifically: r(k = 0.3) ≈ 0.0074, r(k = 0.4) ≈ 0.0126, and
r(k = 0.5) ≈ 0.0236. Of course, in the limit k → 1−, the
expansion becomes meaningless, because instabilities are no
longer significant.

B. Low-temperature results

Analyses, as the ones carried out for T = 0.1 and T = 0.2,
were repeated for a wide range of temperatures and velocities.
Results from a representative subset are shown in the regular
Fk(v) representation in Fig. 5. The fits to the MD results clearly
reveal that the first term in the expansion of Eq. (9) plus a
small correction term describe the F (v) behavior over several
decades in temperature and sliding velocity.

All data sets were analyzed such that the power-law
correction and the third-order arsinh term were assumed as
the only correction to the F (k) = aarsinh(v/vc) leading-order
term. While the power-law correction gave the slightly better
fits (and were used for later analyses), it is yet useful to
also investigate the prefactors a3 for the third-order arsinh
term. For k = 0.4, they turned out to be, at most, close
to 2% of the leading-order coefficient. This means that the
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FIG. 5. (Color online) Fk(v) as a function of velocity v for the
default model at temperatures covering more than two decades in
magnitude. Lines are fits according to the same equations used in
Fig. 4, where the third-order correction term corresponded to the
power law at T < 0.1, while the third-order arsinh term was used
otherwise.

linear response behavior crosses over into a predominantly
logarithmic velocity dependence at v = vc.

From the fits to the MD data, the rate at which kinetic
friction increases with ln v or with arsinh(v/vc) can be
ascertained. This allows one to test the scaling hypotheses
for a(T ) with temperature. Results for the coefficient a1(T ),
or simply a(T ), are presented in Fig. 6. It clearly confirms
the prediction that the leading-order prefactor in the arsinh
expansion scales with T 2/3, although there appears to be no
need to raise the arsinh(v) into a power different than one.
However, confidence into the rate theory can be gained from
the observation that the prefactor to the a(T ) ∝ T 2/3 relation
matches almost perfectly the one derived from a slightly
modified rate theory, which is presented in Appendix A.

The observed linearity of Fk with arsinh(v) or ln(v)
challenges recently presented rate theories in which it was

10-3 10-2 10-1

T
10-3

10-2

10-1

a(
T

)

FIG. 6. Leading-order prefactor a(T ) as a function of T . The
line, 0.149T 2/3, is a parameter-free result from a slightly modified
rate theory in which the motion of the equilibrium site to which a
depinning particle is jumping, was included.
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MARTIN H. MÜSER PHYSICAL REVIEW B 84, 125419 (2011)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

v/Ω

0.00

0.01

0.02

0.03

0.04

0.05

ΔF
(T

,v
)

γ =   0.1 F
ref

 = F
k
(T=0,v)

γ =   1
γ = 10
γ =   0.1 F

ref
 = F

k
(T=0,v <<1)

FIG. 7. (Color online) Difference between measured friction and
reference friction �F (T ,v) = Fref (Tref,vref ) − F (T ,v) as a function
of velocity. Damping was varied from overdamped to underdamped.
Velocity is divided by the eigenfrequency of the pulling spring, which
made it possible to collapse results for different dampings. In one case
(open circles), the reference friction was simply the ideal athermal
kinetic friction.

found that Fk changes with [ln(v/v0)]2/3 and it solidifies
previous theories. The generic ingredients to those rate
theories,18,19 including some minor extensions, are presented
in Appendix A. It has to be kept in mind that the rate
theories had not been developed around the crossover from
linear response to logarithmic friction but rather at a range
of velocities that sit to the right of the F (v)/

√
v maximum,

but that do not enter yet the extremely high-velocity range.
Specifically, the recent rate theories were concerned with the
question of how the average distance from the average thermal
depinning point to the athermal instability point depends on
temperature when this depinning still occurs in the vicinity of
the athermal instability point.

In order to give a more substantiated evaluation of the rate
theories, one should compare the deviations between thermal
and athermal kinetic friction well above vc, because this
difference is what the rate theories are concerned with. To make
the comparison between the computed Fk and the rate theories
clean, one needs to consider the motion of the equilibrium site,
to which a depinning particle pops. These dynamics increase
the thermal reduction of Fk with respect to the one of the de-
pinning force Fs (which is the predominant quantity of interest
in the rate theories), but the scaling remains invariant within
the rate theory approach, which is shown in Appendix A.

Figure 7 shows the deviation between “measured” friction
Fk(T = 0.005,v) at a small but finite temperature and the
zero-temperature reference friction at Fk(T = 0,v). In order to
make sure that damping did not affect the results in a qualitative
fashion, different damping constants were considered.

It remains difficult to find support for the [ln(v/v0)]
behavior even in the new representation. The only case where
one could fit more easily a [ln(v/v0)]2/3-type function than
the regular ln(v/v0) term requires one to subtract a constant
from the data, rather than the athermal Fk(v) curve. The latter
comparison, however, is the more meaningful one, because it
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FIG. 8. (Color online) Fk(v) as a function of velocity v for the
default model at temperature covering more than two decades in
magnitude.

does not contain the athermal v2/3 contribution from Eq. (8),
which is not part of the rate theory for �Fk . Since all steps of
the rate theory are yet well justified, one may wonder why it is
so difficult to reproduce the law with solutions of the Langevin
equation. One reason may be that it must break down at large
velocities, when v approaches v0. At that point a function that
is right-curved crosses over into one that is left curved. For
a power law that differs so little from an exponent of one, it
may thus be necessary to cover many more decades (and to
decrease temperature even further). This aspect is discussed
further in Appendix B.

C. High-temperature results

At high temperatures, the friction law becomes Stokes-like,
so that it is small at small velocities. It is then difficult to assess
the validity of the arsinh expansion when the simulation data
are represented linearly as is done in Fig. 5. To better reveal
the effective damping, F (v)/v, more MD data is shown than
before but this time in a double logarithmic representation, see
Fig. 8. As before, it is possible to capture the simulation data
quite reasonably with the fit function.

One can notice that some curves have higher scatter than
others, which may be worth commenting on. It is simply a
consequence of runs having been submitted with different
requirements on the stochastic error. In each set of runs, the
velocity is lowered in discrete steps, where the new velocity is
a fraction (slightly larger than 80%) of the previous velocity. At
each velocity, subaverages of the spring force are performed
that correspond to the average of the spring force over one
lattice constant. These subaverages enable one to have Nn

independent estimates for Fk from where a variance and an
error bar can be computed. For the next velocity, one then
assumes that the error bar will not change much and requests
a number Nn+1 so that the expected statistical error at velocity
vn+1 remains below a set relative error. One has to avoid to
adjust Nn on the fly at velocity vn, because this will induce an
offset in the results (for reasons similar to why the maximum
displacement in Monte Carlo simulations may not be varied
during the observation in order to keep the acceptance ratio
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FIG. 9. Equilibrium damping γeq as a function of inverse temper-
ature 1/T . The solid line is a fit with an Eyring equation of the form
γeq = βγ̃ exp(β�F ) with γ̃ = 0.85(6) and �F = 0.40(1).

fixed). The “requested” relative error was varied between 5%
at high T and 0.5% at low T .

From the fits shown in Fig. 8, one can deduce rather
accurately the equilibrium damping γeq, which one may
loosely associate with an equilibrium viscosity. Results for γeq,
see Fig. 9, should be particularly trustworthy when v can be
lowered sufficiently much so that Fk(v) ∝ v can be observed
directly, i.e., for T � 0.07. Otherwise, small uncertainties in
fitting the coefficient a1 can lead to exponentially large errors
in γeq. For T � 0.07, the effective viscosity can be well fit by
an Eyring equation.

VI. DISCUSSION AND CONCLUSION

In this work, numerical solutions to the Langevin equations
of the PT model were presented. They covered zero tempera-
ture and two decades in finite temperature, as well as up to six
decades in sliding velocity at the smallest temperatures. The
longest runs at the smallest velocity at a given temperature used
to span 1010 reduced time units, which translates to almost one
hour real time when compared to AFM experiments. This made
possible to observe directly the crossover from linear Stokes
damping or viscous friction to Coulomb or solid friction at
some intermediate temperatures. There, the transition could
be described by a simple F (v) ∝ arsinh(v/vc) relation, which
contains Stokes and Coulomb friction as limiting cases, and
has the proper inversion symmetry with respect to sliding
velocity. Although the velocity domain spans a few more
decades than other works so far, one cannot exclude the
possibility that significant corrections to the leading-order
arsinh(v/vc)-term would be needed if even more decades of
slow sliding velocities could be accessed in the simulations
at very small T . But even if this were the case, it is probably
legitimate to say that for any quantitative, practical purpose
there is no need to replace the constitutive equations, Eqs. (3)
or (15), with one that carries a [ln(v/v0)]2/3 dependence, in
particular as it seems difficult to build the crossover to linear
response theory into the latter. For any real application, it
seems more practical to add a [arsinh(v/vc)]3 term so that
the friction velocity dependence can be described accurately.

Moreover, when the PT model is applied to the motion of a
tip on two-dimensional, crystalline surfaces,27,28 one should
expect the parameters a and vc to depend on the sliding
direction when a tip is pulled over crystal.

The results presented in this work agree with previous
observations in which the [ln(v/v0)]2/3 dependence either was
rejected directly13 or could not be convincingly established (at
least not to the author of this work) on a single, contiguous
data set.11,18,19,29 It is nevertheless premature to dismiss the
rate theories and their tests. As shown in Appendix B, all
directly testable approximations made in the theory are rather
reasonable, except near (and of course, above) v0, which is
precisely the velocity regime in which it would be easiest to
discriminate between the exponent 2/3 and an exponent of
one. Instead, one should recognize that the scaling and the
magnitude (as derived in Appendix A) of the prefactor to
the ln v dependence with respect to temperature is correct.
Another important test for the rate theory as applied to the
regular PT model is the analysis of the depinning forces, which
resulted in a distribution close to the prediction made by the
theory.30 These tests have been repeated successfully by the
author during the preparation of this work.

It is difficult to gauge the implication of the results obtained
in this work for generalized PT models, in particular for
the two-spring, two-mass generalizations of the PT model.10

The latter generalization appears to induce additional velocity
regimes, which are not captured by the traditional model. This
is somewhat surprising, as the effect of a series coupling of
two springs should be describable as a single spring that is
damped in terms of a memory functional and that experiences
colored, thermal noise. Yet, it has been shown that corrections
to transition state theories (similar to the one discussed here)
are particularly large when the degree of freedom that is
associated with the reaction coordinate has little inertia as
compared to the bath variables.31 There, the transmission
coefficient, which describes deviations from transition state
theory, depends roughly logarithmically on the mass of the
light (or fast) degree of freedom. Thus, for a gigantic mass
mismatch between the two masses, this effect might become
ascertainable, although damping and mass affect friction only
logarithmically.

We can now certainly see it as established that the prefactor
to the ln(v) friction law for the PT model scales with T 2/3, also
given the evidence from previous work, in which the friction
velocity relationships obtained at different temperatures had
been combined into one single master plot.11,18 But what does
this mean in practice? Usually, friction is not dry but there
is an embedded boundary lubricant in between two rubbing
surfaces, which leads to a shear stress that increases linearly
with normal stress.32,33 Instabilities in that boundary lubricant
will then induce not only an even clearer ln v dependence than
the numerical solutions of the PT model, but in addition, they
exhibit a linear temperature dependence of the ln v term34–36

which is a rather typical experimental finding for macroscopic
friction.
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APPENDIX A: ANALYTICAL CONSIDERATIONS

At sliding velocities where thermal activation is present but
still so weak that the barrier is usually crossed only once, it is
possible to estimate the amount with which thermal activation
reduces Fk as compared to the athermal case. In this appendix,
I will outline such a calculation. However, two alterations
will be made with respect to previous calculations. First, I
will take into consideration that the equilibrium position, to
which the atom jumps when it crosses the barrier, depends on
the current location of the spring. This affects the amount of
energy that is dissipated during the instability. Second, I will
use a more general rate equation than the previous works. With
this latter change, one can rationalize why it might be difficult
to ascertain the proper scaling of friction with velocity.

When calculating the energy that is dissipated during one
jump, one needs to know the energy at the beginning of the
jump and at the end. The instability starts when the particle
crosses the energy barrier at x+ and it ends when it has settled
near the absolute minimum xm, which depends on the current
position of the spring. In order to calculate these points, one
needs to know the extrema of the total potential Vt given by

Vt (X,x) = k

2
(x − X)2 + V (x), (A1)

where X = vt is the spring position at time t and V (x)
is the substrate potential, e.g., V (x) = cos(x) as considered
throughout this work. Some relevant points and energies that
will be used in the subsequent treatment are introduced in
Fig. 10.

Extrema xe and also saddlepointssatisfy the equation

k(xe − X) + V ′(xe) = 0, (A2)

which implicitly defines the potentially multivalued function
xe(X). Assume we have solved this equation for X = X0. If
we now move X back by an infinitesimally small amount �X,
the previous extremum positions x0 − �x can be calculated
by a Taylor series expansion of Eq. (A2)[

k + V ′′(x0) − 1
2V ′′′(x0)�x

]
�x = k�X. (A3)

Thus,

�x =
⎧⎨
⎩∓

√
−2k

V ′′′(x0)�X if k + V ′′(x0) = 0,

k
k+V ′′(x0)�X, otherwise.

(A4)

The upper line on the right-hand side of the equation describes
how a saddlepoint in Vt (x) has arisen through the merging
of previous x± positions. There, we only consider the case
V ′′′(x0) < 0, as it occurs, for example, in the PT model at the
instability point xc. (Note that �x is subtracted from x0 so
that �x+ is negative, while �x− is positive, which makes x+
appear to the right from x−.)
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FIG. 10. (Color online) Total potential Vt (X,x) for k = 0.4 as
a function of x at two selected spring positions X. A few important
points are selected and indicated by small, solid circles: The transition
point in the athermal case xc, the absolute minima for xm(Xc) and
xm(Xc − π/15) as well as the relative minimum x− and the relative
maximum x+ for Xc − π/15. Their locations are calculated with the
formulas derived in the text.

The saddlepoint itself can be identified by requiring that
in addition to V ′(x) = 0 also V ′′

t (x) = 0 be satisfied. This
imposes the constraint k + V ′′(xe) = 0 or

xc = (V ′′)−1(−k) (A5)

= −acos(k) for the PT model. (A6)

Here, we have chosen the saddlepoint, where the old
metastable site disappears, rather than the one, where a new
one arises. Inserting this into V ′(x) = 0, the location of the
spring during the athermal instability becomes

Xc = xc + 1

k
V ′[(V ′′)−1(−k)] (A7)

= xc +
√

1 − k2/k for the PT model. (A8)

In order to calculate the spring position, near which
thermal fluctuations usually push the atom over the barrier, we
need to know the energy barrier �Eb(X) = E+(X) − E−(X).
Expressing Vt in terms of �X = X − Xc and �x = x − xc

yields:

E±(�X) = k

2
(xc − �x± − Xc + �X)2 + V (xc + �x±),

(A9)

from where the leading-order approximation

E±(�X) = Vt (Xc,xc) − k(xc − �x± − Xc)�X

+ k

2
�X2 − V ′′′(xc)

6
�x3

± (A10)

follows. Note that the last term on the right-hand side of the
last equation can be calculated with Eq. (A4) so that the barrier
becomes

�Eb(�X) = c�X3/2 (A11)
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with

c = 4
√

2k3

3
√−V ′′′(xc)

(A12)

= 4
√

2k3

3(1 − k2)1/4 (for the PT model), (A13)

which computes to c = 0.4983 for k = 0.4.
To calculate the energy �Ed that is dissipated in a jump,

we also need to know Em(X). For the calculation of Em(X),
it is easiest to take X = x = π as the reference point, where
Vt (X,x) is minimized simultaneously with respect to both its
variables. The net potential near this global minimum then
simply reads

Vt (X,x) = k

2
(X − x)2 + cos(x − π ), (A14)

from where

k(X − π ) = k(xm − π ) + sin(xm − π ) (A15)

and thus

(xm − π ) ≈ k

1 + k
(X − π ) (A16)

follows. Since this equation is linear in �X, one can use it in
a first approximation not only when X = π but also when the
reference point is X = Xc. For the latter, one then obtains

xm(X) ≈ π + k

k + 1
(X − π ),

(A17)

Vt [X,xm(X)] ≈ −1 + k

2(1 + k)
(X − π )2,

so that

Vt (Xc − �X) − Vt (Xc) ≈ k(π − Xc)

1 + k
�X. (A18)

For the model system investigated here, k = 0.4 and �X =
π/15, the derived approximations work very well, as
demonstrated in Fig. 10. The most significant error occurs
in xm(XC − π/15) for which the numerically determined
value is 2.48 versus the analytically obtained approximation
value of ≈2.51. Yet, trends are reflected reasonably well
by the leading-order terms for k = 0.4. For this default value
of the spring constant, the time dependence of the energy
minimum, which is usually neglected, accounts for about 40%
of the thermal reduction in friction.

If we now knew the average value for �X = X − Xc, where
the instability occurs, we could calculate by what amount �Eb

thermal fluctuations decrease the energy dissipated during an
instability:

�Eb = k

[
(Xc − xc) + π − Xc

1 + k

]
�X + O(�X3/2), (A19)

from where we could deduce the thermal reduction in kinetic
friction �Fk(T ) = Fk(0) − Fk(T ):

�Fk(T ) ≈ k

[
(Xc − xc) + π − Xc

1 + k

]
�X(T )

2π
, (A20)

as in the regime considered here, one instability occurs each
time the spring advances by 2π . This amounts numerically to
�Fk(T ) ≈ 0.237�X for k = 0.4.

To estimate the population of atoms sitting to the left of the
barrier, let us make the usual assumption that the leading-order
terms of Vt (x) can be obtained by expanding Vt (x) into a
third-order Taylor series of x around the barrier, which depends
explicitly on X and thus implicitly on time. Let us chose the
time t such that X(t = 0) = Xc. At small times t → ∞, the
probability P (t) for the atoms to sit left from the barrier equals
unity. From then on, the particles can escape the left well.
If recrossings are not considered, P (t) is determined by the
differential equation

Ṗ (t) = −w(t)P (t), (A21)

where w(t) is the transition probability.
To proceed, one needs a model for w(t). The usual

assumption is that a system is always locally close to thermal
equilibrium as long as it is driven slowly, in which case w(t)
can be expressed as a function of �X. Since the Arrhenius law
should be obeyed:

w(t) = ν exp{−β�E[�X(t)]}, (A22)

where the “attempt frequency” ν can still be a slowly varying
function of temperature and potentially also of �X = X −
Xc. This latter dependence is usually neglected, but one
may assume that the attempt frequency is higher when the
distance to crossing the barrier is smaller. Likewise, higher
temperatures tend to induce higher attempt frequencies. Since
the expectation value of �X increases with T , the measured
value of ν may turn out relatively independent of T .

For the just-stated reasons, I will assume the following
model for the attempt frequency:

ν = ν0
kBT

�Xζ
. (A23)

Here, the dependence on T can be considered to be weak,
as the dominant slowing down in the rate when T decreases
stems from the exponential factor. Conversely, the dependence
of ν on �X can become relevant when the athermal instability
point is reached, because the rate diverges at �X → 0 for
ζ > 0. For ζ � 1, this would automatically provide the correct
boundary condition that P (t = 0) = 0, while the frequently-
made assumption that ν is constant violates it in principle.

Following Persson’s treatment,36 the differential equation
(A21) can now be solved as usual by

P (t) = exp

[
−

∫ t

−∞
dt ′w(t ′)

]
. (A24)

Since Fk depends in leading order on 〈�X〉, we need to know
the average time τ the atom passes over the barrier. This time
can be computed according to

τ =
∫ 0

−∞
dtṖ (t)t. (A25)

Introducing P = 1 − Q and substituting this into Eq. (A24).
yields

τ =
∫ 0

−∞
dt Q(t) (A26)

=
∫ 0

−∞
dt

{
1 − exp

[
−

∫ t

−∞
dt ′ w(t ′)

]}
. (A27)
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Inspection of the integrand in the exponential function reveals
that the inner integrand will crossover from a very small
number to a number close to zero in a relatively narrow range.
This will happen near a time t = t∗, where the argument of
the exponential function is unity, i.e.,

1 =
∫ t∗

−∞
dt ′ w(t ′) (A28)

If we now approximate the main integrand on the right-hand
side of Eq. (A27) as zero for t < t∗ and as unity for t > t∗,
one finds that

τ ≈ t∗. (A29)

We still need to solve Eq. (A28) for t∗, i.e., we have to evaluate
the integral I on the right-hand side of Eq. (A28). Eliminating
t with �X(t) = −vt , gives

I =
∫ t∗

−∞
dt ′ w[�X(t ′)] (A30)

= 1

v

∫ ∞

�X∗
d(�X) w(�X) (A31)

= ν0kBT

v

∫ ∞

�X∗
d(�X)

1

�Xζ
e−βc�X3/2

, (A32)

where c can be be ascertained from either equation (A12) or
(A13). The integral can now be brought into a simpler form
through the substitution y = βc�X3/2:

I = c̃

∫ ∞

(y∗/βc)2/3
dy e−yy−(1+2ζ )/3 (A33)

with

c̃ = 2ν0kBT

3v
(βc)2(ζ−1)/3. (A34)

Whenever (1 + 2ζ )/3 is an integer, the integral (A32) reduces
to the incomplete gamma function

I = �

[
2ζ + 1

3
,(y∗/βc)2/3

]
, (A35)

while in the more general case, where the exponent (1 + 2ζ )/3
in the integral of Eq. (A33) is not an integer, I can be described
as a generalization of the incomplete gamma function. The
latter can be expanded as a semiconvergent series, which
would be sufficiently appropriate for our purposes. It turns
out, however, that ζ = 1 already produces the desired results,
which is why we will only consider this case in the following.

Expanding Eq. (A35) for ζ = 1, gives

I = c̃ exp(−ỹ∗)

ỹ∗ (A36)

with ỹ∗ = (y∗/βc)2/3. Since I was meant to be unity at �X∗
and thus at ỹ∗, we need to solve 1 = c̃ exp(−ỹ∗)/ỹ∗. This can
be done by iteration for small values of c̃ through

1 = c̃ exp(−ỹ∗
n+1)

ỹ∗
n

. (A37)

The first term in the series suffices (with a start value of ỹ∗
0 = 1)

when c̃ is very large, which leads to

ỹ∗ ≈ ln c̃ (A38)

for sufficiently large c̃ and thus for sufficiently small velocities.
Inserting this result back into the appropriate expressions for
y∗ and �X yields for ζ = 1:

�X ≈
[
βc ln

(
2ν0kBT

3v

)]2/3

. (A39)

This result is then to be inserted into Eq. (A20). For k = 0.4,
one obtains a(T ) ≈ 0.149T 2/3, which represents the line in
Fig. 6.

APPENDIX B: NUMERICAL TEST OF ANALYTICAL
APPROXIMATIONS

It is a straightforward task to test numerically the quality of
the approximations made in the above treatment. For the case
of simplicity, all system variables will be eliminated. In this
sense, we define

x∗ =
∫ 0

−∞
dx[1 − e−W̃ (x)] (B1)

with

W̃ (x) = 1

v

∫ ∞

x

dx ′w̃(x ′) (B2)

and

w̃(x) = exp(−x3/2)

xζ
. (B3)

The first approximation consists in arguing that

1 ≈ W̃ (x∗). (B4)

The second approximation is composed of two steps: an
expansion of W̃ (x) into incomplete gamma functions (where
all terms but the first one are discarded, see, e.g., Prandtl’s
work), followed by an iterative solution of Eq. (B4) that
is truncated at zeroth order, resulting in x∗ ≈ [ln(v)]2/3.
Numerical results for ζ = 1 are presented in Fig. 11.

One can see that the first approximation is rather meaning-
ful, and even the second one still shows the proper trends. Yet,

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

v

0

1

2

3

4
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6

7

x*

numerical result
1. approximation
2. approximation

FIG. 11. (Color online) Solutions for x∗ at different levels of
approximation.
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if one were given the numerically accurate solution to x̃∗ as
an experimental result (which would likely have more scatter
and uncertainties than the numerical solutions to the Langevin
equation presented in the main part of the manuscript), one
should barely be in a position to endorse strongly the [ln(v)]2/3

approximation. To do this, one would need to span a few more
than seven decades in velocity,at which point x̃∗ might be
so large that the approximation of the barrier through a cubic
polynomial could be at risk or the next order corrections (which

happens to be linear in ln v as one can easily ascertain from
Appendix A) starts to kick in.

The shape of the simulated dependence in Fig. 7 is
roughly similar to that shown in Fig. 11. They can yet not
be mapped onto each other, mainly due to the fact that the
athermal v2/3 contribution also gets reduced because of the
thermally-induced premature pops during an instability, and
these corrections appear to dominate the friction corrections
for the parametrization used in this work.
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