
PHYSICAL REVIEW B 84, 125417 (2011)

s-orbital continuum model accounting for the tip shape in simulated scanning tunneling
microscope images
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In this paper we present a simple method accounting for tip size effects in scanning tunneling microscopy
(STM) simulations. We consider the case where the tip atoms can be regarded as independent sources of s orbitals
and compute the tunneling current using the Bardeen formula and the approximation of incoherent scattering.
By averaging over the many possible tip configurations compatible with the effective external shape of the
STM probe, we show that the tunneling current is proportional, within our model, to the convolution product
between the local density of states of the system and a three-dimensional step function defined by the effective
tip volume. The method is tested on three systems of current scientific interest, namely, a hexabenzocoronene
molecule adsorbed on Cu(111), a reconstructed Au(677) surface, and a formate molecule adsorbed on Pt(111),
which we study by means of large-scale density functional theory calculations and STM experiments. An
excellent agreement between experimental and simulated STM images is found. It is shown that, under typical
experimental conditions, our approach recovers the results of the well-known Tersoff-Hamann modeling in the
case of spherical tips, while allowing for more versatility in the choice of the shape of the STM probe. Finally
we present an application of our method to one-dimensional surface models mimicking a localized defect and a
surface step, thereby offering a very simple framework for the discussion of the tip-induced broadening of the
surface features in the STM imaging.
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I. INTRODUCTION

Scanning tunneling microscopy (STM) can produce
atomic-resolution images of metallic or semiconductor sur-
faces, using the principle of quantum tunneling of electrons
between a metallic tip and the scanned surface. In a remarkable
review by Gottlieb and Wesoloski1 the first experiments with
STM are reconsidered, and Au(111) is cited as an example
where STM can investigate different length scales: from the
herringbone reconstruction, through imaging surface standing
waves of electronic density induced by a defect, down to
the individual gold atoms. The tunneling current depends
on the atomistic structure of the STM probe. Although
reasonable atomistic models of the STM tip already exist,
its explicit geometry remains basically unknown during the
STM experiments. Taking inspiration from the simple situation
where a tip terminated with a single atom approaches a flat
surface, it is tempting to conclude that the electronic structure
in the vicinity of the tip apex atom will always overwhelmingly
determine the tunneling current, due to the fact that the
probability of tunneling through a high barrier decreases
exponentially with the width of the barrier. But, as we will
see below, reducing the tip to a single contributing “atom” is
not always satisfactory, particularly when the corrugation of
the surface is comparable to the tip curvature, as in the case of
molecular adsorbates or surface steps. In these cases, several
atoms of the tip can be at equivalent distances from the surface
to be imaged, and a model taking into account the real size of
the STM tip is needed.

Most simplified models for computing the STM current
are derived from Bardeen’s theory,2 which was published well
before the invention of STM. Bardeen’s theory is adequate
when the tip and the sample are sufficiently far apart and

when the potential between tip and sample is low enough.
The derivation of Bardeen’s theory, beautifully sketched in
Ref. 1, is a perturbation approach starting from the available
information about the tip and the sample separately and
then studying the scattering of tip states into sample states
or vice versa. This approach leads to a formula for the
tunneling current, which can be further simplified in the case
of low temperature and/or low bias. Moreover, the matrix
elements involved in the tunneling current can be computed
by performing a flux integral on any surface belonging to a
suitably defined barrier region.3,4 One road for simplifying
the computation of the tunneling current is to treat the tip
structure using simple idealizations, as in the well-known
Tersoff-Hamann (TH) model.5 The TH model is derived from
Bardeen’s formula under the assumption that the tip can be
modeled as a spherical potential well. The tip eigenstates are
the spherical Bessel functions, describing solutions associated
with different angular momenta. The TH model retains only the
smallest angular momentum component l = 0, corresponding
to an s wave. Within this approximation the STM image is a
contour of the local density of states (LDOS) of the system.
This very simple result gives a straightforward framework
for the interpretation of STM experiments, which can be
related to a physical property of the sample alone. The
contribution of the tip to the STM image is given only by
the radius of the spherical tip which sets the intensity of
the current and therefore the average tip-sample separation
at which the imaging is performed. Within the TH model,
the tip is modeled as a protruding piece of Sommerfeld
metal and tip electrons are delocalized entities within the
well. By taking the opposite perspective, Chen6 interpreted
the tip states as dominated by one single atomic orbital
localized on the outermost atom of the tip and developed a
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formalism to include l > 0 corrections to the tip states in
the calculation of the tunneling matrix elements. For tips
dominated by one single s orbital, the atomistic interpretation
recovers the result of TH and the STM image is represented
by a contour of the LDOS at the Fermi level Ef . Even for
the l = 0 case, however, the two pictures cannot be considered
equivalent: while the TH approximation takes into account
the size of the tip, modeling the tip states as a single s
orbital corresponds to the use of a pointlike tip and does not
allow reproduction of the tip-induced smearing of the surface
features. By keeping the atomistic point of view, a remedy to
this limitation would be the use of models accounting for tips
composed of many atoms. However, the atomistic structure of
the tip is normally unknown and, if it were available, more
accurate ways to compute the tunneling current would be
then at hand.3,4 Therefore it would be valuable to have tip
models based on an atomistic description but at the same
time requiring only reduced information on the tip structure,
such as its effective outer shape. The aim of this paper is to
propose a STM simulation method that effectively takes into
account the size of the STM tip, starting from an atomistic
description of the tip itself. We consider tips composed of
a large number of atoms and model the tip states as a
linear combination of atomic orbitals. By using the Bardeen
formula, we compute the tunneling current in the inchoerent
sum approximation and, within this approximation, obtain
an expression which is valid for an arbitrary arrangement
of tip atoms. By averaging the current value over many tip
configurations which are bound by a particular tip shape, we
show that the resulting current intensity is proportional to the
convolution product of the system LDOS with a step function
defined by the effective tip volume. This simple result allows
for a conceptual framework where tip size effects can be
understood in a straightforward manner. We show that, under
typical experimental conditions and in the case of spherical
tips, our approach is equivalent to the TH model. However,
our method allows us to simulate STM images using tips of
any shape at a very moderate computational cost, which differs
negligibly from that demanded by the TH modeling. We named
our tip model the “s-orbital continuum” (SOC) model, since
it corresponds eventually to a continuum of atomic orbitals
bound by the tip surface, and in this work we considered only
tips composed of atoms with dominant s-orbital character.

II. MATERIALS AND METHODS

Electronic structure calculations were performed in the
framework of density functional theory (DFT) using the
mixed Gaussian–plane wave basis set approach implemented
in CP2K.7 Kohn-Sham equations were solved using the Perdew-
Burke-Ernzerhof exchange correlation functional, Goedecker-
Teter-Hutter pseudopotentials, and contracted Gaussian basis
sets8 for all elements. The Poisson equation was solved by
expanding the charge density in plane waves using a cutoff of
280 Ry. In order to study the properties of a model tip, we
calculated the electronic structure of a system composed of
a small cluster of gold on one monolayer of Au(111). The
periodic unit cell is orthorombic, the cell size is 35 × 35 Å2

along the monolayer plane and 60 Å in the perpendicular
direction. We then investigated three systems of current

scientific interest, an isolated hexaperihexabenzocoronene
(HBC, C42H18) molecule adsorbed on Cu(111), a stepped
Au(677) displaying surface reconstruction, and a formate
molecule (HCO) adsorbed on Pt(111). The details of the
Au(677) calculation have been reported elsewhere.9 However
with respect to Ref. 9, the calculation was repeated using a
kink-free slab. The HBC/Cu(111) calculations were performed
using an orthorombic cell. The cell size is 40 × 41 Å2 along the
surface plane and 60 Å in the perpendicular direction. The sys-
tem contains one HBC molecule absorbed on a slab of five lay-
ers of copper and one additional layer of hydrogen deposited
on the deepest copper layer. This allows us to suppress one of
the two surface states10,11 arising in a Cu(111) slab calculation,
thus removing possibe artifacts due to the finite thickness of
the slab.12,13 Dispersion forces in the HBC/Cu(111) system
were taken into account using the empirical parametrization
of Grimme.14 The two deepest layers of the Cu slabs were
kept fixed to bulk positions and structural optimization was
performed until the largest forces on atoms were as small
as 10−4 a.u. The electronic optimization of the Au(677) and
Cu(111) surfaces was repeated after structural optimization
using additional Gaussian basis functions centered 2 Å above
each surface stom. This ensures more variational freedom in
the calculations of the surface wave function in vacuum and
therefore a better description of the Kohn-Sham states up to the
beginning of the vacuum region.15 The HCO/Pt(111) system
was optimized using a unit cell of size 22.4 × 19.4 Å2 along the
surface plane and 60 Å in the perpendicular direction. The slab
used consists of six layers of Pt(111). The structural optimiza-
tion was carried out analogously to the case of HBC/Cu(111).
After the electronic optimization was carried out, the indi-
vidual states were analytically extrapolated into the vacuum
region using the matching procedure described in Refs. 16–18.
STM experiments were performed on a low-temperature
STM (Omicron Nanotechnology) with a base pressure of
10−10 mbars. Cu(111) was prepared by repeated argon ion
bombardment and annealing to 800 K. HBC molecules were
deposited from a resistively heated quartz crucible at 1 Å/min
with the substrate kept at room temperature. STM images were
recorded at 5 K. Details of the experimental measurements for
the Au(111) stepped surface are reported in Ref. 9.

III. DESCRIPTION OF THE METHOD

The Tersoff-Hamann approximation5 is obtained from the
Bardeen formalism2 under the assumption that the tip can be
modeled as a spherical potential well. The Bardeen formalism
states that the tunneling current depends on the following
integral:

I = 2πe

h̄

∑
μ,ν

f (Eμ)[1 − f (Eν + eV )]|Mμν |2δ(Eν − Eμ),

(1)

where f (E) is the Fermi function, V is the applied voltage,
Mμν is the tunneling matrix element between states ψμ of the
probe and ψν of the surface, and Eμ is the energy of state ψμ

in the absence of tunneling. The explicit formula for the the
matrix element reads

Mμν = h̄2

2m

∫
d �S · (ψ∗

μ
�∇ψν − ψν

�∇ψ∗
μ) (2)
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and the surface integral is performed on a separation surface,
which can be any surface lying entirely in the vacuum region.
The TH approximation models the tip as a macroscopical
spherical well, whose eigenstates are spherical Bessel func-
tions corresponding to different angular momenta. In their
description, Tersoff and Hamann retained only the l = 0
component and showed that, in the limit of low temperatures
and low bias voltages, the matrix element Mμν is proportional
to to the value of the sample state ψν( �r0), �r0 being the center
of the well. As a result the current intensity recorded by the
STM tip is proportional to the LDOS of the sample at �r0, at
the Fermi energy Ef :

I ( �r0) ∝
∑

ν

|ψν( �r0)|2δ(Eν − Ef ) = ρ(Ef , �r0), (3)

where ψν are the one-electron states of the investigated sample
and Eν are the corresponding one-electron energy levels. In
describing the tip structure as a macroscopic potential well,
the theory of TH does not explicitly refer to the atomistic
structure of the tip and to the individual atomic states from
which the tip eigenfunctions are derived. Rather it models
the tip electrons as delocalized entities within the well. By
taking the opposite perspective, Chen6 interpreted the tip states
as dominated by one single atomic orbital localized on the
outermost atom of the tip and developed a formalism to include
l > 0 corrections to the tip states in the calculation of the
tunneling matrix elements. For tips dominated by one single s
orbital, the atomistic interpretation recovers the result of TH,
and the STM image is represented by a contour of the LDOS at
Ef . Even for the l = 0 case, however, the two pictures cannot
be considered equivalent: while the TH approximation takes
into account the size of the tip, modeling the tip states as
a single s orbital corresponds to a pointlike tip. The tip size
effect in the TH approximation is accounted for by the fact that
LDOS contours are taken at the center of the well, rather than
at the tip bottom. As a remark, we use the term s wave when
referring to the l = 0 eigenstate of a macroscopic potential
well, as in the TH approximation, while the term s orbital

is instead used in the context of the atomistic interpretation
of the tip. In Fig. 1 we present an example calculation in
order to gain more insight into the actual electronic features
of a realistic tip, using ab initio calculations as described in
the previous section. The tip is represented as a cluster of
gold atoms on a Au(111) monolayer. The cluster was obtained
from the gold bulk structure by selecting only atoms falling
within a hemisphere of 9 Å radius and with base parallel to
the [111] plane. Since there are many ways to obtain a cluster
of gold atoms contained in such an hemisphere, we chose a
cluster terminated by a single atom, therefore mimicking a
realistic tip able to yield high-resolution images. In Fig. 1
we show the contour profile of the eigenstates of the system
at Ef (in practice we averaged the amplitude of states over
a small energy window of 0.1 eV below Ef ). The isovalue
(10−4e/Å3 for the corresponding density of states) was chosen
so as to be closest to a hypothetical spherical wave front that
is at 3 Å distance from the tip surface. It is noticeable that,
locally, below the tip apex atom, the tip states can be very
well represented by a single s orbital originating from the tip
atom itself. In the imaging of a flat surface only the shape
of the tip states below the apex atom is relevant, and the

FIG. 1. (Color online) (a) Top view of the gold cluster bounded by
a hemispherical volume of R = 9 Å radius. Smaller atoms represent
the Au(111) layer supporting the cluster. (b) Section of the cluster
along the dashed line in (a). The inner circle represents the cluster
envelope; the outer circle is a spherical wave front 3 Å away from the
tip surface. The thicker black line represents an ideal stepped surface.
The tip state contour, at Ef , in the vacuum region across the step edge
can be roughly approximated by a single s wave. A better description
is obtained using two s orbitals (dashed circles) originating from the
tip atom closest to the sample.

single-s-orbital approximation, for the particular case de-
scribed here, works very well. However, if the STM tip
is scanning across a corrugated surface, the picture of a
single-atom-terminated tip breaks down, as several tip atoms
can be equivalently distant from the surface to be imaged.
In this case the overlap between the tip and sample states is
significant over a larger portion of space, and the description of
the tip states must be correct over the whole space of significant
overlap. In the example depicted in Fig. 1 we see that a correct
description of the tip states in the region of interest can be
obtained by using two s orbitals, these waves being centered
on the positions of the tip atoms closest to the sample. The
example shows moreover that use of a single swave originating
from the center of the tip, as in the TH approximation, is a
worse approximation of the real tip states at the Fermi level. In
the following we show how to account for tip size effects using
the atomistic interpretation, by computing the matrix element
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(2) for a tip state composed of a combination of s orbitals. We
describe the tip states as the following sum:

ψμ( �r0) =
N∑

k=1

eiαk,μφ(�rk + �r0), (4)

similarly to what was proposed in Ref. 19, where ψμ( �r0) is the
tip state, �r0 identifies the location of the tip during the scan (it
can be, for example, the geometrical center of the many-atom
tip), φ(�rk + �r0) is a generic s wave centered on the kth atom
at Rk , Rk being expressed as the sum of �r0 and the position �rk

of the kth atom relative to the tip center, αk,μ is the phase of
the kth orbital in the expansion of state ψμ, and the number
of atoms ranges from 1 to N. Following the derivation of the
matrix element Mμν for the single s orbital as described in
Ref. 6, the appropriate expression in our case reads

Mμν ∝
N∑

k=1

eiαk,μψν(�rk + �r0). (5)

Taking the square of the the matrix element in (5) yields

I ( �r0) ∝
∑
ν,μ

[ ∑
k

|ψν(�rk + �r0)|2 +
∑

k,j,k �=j

ei(αk,μ−αj,μ)ψν(�rk + �r0)ψ∗
ν (�rj + �r0)

]
δ(Eν − Ef ), (6)

where we have separated the diagonal terms (k = j ) and the
off-diagonal terms (k �= j ). In order to simplify the expression
above, we perform the sum in the incoherent approximation, by
assuming that the off-diagonal terms cancel out due to the av-
eraging of the many tip states.19 We do not consider here cases
where the incoherent approximation is not appropriate, as in
the case of tips with special geometries discussed in Ref. 20.

This leads to the following formula for the tunneling
current:

I ( �r0) ∝
N∑

k=1

ρ(Ef ,�rk + �r0). (7)

In our simulations we compare with experiments performed
at a finite bias Vb and we need to take into account the
contributions from states away from the Fermi energy. In
principle a finite bias Vb induces distortions of the electric
potential across the junction and consequently modifies the
tip and sample states. However, for values of the bias which
are small with respect to the work functions of the tip and the
sample, it is not unreasonable to consider the matrix element
in (2) as bias independent.21 Keeping in mind these caveats,
we can write the recorded current intensity as

I ( �r0) ∝
N∑

k=1

∑
Eν∈[Ef −Vb ;Ef ]

|ψν(�rk + �r0)|2 (8)

=
N∑

k=1

ρ(�rk + �r0),

where ρ is the LDOS integrated from Ef − Vb to Ef . The
value of Vb will be specified in the text for all cases treated.
The precise position of the N tip atoms included in (8) depends
of course on the tip shape and structure, which are not known a
priori. We therefore model the tip as a volume 	 with a suitable
geometric form (hemisphere, pyramid, etc.) and we compute
the current as an average 〈I ( �r0)〉 over a set {C} of different tip
configurations, corresponding to atomic arrangements bound
by the shape 	. This gives

〈I ( �r0)〉 ∝
∑
i∈{C}

Ni∑
k=1

ρ(�rk,i + �r0), (9)

where rk,i is the kth atomic position of the ith configuration
in {C} relative to the tip center �r0. By averaging over a large
number of configurations in {C}, the current in Eq. (9) can be
approximated by the following expression:

〈I ( �r0)〉 ∝
∫

	

ρ(�r + �r0)d�r =
∫

s(�r)ρ(�r + �r0)d�r

=
∫

s( �R − �r0)ρ( �R)d �R = g 
 ρ. (10)

By defining a step function s(r), which is 1 when r is inside the
volume 	 and 0 otherwise, the integral in Eq. (10) is evaluated
over the whole space and finally reduces to a convolution
product between the integrated LDOS and a shape function
g(r) = s(−r). Since many reasonable geometrical shapes are
determined by a small number of parameters, our method
allows a quick comparison to the experimental results. In the
case of hemispherical tips, for instance, the only free parameter
is the radius R of the tip. In our approximation the constant-
current images reproduce isosurfaces of a convoluted LDOS
(CLDOS) rather than contours of the bare LDOS. However,
STM images simulated according to Eq. (10) become simple
LDOS contours in two limiting cases, i.e., for small values
of the tip radius and for large tip-sample distances. When the
tip radius becomes very small the shape function g(r) can be
expressed as a Dirac delta function δ(r) and the convolution
product in Eq. (10) simply gives the LDOS value at �r0. If the
distance between the sample and the tip is large, the LDOS
isolevels are approximately flat and the convolution with the
shape function g(r) keeps yielding flat images. Nonetheless, at
smaller tip-sample distances convolution effects are expected
to become important, especially for samples displaying cor-
rugations of the order of 	. From the computational point of
view, convolution products can be evaluated in Fourier space
using highly optimized routines for the Fourier transformation
and do not produce any significant overhead with respect
to the calculation of the bare LDOS isolevels. We note that
the averaging over many tip configurations could have been
performed directly on the current intensity computed in Eq. (6).
This would lead to the averaging of the interference term,
between atom k and atom j , not only on all the possible tip
states but also on the various tip configurations with fixed
number of atoms and occupied k and j positions, thus further
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validating the assumption of incoherent scattering. Finally,
the main result of our analysis could have been obtained
also by directly computing the tunneling matrix element in
the case of a uniformly and densely distributed set of tip
atoms, which is why we named our tip model the s-orbital
continuum model. It has to be noted that the model is not
necessarily restricted to tips with s-orbital character but can be
modified to account for higher-order-orbital angular momenta.
When considering l > 0 atomic orbitals, the tunneling matrix
elements involve spatial derivatives of the sample one-electron
states.6 By substituting the appropriate expression of the
matrix element in Eq. (2), it is possible to rederive Eq. (10)
using the same procedure described for the s-orbital case, the
LDOS function ρ being replaced by the square of the modulus
of the corresponding matrix element. For example, in the case
of dzx orbitals the tunneling current would be proportional
to the product g 
 ρdzx

, where ρdzx
= ∑

ν |∂2ψν/∂z∂x|2. This
can have a direct application in the field of spin-polarized
STM imaging, where the usual Cr or Fe tips display a strong
d-orbital character.

The method described above takes into account the tip size
effects for probes of arbitrary shape. This fact can be used to
estimate the effective cross-sectional area of three-dimensional
tips in a consistent way, which in turn creates a bridge to the
one-dimensional theories of tunneling for the computation of
the STM current. This clearly represents an advantage, since
reducing the dimensionality leads to a more straightforward
solution of the tunneling problem. In order to obtain the
effective cross-sectional area of a spherical tip, we note that a
flat electrode and a spherical tip, at the same distance from a
flat surface, record the same current if their CLDOSs are equal,
i.e.,

∫
	s

ρ(z)d�r = ∫
	f

ρ(z)d�r , where 	s and 	f represent the
volumes of the spherical and the flat electrode, respectively,
and z is the distance from the surface. The formula above
can be written for the explicit geometries of the planar and
spherical tip [see (A1)], thus leading to a relationship S(R)
between the effective cross-sectional area of the tip, S, and
its radius R. The value of S can be used to estimate the
tunneling current in the one-dimensional models of tunneling.
In our work we have used the tunneling theory of Simmons
[metal-insulator-metal (MIM) model22], which states that the
current-distance characteristic across the junction, for small
biases, reads

I = S
γ
√

φVb

δz

e−Aδz

√
φ, (11)

where δz is the barrier width, φ(z) is the potential across
the junction, φ is the average value of the potential along
the barrier width, Vb is the voltage between the elec-
trodes, γ = e

√
2m(4βπ2h̄2)−1, A = 2β

√
2mh̄−2, and β =

1 − (8φ
2
δz)−1

∫
δz

[φ(z) − φ]2dz. The barrier width δz is de-
fined as the region between the crossing points of the electrode
Fermi levels at V = 0 and the potential φ(z). A further
explanation of the quantities involved in the calculation is
given in Fig. 2. Since the tip is usually made after indentation
into the substrate, it is not unreasonable to take the work
function of the tip equal to that of the sample. This latter
represents a very good estimate of φ. For our purposes the
value of β can be approximated to 1. Finally, the value of

FIG. 2. The most important quantitities involved in our MIM
calculations. Details are reported in the text.

δz must be increased by a quantity δ′
z (see Fig. 2) if one is

interested in the actual distance d between the electrode planes.
In the cases of Cu(111) and Au(111) surfaces we found the
value δ′

z to be between 0.7 and 0.8 Å . Assuming this value to
be similar on both sides of the junction, δz should be increased
by approximately 1.5 Å in order to get d. Once this latter
value is obtained it is possible to compute the CLDOS of the
spherical tip at the distance d from the substrate. The CLDOS
value obtained represents the isosurface corresponding to the
STM image using a convenient choice of the radius R and the
experimental current and bias voltage as inputs.

IV. RESULTS

The method described in the last section will be used to
explain experimental STM images of three systems of current
interest, namely, a HBC molecule adsorbed on Cu(111),
a reconstructed stepped surface of Au(111), and a HCO
molecule adsorbed on Pt(111). These systems present large
corrugations due to the presence of the steps and the adsorbed
molecules and therefore can induce noticeable convolution
effects in the STM imaging. These effects are quantified by
comparison to simulations performed with pointlike tips.

A. HBC molecule

The large aromatic core of hexaperihexabenzocoronene
(C42H18) represents an electron reservoir motivating the use of
HBC-based molecules in molecular electronics. Jäckel et al.
have shown that the use of HBC allows the building of a
prototypical single-molecule chemical field-effect transistor.23

The adsorption of HBC on Cu(111) below the monolayer
coverage allows the investigation of single molecules with
the help of STM. After geometry optimization the molecule
reaches a planar configuration, about 2.8 Å above the surface.
The Kohn-Sham states are matched to their exact asymptotic
expression16–18 on the plane zc = 4.2 Å above the Cu(111)
substrate. The Kohn-Sham states decay in vacuum above the
bare copper substrate, and the center of the HBC molecule
is shown before and after asymptotic extrapolation in Fig. 3.
The huge qualitative difference between the two cases proves
the importance of an adequate treatment of the vacuum part
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FIG. 3. (a) Top view of the HBC molecule on Cu(111). The dotted
line indicates the direction of the STM scan. (b) The LDOS decay in
vacuum above the Cu(111) substrate and the HBC molecule before
and after analytical extrapolation of the sample states. The elec-
trostatic potential profile represents an average over the plane
parallel to the surface. (c) Experimental profiles together with
the calculated profile obtained with an hemispherical tip of ra-
dius R = 7.5 Å and the same image after removing convolution
effects (R = 0 Å; see text for more details).

of the individual eigenstates, after DFT calculations using
Gaussian or plane wave basis sets. In the following we compare
simulated STM images to the experimental results. By using
the relationship S(R) derived in (A1) we obtain, for values
of R between 3 and 9 Å, an effective area ranging from 10
to 45 Å2. These values can be used in the relationship (11)
to estimate the tip-surface distance in our experiments. In the
case of the bare Cu(111) surface, the experimental conditions
given above correspond to a tip-sample distance (meant as the
distance between the outermost nuclei of the electrodes) in a
range between 6.5 Å (S = 10 Å2) and 7.0 Å (S = 45 Å2). In
our STM simulations we computed the CLDOS isovalues on
a copper atom far away from the HBC molecule, by requiring
the tip-sample distance to be that predicted by the MIM model.
Since LDOS isosurfaces correspond in our model to images
taken with a pointlike R = 0 Å tip, the current cannot be
compared to that obtained using a more realistic finite-size tip,
like those used to reproduce the STM experiments presented in
this paper. However, when calculating the appropriate CLDOS
isovalue, we also computed the sample LDOS value at the
bottom of the tip. The LDOS isosurfaces taken at that value
represent the images that would be obtained by our STM
model if convolution effects were discarded (single-s-orbital
modeling) and bear therefore considerable information about
the size effect of the tip in the imaging. In Fig. 3 we thus
show the comparison between the simulated image according
to our model using a tip with radius R = 7.5 Å, the same
image discarding convolution effects (LDOS isosurface, R =
0 Å), and the experimental line profile. The LDOS isovalues
appear in reasonably good agreement with the experimental
result. However, at half maximum of the molecule, the
width of the profile amounts to 16.3 Å while the slope is
16.7◦, corresponding respectively to increases of 9% and
33% with respect to the experimental value. Following these
considerations, we conclude that convolution effects have to
be taken into account in the explanation of this particular STM
image. It is now interesting to look at the accuracy of taking
the mean value of the current as expressed by Eq. (10). In
order to check the validity of the mean value approximation
we computed several STM images of the HBC molecule using
tips that contain a finite number of atoms. In order to obtain
the geometries of these tips we first chose the tip shape as
the hemisphere of radius R = 7.5 Åused for the simulated
STM image shown in Fig. 3. A given number of atoms were
randomly scattered inside the tip volume so as to reach a
realistic atomic density for a metallic structure (we chose the
atomic density of bulk gold, i.e., 0.06 atoms/Å3). In order to
avoid unrealistic tip geometries, we constrained each atom to
have a minimum neighbor distance of 2.5 Å. 50 independent
tip geometries were obtained in this way, and then used to
generate a STM image by means of Eq. (8). The CLDOS
was chosen so that each tip would stand about 6.75 Å above
the bare Cu(111) surface. The average width of the molecule,
computed at the half-height of the profile, is 16.2 Å with a
standard deviation of 0.6 Å, which corresponds to scarcely 3%
of the average value. The small standard deviation confirms
that the tunneling current averaged over several possible tip
configurations as given by Eq. (10) is a robust representation
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of the value that we would obtain from Eq. (8) if the actual tip
structure were known.

B. Reconstructed Au(111) stepped surface

Stepped reconstructed surfaces of Au(111) have been
studied in detail in previous work.9 In the following we review
only the main aspects of the system. Large regions of flat
Au(111) display the so-called herringbone phase, which is
characterized on a smaller length scale by a uniaxial com-
pression along a close-packed direction. Along the direction
of compression 23 surface atoms occupy the same length
spanned by 22 bulk atoms; hence the common name of
22 × √

3 reconstruction. This compression gives rise to an
alternation of bulk-terminated fcc regions and faulted hcp
ones. When regular arrays of steps are introduced, such as in
Au(788) or Au(677) (see Fig. 4), the long-range herringbone
phase is lifted;24 the uniaxial compression anyway still takes
place leading to a reconstruction very similar to the 22 × √

3
pattern. The presence of steps, however, slightly modifies the
surface pattern which appears as an alternation of V-shaped
domains, along the same terrace, containing hcp or fcc atoms.
DFT calculations have shown that while step lines facing fcc
domains are quite similar to a bulk termination, hcp ones
display an unpredictable rearrangement: the step lines facing
hcp regions are dramatically smoothed, and surface atoms from
the lower and upper step edges coordinate so as to form a
local close-packed surface, inclined by 28◦ with respect to the
[111] direction. Experimental STM scans have been performed
across the step at the hcp and fcc regions. The tip-sample
distance was obtained by modeling the tip and the sample
as two Au(111) electrodes and estimating their separation d

in the same way as described in the previous section. The
sample states were extrapolated in the vacuum region as
described previously. For the STM simulations we computed
the CLDOS isovalues above a gold atom in the open terrace,
by requiring the tip-sample distance to be that predicted
by the MIM model. Similarly to the case of the previous
section, we also computed the LDOS value at the bottom
of the tip in order to remove convolution effects and perform
single-s-orbital modeling. STM profiles across the hcp and fcc
regions of the step, using a tip of radius R = 2 Å, precisely
reproduce the experimental features of the gold step. Again the
use of a tip with radius R = 0 Å (single-s-orbital modeling)
yields a reasonably good agreement with experimental results.
However, the slope and the width of the step contour are
slightly underestimated. The tip used in this case is very sharp
and might represent a single atom adsorbed on a minimal
support. This leads to smaller convolution effects than in
the case of the HBC/Cu(111) system, where a larger tip was
needed to match the experimental result.

C. HCO molecule on Pt(111)

In the previous sections we studied the effects of convolu-
tion under typical experimental conditions. It turns out that,
in these cases, the tip-sample distance is quite large and that
modeling the tip as a point already provides good results. This
can be explained by the fact that, at large tip-sample distances,
the LDOS isosurfaces are quite smooth and the convolution

FIG. 4. (Color online) (a) Snapshot of the Au(677) surface model
after DFT optimization. Gray levels are associated with the physical
height of the atoms with respect to the terrace level. Brightest terrace
regions correspond to the protruding discommensuration lines and
separate domains of hcp and fcc surface stacking. (b) Inset of the
surface structure at the step edge facing hcp terrace regions: step
atoms rearrange so as to form a close-packed planar surface, tilted
by 28◦ with respect to the nominal [111] direction. (c) Profile of the
simulated STM image across the hcp and fcc parts of the step, using
a hemispherical tip of radius 2 Å, together with the same image after
removing convolution effects (R = 0 Å; see text for more details)
and experimental results. (a) and (b) are taken from Ref. 9.

with objects of any shape yields minor modifications to the
surface profile. In this section we present simulated STM
images of a formate molecule (HCO) adsorbed on Pt(111),
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FIG. 5. (Color online) (a) Atomistic model of the HCO/Pt(111) system. H atom is white, C atom is medium gray (green online), and O
atom is dark gray (red online). Pt atoms are represented as large white spheres. C is in the on-top position while the C-H and C-O bonds point
to the hollow surface sites. The dotted line represents the direction of the line scan displayed in (b). In the inset of (a) a lateral view of the
system is shown. (c),(d) STM images obtained using tips with R = 0 Å (c) and R = 7.5 Å (d). Protruding regions are associated with brighter
colors.

under conditions of small tip-sample separation (Fig. 5). The
HCO molecule presents typically a depression-protrusion pair
in the STM appearance and it is interesting to see how this
pattern is modified by tip-sample convolution effects. The
adsorption process of HCO on Pt(111) has already been char-
acterized theoretically,25 where several possible geometries of
adsorption have been compared. We optimized the structure
using the procedure described in Sec. II. The initial condition
was chosen to be the most stable configuration suggested in
Ref. 25, with a C atom on top of a Pt surface atom and the H
and O atoms pointing to the two hollow sites of the surface.
After DFT relaxation the distance between the C atom and the
underlying Pt atom is 1.96 Å, the Pt atom being pulled out of
the surface plane by about 0.2 Å; the C-O and the C-H distances
are respectively 1.20 and 1.12 Å, and the H-C-O angle is 122◦.
The STM images were simulated using a blunt tip (7.5 Å), at
a bias of −0.5 eV and a current of 100 nA. These conditions
correspond experimentally to a situation of high current and
small tip-sample distance [4.0 Å according to Eq. (11)]. The
simulated STM image appears very broad, the width at half
height and the height being 10.3 and 1.9 Å, respectively. These
features are a consequence of using a large tip, smoothing out
surface details also at conditions of high current. However,

by removing convolution effects as described previously, we
obtain a surface pattern which appears qualitatively different:
the width at half maximum decreases by 28% (7.5 Å) and the
height increases by 21% (2.4 Å) with respect to the convoluted
image, the molecule displays a depression-protrusion pair
which closely resembles the HCO geometry, and atomistic
resolution is achieved on the Pt substrate. Therefore the use
of a blunt tip implies a considerable smoothing not only of
the molecular corrugation but also of the whole STM image.
The difference between the images taken with R = 7.5 Å and
R = 0 Å tips is made large by the condition of high current, as
opposed to the case of HBC on Cu(111) where the tip-sample
distance was 3 Å larger and the convolution effects less
evident.

V. COMPARISON TO THE TH MODEL

In the previous section we compared images obtained,
within our model, using several tip radii and showed the impact
of convolution effects in the STM imaging. Using a pointlike
tip (R = 0 Å) is equivalent, at our level of approximation, to
modeling the tip as a single atom with s-orbital character. This
is different from the TH approximation, which models the
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tip as a macroscopic spherical potential well and describes
its eigenstates as a single s wave. The results of the two
approaches appear similar: both predict the STM image to
be a contour of the sample LDOS. In the s-orbital model,
however, this amounts to computing the LDOS at the position
of the tip apex atom, whereas in the TH approximation the
tunneling current is proportional to the sample LDOS at the
center of the spherical well. Computation of the sample LDOS
at the center of the well accounts for the lateral averaging of
the tip as increasing the distance at which the LDOS contour
is performed implies a smoother simulated STM image. In
the SOC, broadening effects are accounted for by the explicit
convolution of tip shape and LDOS. A comparison between
the two methods can be performed by inspecting the tip LDOS
of the respective tip models. It can be shown that, in the
SOC model, the LDOS of the tip becomes proportional to
the square of a single s wave in the limit of large distances
from the tip surface or for small values of the tip radius.
Under these conditions our approach and the TH modeling
become equivalent. We have quantified the actual difference
between STM images of the systems treated in the previous
section, within the SOC and TH models. During the process
of evaluation of the appropriate CLDOS for our model, the
LDOS values at the center of the tips have also been computed.
The corresponding LDOS isosurfaces represent the TH image
suitable for comparison with our model. The comparison
between our model and the TH model is shown in Fig. 6.
Clearly, the profiles can be superimposed in the case of the
Au(677) step, where the ratio between the tip radius R and
the average tip-surface distance d is about 0.33. In the case of
the HBC/Cu(111) system this quantity increases to 1.11 and
therefore a larger difference between the profiles is expected.
This can be verified by inspection of Fig. 6. A two-dimensional
(2D) image comparison (Fig. 7) is provided in the case of
the HCO/Pt(111) system, together with a scan line across the
molecule (along the direction shown in Fig. 5). The ratio R/d

is in this case 1.88 and a larger difference between the SOC
and the TH models is expected. A close inspection of the 2D
STM image reveals that the molecular protrusion appears more
symmetric in the SOC simulation than in the TH one. This can
be observed also in the line scan, where the tip height on the
H atom is slightly enhanced in the SOC image. However, both
the apparent width and height of the molecule are reproduced
in a very similar way by the two approaches. The comparisons
performed show that under typical experimental conditions our
model and the TH approximation become equivalent. On the
other hand the model proposed in this work has more flexibility
in the choice of the tip geometry, as it allows simulations of
STM images using an arbitrary tip shape. From a technical
point of view our method requires a smaller convergence of the
surface wave function in vacuum than the TH approximation.
The largest contribution to the integral in (10) comes from
the sample LDOS at regions where the tip is at its closest
distance from the sample. Therefore the exact knowledge of
the sample LDOS in the far vacuum is less critical than in the
TH model, which requires the exact computation of the sample
LDOS at the center of the tip. This can be an advantage of our
approach in cases of DFT calculations using standard codes,
which provide accurate sample states up to a limited distance
from the surface.

FIG. 6. The line profiles obtained with our model using a
spherical tip and simulation parameters as specified in the text
superimposed on the corresponding LDOS contour lines computed at
the center of the sphere for (a) HBC on Cu(111) and (b) the Au(677)
step profile.

VI. SIMPLE 1D MODEL OF THE SURFACE

The resolution of STM in the Tersof-Hamann approxima-
tion has been thoroughly discussed with the help of simple
one-dimensional models.26 These investigations quantify the
broadening effects of the tip in the Tersoff-Hamann approxi-
mation in the case of surfaces displaying defects with different
dimensionality. It is seen that, while a step profile is simply
smeared by the presence of the tip, a finite adsorbate has
a decreasing apparent height as the tip-surface distance is
increased. We are interested to quantify these effects in our
model using other tip shapes than the spherical one. In the
following we focus on a simple one-dimensional system
imaged by a pyramidal-like tip. Here we consider two simple
one-dimensional objects having the necessary properties to
display dimensional effects in the STM imaging. We idealize
these objects as a sharp step, infinitely extended in one
direction (infinite object i) and described by the Heaviside
function gi(x), and a localized surface defect (finite object f )
corresponding to the combination of two Heaviside functions
gf (x) (see Fig. 8). A correct quantum mechanical description
of the electronic structure of objects i and f should predict a
smearing of the LDOS isolevel profiles as the LDOS isovalue
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FIG. 7. (Color online) STM images obtained using the SOC
model (a) and TH model (b), using a tip of radius R = 7.5 Å . Pro-
truding regions are associated with brighter colors. (c) Corresponding
line profiles taken across the molecule [along the line scan specified
in Fig. 5(a)].

is decreased. However, we refer here to the condition of
small tip-sample separation, where the profiles bear a close
resemblance to the topography given by gi(x) and gf (x), as
predicted by the model in Ref. 26. We therefore consider a
simple toy model where the LDOSs of the two objects can be
expressed as ρf (x,z) ∝ e−α[z−gf (x)] and ρi(x,z) ∝ e−α[z−gi (x)].

FIG. 8. Examples of the imaging of a finite and an infinite object
using a blunt tip (solid line, ω = √

3/2) and a sharp tip (dashed lines,
ω = 1/2). The edge of the object is represented by thicker solid lines.
Light (dark) gray dots specify the locations of the blunt (sharp) tip at
two points (A,B) along the profiles. Within the volume occupied by
the tip, filled domains correspond to regions where the LDOS of the
isolated sample is largest.

The ρ functions can be inserted in Eq. (10) and the integration
performed over the volume of the tip, which is described by
the function q(x − x0). In order to make integrals exactly
solvable we choose a pyramidal-like tip shape given by
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q(x − x0) = l − l
R
|x − x0|. The current value then reads

I (x0,z0) = I0

∫ x0+R

x0−R

dx

∫ z0

z0−q(x−x0)
e−α[z−g(x)]dz, (12)

where I0 is a constant. Solving (12) for z0 in the case of
finite and infinite objects yields the isolevel expressions. If l

and R are increased by keeping their ratio R/l = ω constant,
the isolevels converge very rapidly to a final shape, since the
density of states of the sample decreases at an exponential
rate along the direction perpendicular to the surface. The
solution is then taken in the limit of l → +∞, R → +∞
at constant ω. This allows simplification of the form of the
isolevels and a description of the tip in terms of a single
parameter, the tip width ω. The analytical expressions of the
isolevels obtained are reported in (A2). In Fig. 8 we report
the profiles calculated for the infinite and finite objects in the
cases of a sharp (ω = 1/2) and a blunt (ω = √

3/2) tip. It
is noticeable that imaging the finite object with a blunt tip
results not only in an increase of the apparent width of the
object but also in a remarkable decrease of the apparent height.
This can be explained by the fact that, if we increase the tip
width by keeping the tip-surface distant constant, the tunneling
current recorded at regions far away (region B, Fig. 8) from
the localized defect increases more than above the defect itself
(region A, Fig. 8). This is in turn due to the sample LDOS
contained in the side regions of the tip in region B, which
is larger than at region A. Therefore if the current has to be
kept constant during the scan, larger tips have to go closer to
the surface in region A, thus resulting in a smaller apparent
height. From the knowledge of the isolevels’ analytical form
it is possible to obtain the apparent height (hf ,hi) and the
apparent width (wf ,wi) of the defects, which are displayed in
Fig. 8. While wf is meant as the total width of the object at
half apparent height, wi refers to the width increase at half
height with respect to the physical edge of the step [see the
inset of Fig. 8(a)]. The form of these functions is given in
(A2). For the infinite object, the apparent height is constant
and equal to the physical height, while the apparent width
increases linearly with ω. On the contrary the apparent width
and height of the finite object appear to depend nonlinearly
on ω as can be appreciated by inspection of the formulas in

FIG. 9. Dependency of hf and wf on ω in the case of H = W =
α = 1. For an explanation of these quantities; see Fig. 8 and the text.
Bottom x axis refers to hf , while top x axis refers to wf .

(A2). Because of the quite intricate form of wf and hf we
plot these quantities over a range of ω for H = W = α = 1
(see Fig. 9), in order to better visualize their behavior. The
behavior of wf is almost linear while hf falls off rapidly with
ω. Actually, in the limit of large ω, wf ∝ ω and hf ∝ 1

ω
. The ω

dependency of the apparent height results as the manifestation
of a dimensionality-related effect, which arises in the case of
STM images of localized defects.

VII. CONCLUSIONS

In this paper we have presented a generalization of the
single-s-orbital model for the simulations of STM images,
by describing the tip states in terms of a large number of
s-orbital scatterers centered on the tip atoms. By averaging
the STM current over the tip atomic configurations which are
compatible with a given tip shape and using the incoherent
sum approximation, we have shown that the resulting current
intensity is proportional to the convolution product of the
system LDOS with a step function which is defined by the
effective tip volume. The results apply to tips of arbitrary
shape. The application of the method to three cases of cur-
rent scientific interest, namely, a hexaperihexabenzocoronene
molecule adsorbed on Cu(111), a reconstructed Au(111)
surface, and a HCO molecule adsorbed on Pt(111), shows
that corrections due to the tip size can be effectively taken
into account by the approach presented in this work. These
effects correspond to a loss of resolution of the STM image
summing up to topography broadening dependent on the
tip-sample distance. The tip-induced image broadening was
further quantified with the use of a simple 1D surface model
and a pyramidal-like tip, where we showed, by analytically
deriving the surface profiles, that an increase of the tip size
leads to a smearing of the surface step profile and a reduction
of the height of finite objects. In the case of spherical tips, STM
images obtained within our approach and the TH model are
equivalent under typical experimental conditions. However,
our method allows simulation of STM images using tips
of any shape at a very moderate computational cost, which
differs negligibly from that demanded by the TH modeling.
Finally the possibility of consistently defining the effective
cross-sectional area for spherical and other tip shapes allows
the use of one-dimensional models for the estimation of the
tunneling current, thereby offering a simpler framework for the
calculations with respect to models requiring the exact three-
dimensional geometry of the junction.
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APPENDIX A

Assuming that the LDOS of a flat surface can be represented
by f (z) ∝ e−kz, a flat electrode of surface S at distance d from
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the sample records the following intensity current, according
to Eq. (10):

I = CS

∫ ∞

d

e−kzdz (A1)

where C represents the proportionality constant. For a hemi-
spherical electrode of radius R we have

I = πCe−kd

∫ R

0
e−kz(2Rz − z2)dz. (A2)

Equating Eqs. (A1) and (A2) we obtain the relationship

S(R) = πk−2[(2kR − 2) − e−kR(k2R2 − 2)], (A3)

which can be used to estimate the effective cross-sectional area
of a hemispherical tip of radius R.

APPENDIX B

Hereafter we report the explicit expression of the isolevels
for the finite and infinite objects of the exactly solvable 1D
model:

zi =
{

1
α

ln I0ω

I

[
A + Be

αx
ω

]
if x � 0,

1
α

ln I0ω

I

[
C − Be− αx

ω

]
if x � 0,

zf =

⎧⎪⎨
⎪⎩

1
α

ln I0ω

I

[
A + 2Beαx/ωsinh

(
αW
2ω

)]
if x � −W/2,

1
α

ln I0ω

I

[
C − 2Be−αW/2ωcosh

(
αx
ω

)]
if x � |W/2|,

1
α

ln I0ω

I

[
A + 2Be−αx/ωsinh

(
αW
2ω

)]
if x � W/2.

I is the constant current value, I0 is the proportionality constant
defined in Eq. (12), α is the inverse decay length of ρ in
vacuum, W is the width of the finite object, and ω is the tip
width; other constants are A = 2α−1, B = (eαH − 1)α−1, and
C = AeαH . H is the height of the objects.

The apparent height h of the objects can be calculated from
the above profiles as h = z(∞)+z(−∞)

2 . The width w is obtained
by substituting h for z in the above equations and solving
for |x| = wi for infinite objects and for |x| = 1

2wf for finite
objects. This gives

hi = H,

wi = ω

α
ln

[
B√

AC − A

]
,

hf = 1

a
ln

[
C − 2Be−αW/2ω

A

]
, (B1)

wf = 2ω

α
ln

[
2Bsinh

[
αW
2ω

]
√

AC − 2ABe−αW/2ω − A

]
.
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