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The force sensor is key to the performance of atomic force microscopy (AFM). Nowadays, most atomic
force microscopes use micromachined force sensors made from silicon, but piezoelectric quartz sensors are
being applied at an increasing rate, mainly in vacuum. These self-sensing force sensors allow a relatively easy
upgrade of a scanning tunneling microscope to a combined scanning tunneling/atomic force microscope. Two
fundamentally different types of quartz sensors have achieved atomic resolution: the “needle sensor,” which
is based on a length-extensional resonator, and the “qPlus sensor,” which is based on a tuning fork. Here, we
calculate and measure the noise characteristics of these sensors. We find four noise sources: deflection detector
noise, thermal noise, oscillator noise, and thermal drift noise. We calculate the effect of these noise sources as
a factor of sensor stiffness, bandwidth, and oscillation amplitude. We find that for self-sensing quartz sensors,
the deflection detector noise is independent of sensor stiffness, while the remaining three noise sources increase
strongly with sensor stiffness. Deflection detector noise increases with bandwidth to the power of 1.5, while
thermal noise and oscillator noise are proportional to the square root of the bandwidth. Thermal drift noise,
however, is inversely proportional to bandwidth. The first three noise sources are inversely proportional to
amplitude while thermal drift noise is independent of the amplitude. Thus, we show that the earlier finding that
quoted an optimal signal-to-noise ratio for oscillation amplitudes similar to the range of the forces is still correct
when considering all four frequency noise contributions. Finally, we suggest how the signal-to-noise ratio of the
sensors can be improved further, we briefly discuss the challenges of mounting tips, and we compare the noise
performance of self-sensing quartz sensors and optically detected Si cantilevers.
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I. INTRODUCTION

Atomic force microscopy (AFM) was introduced in 1986
by Binnig, Gerber, and Quate.1 The large number of citations
(the article is now one of the most highly cited publications to
have appeared in Physical Review Letters) show that AFM is
an important scientific tool with fruitful applications in various
fields of science. The key element of AFM is the force sensor
that probes the small forces that act between a sharp tip and a
sample. Simplifying the force sensor and increasing its force
resolution and imaging speed are therefore important tasks.

Atomic resolution by AFM on a reactive surface was
first achieved by frequency modulation AFM (FM-AFM)2

utilizing a piezoresistive silicon cantilever3 with a spring
constant of k = 17 N/m at an oscillation amplitude of A =
34 nm.4 While atomic resolution on various surfaces has been
obtained with similar combinations of (k,A) (see Table I in
Ref. 5), a calculation of the signal-to-noise ratio in FM-AFM
as a function of the oscillation amplitudes yielded an optimal
oscillation amplitude that corresponds to the decay length of
the forces that are used for imaging. The spring constant of the

cantilever should be as small as possible to obtain a large
frequency shift; on the other hand, the cantilever must be
stiff enough to prevent instabilities such as jump-to-contact.6

Compared to the initial parameter set of (k,A) that allowed
atomic resolution,4 the spring constant of the sensor has to be
larger by a factor of about one to two orders of magnitude,
and the amplitude has to be reduced by a factor of two to three
orders of magnitude. The reduced amplitude not only increases
the signal-to-noise ratio, it also reduces the sensitivity to
unwanted long-range force contributions.5 Figure 1 shows the
parameters used with “classic” Si cantilevers, qPlus sensors,
and needle sensors.

For atomic imaging, it was suggested that the optimal
stiffness kopt is approximately in the interval

500 < kopt < 3000 N/m (1)

at amplitudes of about 100 pm.6

Self-sensing cantilevers such as piezoresistive silicon can-
tilevers or piezoelectric quartz sensors are attractive because
these sensors simply need to be connected to an electronic
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FIG. 1. (Color online) Parameter fields of cantilever spring
constants k and oscillation amplitudes A for classic Si cantilevers,
qPlus sensors, and needle sensors. The (k,A) data points for Si
cantilevers and qPlus sensors are adapted from Table I in Ref. 5,
and those from shortened qPlus sensors are taken from Ref. 7. To
enable stable oscillation of the cantilever at the optimal amplitudes
around 100 pm, it was necessary to increase the spring constants of
cantilevers (“classic” FM-AFM) from about 10 N/m by more than
two orders of magnitude (qPlus sensors). The needle sensor has a
stiffness that is almost three orders of magnitude larger than that of
the qPlus sensor. The question of whether this further increase is
beneficial is addressed in this paper.

preamplifier to provide an electrical deflection signal. In
contrast, sensors that utilize deflection measurements based
on electron tunneling1 or optical means8 require precise
mechanical alignment schemes that can be challenging in
vacuum or low-temperature environments. Optical deflection
measurements also involve light and heat introduction close
to the sample. For some applications, such as low-temperature
measurements or the study of samples that alter their properties
under electromagnetic radiation, optical deflection measure-
ments are disadvantageous.

Because FM-AFM relies on the alteration of the oscillation
frequency of the cantilever under the influence of tip-sample
force gradients, a high intrinsic frequency stability of the
cantilever is desirable. Silicon cantilevers, the most widespread
type in use, change their frequency by −35 ppm per K
at room temperature.9 In contrast, quartz resonators change
their frequency by less than 1 ppm per K as long as their
temperature is kept within ±14 K of their turnover temperature
[see Eq. (47)]. The outstanding stability of quartz that has
been utilized for decades for watches and frequency standards
provides for highly stable FM-AFM sensors as well.

Two types of commercially available quartz frequency
standards are particularly well suited for conversion into force
sensors: quartz tuning forks and length-extensional resonators
(LER’s). Both tuning forks and LER’s essentially consist of
two coupled electromechanical oscillators that have exactly
the same eigenfrequency and oscillate in an antiparallel mode.
Attaching a tip to one of the oscillators changes its resonance
frequency, so the tip either has to be very light or a similar
mass has to be attached to the other oscillator. Force sensors
based on tuning forks were already used by Guethner et al.10

in 1989, when a tip was mounted onto one prong and the mass
of the tip was balanced with a counterweight on the other
prong.11 The LER was supplemented by a light tip on one of

FIG. 2. (Color online) (a) Needle sensor. (b) qPlus sensor. The
scale bar is valid for both sensors.

its two bars to form the needle sensor after the work of Bartzke
et al.12,13 in 1993. The qPlus sensor is also based on a tuning
fork, but one of the prongs is immobilized by attaching it to a
heavy substrate such that the free prong is essentially a quartz
cantilever.14–16 In this case, the tip can be massive, and the
oscillating tip can interact vigorously with the sample without
a reduction in the Q value. These sensors with metal probe
tips allow a simple implementation of combined scanning
tunneling microscopy (STM) and AFM. Quartz tuning forks
are available with eigenfrequencies f0 ranging from about
32 to 200 kHz. LER’s are available in eigenfrequencies of
0.5 MHz to a few MHz.17 In the comparison here, we focus
on a specific type of tuning fork that is used in SWATCH
wristwatches with stiffness k′ = 1800 N/m and f0 =
32 768 Hz and a specific type of LER with k′ = 540 kN/m
and f0 = 1 MHz, because these types were used in the
experimental data cited below (see Fig. 3 and Table I for
geometric details). In Sec. VII, we will suggest optimized
geometries for both types of sensors, but here we refer to a
“standard qPlus sensor” or a “standard needle sensor” as shown
in Fig. 2 to be based on the geometries as specified in Table I.

A qPlus sensor with k = 1.8 kN/m has allowed subatomic
spatial resolution,18,19 atomic resolution of lateral forces,20

simultaneous force and current spectroscopy on graphite,21 the
measurement of forces acting in atomic manipulation,22 the
detection of a single charge on an atom,23 and unprecedented
spatial resolution of an organic molecule,24 and it helped
to identify an initially unidentified organic molecule that
was hauled up from the Mariana Trench.25 Even more
recently, the relationship between tunneling current and
forces has been revealed26 and the interaction of two CO
molecules has been studied.27 Furthermore, a reduction of the
effective tunneling voltage caused by the flow of current on
weakly conductive samples has been detected by a reduced
electrostatic attraction.28

Although the needle sensor’s effective stiffness of more
than 1 MN/m [k = 2k′, see Eq. (16)] is far beyond the
optimal stiffness range suggested above, it has produced
atomic resolution on silicon at 4 K (Refs. 29 and 30) and
at room temperature.31 Therefore, it is instructive to analyze
the success factors of these sensors for the purpose of further
improving their performance.
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TABLE I. Geometrical parameters, stiffness k, and eigenfrequency f0 of the quartz oscillators used. The needle sensor is based on a
length-extensional resonator, while the qPlus sensor is based on a quartz tuning fork.

L (μm) Le (μm) t (μm) w (μm) k′ (N/m) k (N/m) f0 (Hz)

Needle sensor 1340 1100 70 130 540 000 1 080 000 1 000 000
qPlus sensor 2400 1600 214 126 1800 1800 32 768

II. FREQUENCY SHIFT AS A FUNCTION OF TIP-SAMPLE
INTERACTION FOR SINGLE AND COUPLED

OSCILLATORS

In frequency modulation atomic force microscopy, the
eigenfrequency f of a force sensor (such as a qPlus sensor or a
needle sensor; see Fig. 3) that vibrates at a constant amplitude
A changes with the action of force gradients by a frequency
shift �f = f − f0. With f = f0 + �f and f0 = 1

2π

√
k/m∗,

the frequency shift is given by

�f = f0

2k
〈kts〉 (2)

with32

〈kts〉(z) = 2

π

∫ 1

−1
kts(z + ζA)

√
1 − ζ 2dζ. (3)

At large amplitudes, the frequency shift is given by

�f = f0

k

1

A3/2
γts (4)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 3. (Color online) Geometry of sensors based on quartz
tuning forks (a)–(e) and length-extensional resonators (f)–(j). A
qPlus sensor (a) is created by attaching one of the prongs of the
tuning fork to a substrate and attaching a tip to the other prong.
For clarity, only the electrodes on the free prong are shown. The
prong without displayed electrodes is fixed to a massive substrate
(not shown here; see Fig. 2(b)). A needle sensor (f) is built by
attaching a light tip to one prong of the length-extensional resonator.
Parts (a), (b), (f), and (g) illustrate the geometrical dimensions as
listed in Table I; parts (c) and (h) show a schematic view of the
electrostatic field in the cross sections; and parts (d) and (i) show the
mechanical stress profile along a cross section. Parts (e) and (j) show
the idealized field distribution within the quartz crystals. The qPlus
sensor uses a bending mode, thus the mechanical stress is maximal
where the charge-collecting electrodes are located (d), while the
length-extensional resonator develops a uniform stress profile (i). The
idealized field distribution (e,j) is much closer to the actual field distri-
bution (c,h) for the needle sensor [(j) vs (h)] than for the qPlus sensor
[(e) vs (c)].

with the normalized frequency shift γts ≈ 0.4Fts

√
λ.33 When

A is very small compared to the decay length λ of the
force gradient, 〈kts〉(z) is similar to kts(z), the gradient of the
tip-sample forces at the center position of the cantilever that
oscillates around z ± A.

The eigenfrequency is found by solving the equation of
motion for the cantilever deflection q(t), the single degree of
freedom (see Fig. 4(a))

m∗ ∂2q

∂t2
= −q(k + kts) (5)

resulting in q(t) = A cos(ωt + φ) with ω2 = (k + kts)/m∗ and
ω = 2πf .

Figure 4(b) shows a coupled oscillator such as a tuning
fork or a LER. In the case of a coupled oscillator, the oscillator
has three degrees of freedom q1(t), q2(t), and qc(t), leading
to more complicated modes than in the case of a cantilever
or qPlus sensor with its single degree of freedom. When the
inertial forces (given by mass times acceleration) of the center
piece of the LER can be neglected (a fair assumption for the
antiparallel mode), the equation of motion is relatively easy to
solve:

m∗ ∂2q1

∂t2
= −ktsq1 + k′(qc − q1), (6)

m∗ ∂2q2

∂t2
= −k′(q2 − qc). (7)

(a) (b)

FIG. 4. (a) Mechanical analog of a single oscillator-type force
sensor [standard cantilever or qPlus sensor as in Fig. 2(b)], consisting
of a single oscillating beam. The single oscillator has only one degree
of freedom, its deflection q. (b) Mechanical analog of a coupled
oscillator used as a force sensor [tuning fork or length-extensional
resonator as in Fig. 2(a)]. The coupled oscillator has three degrees of
freedom: the deflection of the central mount qc and the deflections of
the two coupled oscillators q1,2.
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Because the center of the LER needs to be in equilibrium, we
find

qckc = k′(q1 − qc) + k′(q2 − qc). (8)

With κ = 1/(2 + kc/k′), we can substitute qc = κ(q1 + q2)
and find

∂2q1

∂t2
= −ω2

0(1 + kts/k′ − κ)q1 + ω2
0κq2, (9)

∂2q2

∂t2
= +ω2

0κq1 − ω2
0(1 − κ)q2 (10)

with ω2
0 = k′/m∗. Using a harmonic ansatz q1,2(t) =

A1,2 cos(ωt + φ1,2), we find two solutions for ω,

ω2
1,2 = ω2

0

⎧⎨
⎩1 − κ + kts

2k′ ±
√

κ2 + k2
ts

4k′2

⎫⎬
⎭ . (11)

Typically, κ > 1/3 because kc < k′, and with kts � k′ we can
approximate the square root in Eq. (11):

ω2
1,2 ≈ ω2

0

{
1 − κ + kts

2k′ ± κ

(
1 + k2

ts

8κ2k′2

)}
. (12)

Two solutions are found, where the plus sign in Eq. (11)
corresponds to a high-frequency antiparallel motion (A1 ≈
−A2,φ1 = φ2),

ω2
1 ≈ ω2

0

{
1 + kts

2k′ + k2
ts

8κk′2

}
, (13)

and the minus sign to a low-frequency parallel motion (A1 ≈
A2,φ1 = φ2),

ω2
2 ≈ ω2

0

{
1 − 2κ + kts

2k′ − k2
ts

8κk′2

}
. (14)

The antiparallel motion is used in force microscopy with
coupled oscillators, where the frequency shift of the sensor is
given by

ω1 − ω0

ω0
= �f

f0
= kts

4k′ (15)

(in leading order of kts). The frequency shift for a coupled
oscillator is thus only half the value of the single oscillator
after Eq. (2). We can still use Eqs. (2) and (4) by defining
an effective stiffness k that is twice as large as the individual
stiffness k′ of each of the two coupled oscillators,

kcoupled = 2k′. (16)

Equation (2) links the signal (i.e., the physical observable) to
kts, the physical origin of the signal, by multiplying it with
the prefactor f0/2k. To obtain a strong signal, the prefactor
f0/2k should be large. For a tip-sample force gradient of
1 N/m, a standard needle sensor would yield a frequency
shift of �f = 0.463 Hz, while a standard qPlus sensor would
yield a frequency shift of �f = 8.33 Hz. However, to assess
the signal-to-noise ratio, we need to consider noise as well as
signal strength. Noise also depends on the sensor type and will
be discussed in Sec. V.

III. OPERATING PRINCIPLES AND SENSITIVITY OF
QUARTZ SENSORS

A. Sensor based on quartz tuning fork (qPlus sensor)

For a rectangular cantilever with width w, thickness t , and
length L, the spring constant k is given by34

k = Ewt3

4L3
, (17)

where E is Young’s modulus. The fundamental eigenfre-
quency f0 is given by34

f0 = 0.162
t

L2
vs, (18)

where vs is the speed of sound in quartz as defined below.
The calculation of the sensitivity is slightly more compli-

cated than in the case of the needle sensor. Here, we adapt the
result from Ref. 16,

S
theory
qPlus = qel/A = 12d21k

Le(L − Le/2)

t2
. (19)

Standard qPlus sensors with dimensions listed in Table I yield
S

theory
qPlus = 2.8 μC/m. It is important to note that the calculated

sensitivity assumes a field distribution as shown in Fig. 3(e),
while the actual field looks more like Fig. 3(c).

B. Sensor based on the length-extensional
resonator (needle sensor)

The needle sensor consists of two coupled beams that
oscillate opposite to each other [see Figs. 2(a) and 3(f)]. The
longitudinal stiffness k′ of each of the two bars that constitute
the needle sensor is given by

k′ = Ewt

L
, (20)

with Young’s modulus E, length L, width w, and thickness
t of each quartz beam. The fundamental eigenmode is a
longitudinal standing wave with a node at the root of each
beam and its end at a maximal deflection, thus the length of
one beam L corresponds to a quarter wavelength λ/4. Because
the velocity of sound is vs = √

E/ρ with mass density ρ, the
eigenfrequency is given by

f0 = vs

4L
. (21)

The deflection of a cross section at a distance z from the mount
is given by

δz(z) = A sin
(πz

2L

)
(22)

when the ends of the device oscillate at amplitude A. The strain
as a function of the z position is then given by

ε(z) = ∂δz(z)

∂z
= πA

2L
cos

(πz

2L

)
. (23)

The strain ε leads to a mechanical stress σmech given by

σmech(z) = Eε(z). (24)

The piezoelectric effect causes the emergence of a surface
charge density σel given by

σel(z) = d21σmech(z), (25)
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where d21 = 2.31 pC/N is the transverse piezoelectric cou-
pling coefficient of quartz,35 which is equal to the longitudinal
piezoelectric coupling coefficient d11. It is important to note
that d21 is essentially constant over the temperature range
from 1.5 K to room temperature.35 When the charge density is
integrated over the surface of the sensor, the total charge qel at
a given deflection A is given by

qel = d21w

∫ Le

−Le

E
Aπ

2L
cos

( zπ

2L

)
dz. (26)

Thus, the sensitivity is given by

S
theory
LER = qel/A = 2d21Ew sin

(
Leπ

2L

)
. (27)

With Eq. (20), we can express Eq. (27) as

S
theory
LER = 2d21k

′ L
t

sin

(
πLe

2L

)
. (28)

The electrodes extend almost to the end of the beams (Le =
1.1 mm, L = 1.34 mm), therefore the sine in the equation
above is almost 1 (exact value 0.960 685 188), and with L/t =
1340/70, we find S

theory
LER ≈ 19 × d21 × k′. With the stiffness

k′ = 540 kN/m, we find a theoretical sensitivity of S
theory
LER =

45 μC/m.

IV. SIGNAL

A. Frequency shift for exponential force laws and amplitude
dependence of the signal-to-noise ratio

In FM-AFM, the signal is a frequency shift �f . This
frequency shift depends on the tip sample interaction and
the stiffness k, eigenfrequency f0, and amplitude A of the
cantilever. For a force that follows an exponential distance
dependence F (z) = F0 exp(−κz), we find

�f = f0

kA
F0e

−κ(z+A)I1(κA), (29)

where I1(κA) is the Bessel function of the first kind, a special
version of the Kummer function.33

As we will see below, the noise in the frequency measure-
ment of the sensor is inversely proportional to A, therefore the
signal-to-noise ratio (SNR) (see Fig. 5) can be expressed as

SNR ∝ e−κAI1(κA). (30)

This function has its maximum at κA = 1.545 . . ., thus
the optimal SNR is reached for amplitudes that correspond
to the decay length λ = 1/κ of the tip-sample force,6 or
more precisely, Aopt ≈ 1.545λ. In theory, this ideal amplitude
applies to all sensors in FM-AFM that probe interactions of
range λ, provided the sensor stiffness is sufficient to enable
stable oscillation close to the surface.6

We can rewrite Eq. (29) such that its resemblance to the
gradient approximation becomes more clear:

�f = f0

2k
κF0e

−κz 2I1(κA)e−κA

κA
. (31)

The first factor in this equation is the gradient approximation,
while the fraction 2I1(x)e−x/x with x = κA can be

FIG. 5. Signal-to-noise ratio (SNR) as a function of the product
between decay constant κ and amplitude A, where the decay constant
κ is inverse to the interaction length λ, thus κ = 1/λ. Optimal SNR
is obtained for κA = A/λ = 1.545.

expanded as 2I1(x)e−x/x = 1 − x + 5/8x2 + O(x3). For
a minimum distance between the tip and sample of z,
the tip oscillates within the interval [z . . . z + 2A], and
at the optimal oscillation amplitude Aopt ≈ 1.545/κ ,
we obtain an average tip-sample force gradient that
is approximately one-third of the peak force gradient
at distance z, because 2I1(1.545)e−1.545/1.545 ≈ 0.33.

B. Frequency shift for a tip-sample force modeled
by a Morse potential

We can now calculate the frequency shift assuming that a
single chemical bond is responsible for the contrast. A covalent
bond between a Si tip atom and an adatom on Si(111)-(7×7)
can be modeled by a Morse potential,

VMorse = Ebond(−2e−κ(z−σ ) + e−2κ(z−σ )) (32)

with the following fitting parameters: bond strength Ebond =
2.273 eV, equilibrium distance σ = 235.7 pm, and decay
constant κ = 2 × 1.497/0.2357 nm−1 = 12.70 nm−1.36 The
optimal amplitude to measure this bond in the attractive
regime is therefore Aopt = 1.545/12.7 nm = 122 pm. The
repulsive regime of this bond would ideally be probed with an
amplitude of 61 pm, because the range of the repulsive force
component is only half the range of the attractive component.
Figure 6 displays the force gradient and the frequency shifts
corresponding to a sensor that oscillates in a force field given
by this Morse potential.

Figure 6 shows that at the optimal oscillation amplitude,
a minimal frequency shift of −70 Hz can be expected for
a standard qPlus sensor and −3.5 Hz for a standard needle
sensor when probing a single silicon bond. However, on
weekly bonding systems such as organic molecules, absolute
frequency shifts on the order of −5 Hz (Ref. 24) for a qPlus
sensor with a contrast on the order of 0.1 Hz result. A needle
sensor would change its frequency by only 0.25 Hz with a
contrast of about 3 mHz for the same interaction.
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FIG. 6. (Color online) Force gradient (red) and calculated
frequency shift for the interaction of a silicon tip with an adatom
on the Si(111)-(7×7) surface modeled by a Morse potential with
Ebond = 2.273 eV, σ = 235.7 pm, and κ = 12.70 nm−1 for a qPlus
sensor with k = 1800 N/m and f0 = 30 kHz and various amplitudes
(see legend). If a standard needle sensor was used here, the frequency
shift values denoted on the right vertical axis would have to be
multiplied by 1/20, because the frequency shift is proportional to
f0/k. For the qPlus sensor, a minimal frequency shift of −70 Hz
results at the optimal amplitude A = 122 pm, while the needle sensor
only yields a minimal frequency shift of −3.5 Hz.

V. NOISE

If the frequency of the force sensor could be measured
with infinite accuracy, infinitely small force gradients could
be measured. In practice, there are four relevant noise
contributions that need to be considered. For large bandwidths,
i.e., for high scanning speeds, deflection detector noise is
dominant. Deflection detector noise increases with B3/2. Two
other noise sources—thermal noise and oscillator noise—
increase with the square root of bandwidth B. The fourth
noise source is due to sensor frequency drifts caused by
temperature changes. Thermal frequency drift is a challenge
for room-temperature measurements and in particular for high-
temperature measurements. Because we measure an average
force gradient in FM-AFM, the noise in this figure is given
with Eq. (2),

δkts = 2k
δf

f0
. (33)

A. Deflection detector noise

The deflection of the cantilever cannot be measured with
infinite precision, but is subject to noise. Typically, the

oscillation frequency of the cantilever varies very little around
the eigenfrequency f0 and we can therefore assume a constant
deflection detector noise density nq that denotes the precision
at which the deflection of the cantilever can be measured (e.g.,
for nq = 100 fm/

√
Hz, the error in deflection measurement

is δq = 100 fm at a bandwidth of 1 Hz and δq = 1 pm at
a bandwidth of 100 Hz). This uncertainty in the deflection
measurement also leads to frequency noise,37–39 given by

δfdet

f0
=

√
2

3

nqB
3/2

Af0
. (34)

With Eq. (33), we find

δkts det =
√

8

3

knq

f0

B3/2

A
. (35)

For quartz sensors the deflection noise depends on the charge
that is generated per deflection and the gain and noise of the
preamplifier (see Fig. 7). Current-to-voltage converters convert
the current provided by the quartz sensor to a voltage. However,
the frequency response of the current-to-voltage converter is
not independent of frequency, but is given by

Vout = − RI

1 + i2πf RC
, (36)

where R is the resistance of the feedback resistor and C

is its parasitic capacitance. The red line in Fig. 8 shows
the theoretical frequency response of an ideal operational
amplifier with R = 100 M� and a parasitic capacitance of C =
0.2 pF. The gain is flat for frequencies smaller than the corner
frequency fc1 = 1/(2πRC) = 7.96 kHz. For f 
 fc1, the
gain is given by Vout = −I/(i2πf C)—inversely proportional
to f . A sinusoidally varying charge Qch = Q0 exp (i2πf t)
corresponds to a current I = Q̇ch = Q0i2πf exp (i2πf t),
thus the gain can be expressed as Vout = −Qch/C. Therefore,
this amplifier is called a “charge amplifier” for frequencies
significantly larger than fc1. Simple amplifiers such as the one
shown in Fig. 7 often display a second corner frequency fc2

not very much higher than fc1, and for frequencies beyond
fc2 the gain decays proportional to 1/f 2. The charge amplifier

FIG. 7. Schematic of a quartz sensor, cable, and current-to-
voltage converter that is often used for amplifying deflection data
from quartz sensors. The gain of the amplifier is given by Vout =
−RI/(1 + if/fc1) with its first corner frequency fc1 given by
fc1 = 1/(2πRC). The capacity of the cable should be as low as
possible—cable capacity increases noise in the amplifier output. If
the amplifier is vacuum-compatible, it can be placed close to the
sensor, thus reducing cable capacity and noise. The sensor can be
excited electrically, as shown in this figure, or mechanically—the
drive signal is grounded in this case.
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FIG. 8. (Color online) Current gain vs frequency for a current-to-
voltage converter built from an ideal operational amplifier and a 100
M� feedback resistor with a parasitic capacitance of 0.2 pF (red line),
yielding a first corner frequency (here, fc1 = 8 kHz). For frequencies
higher than fc1, the gain drops proportional to 1/f . Typically, these
simple amplifiers develop a second corner frequency (here fc2 = 80
kHz);40 for frequencies higher than fc2, their gain drops proportional
to 1/f 2. The black line displays the gain of a commercial charge
amplifier41 with a constant gain of 1013 V/C (black line) for a
remarkably large frequency range from 250 Hz to 15 MHz.

that is used here for the needle sensor (Kolibri amplifier41,49)
has an fc2 at around 15 MHz and is therefore suited well
for high-frequency sensors. The question now is, when is it
advisable to use a current-to-voltage converter, and when is
it favorable to use a charge amplifier? Figure 8 shows that
the current-to-voltage converter becomes a charge amplifier
for sufficiently large frequencies. While one can increase
fc1 by reducing the value of the feedback resistor R, a
reduction of R increases the current noise. The tradeoff
between noise and bandwidth leads to an optimal amplifier
type for a given operating frequency. Here, we found that our
home-built current-to-voltage converter has a better signal-to-
noise ratio for frequencies around (30 ± 10) kHz, while the
FEMTO amplifier41 works better for higher frequencies. For
charge amplifiers, the deflection detector noise density can be
expressed by

nq = namp

S
, (37)

where namp is the noise density of the preamplifier and S is the
sensitivity (charge per deflection) as calculated for the needle
sensor in Eq. (28) and for the qPlus sensor in Eq. (19),

δkts det =
√

8

3

k

Sf0
namp

B3/2

A
. (38)

This equation shows that the deflection detector noise is
small for small spring constants, small amplifier noise, large
sensitivity, and large eigenfrequency. Thus, the figure of merit
for the sensor is not S alone, but Sf0/k. For both needle and
qPlus sensors, the sensitivity is proportional to k. We find for
the needle sensor

δkts det ns =
√

8

3

namptB
3/2

d21LAf0
(39)

for the ideal case of Le = L. For the qPlus sensor, we find

δkts det qPlus =
√

8

3

nampt
2B3/2

6d21L2Af0
, (40)

again assuming the ideal case of Le = L. Thus, deflection
detector noise depends on the properties of the sensor
and the amplifier. If we assume a charge noise density of
namp = 90 zC/

√
Hz (such as achieved by the commercial

FEMTO amplifier41 when loaded with a 1 m coaxial cable
corresponding to a 100 pF cable capacitance), we can now
calculate an explicit number for the deflection detector noise
contribution to the force gradient noise with A = 100 pm and
the geometrical values after Table I. For the needle sensor, we
find a theoretical deflection detector noise contribution of

δkts needle sensor = 33.2 μN/m
B3/2

Hz3/2 , (41)

and for the qPlus sensor, we find a theoretical deflection
detector noise contribution of

δkts qPlus sensor = 25.7 μN/m
B3/2

Hz3/2 . (42)

For a bandwidth of 100 Hz, the theoretical deflection detector
noise contribution is thus 33.2 mN/m for the needle sensor and
25.7 mN/m for the qPlus sensor. However, we have based this
calculation on the theoretical sensitivity of the sensors. We will
see further below that while the experimental sensitivity of the
needle sensor matches theory, the qPlus sensor develops only
about 50% of the theoretical sensitivity. Deflection detector
noise depends dramatically on bandwidth; it can be reduced
substantially by bandwidth reduction. At low temperatures,
where slow scanning is possible, the bandwidth can be reduced
to 1 Hz or less and tiny force gradients can be detected in this
case. For a bandwidth of 1 Hz, the deflection detector noise
contribution is thus 33.2 μN/m for the needle sensor and
25.7 μN/m for the qPlus sensor. However, at low bandwidth
the remaining three noise sources are typically much larger
than the deflection detector noise.

B. Thermal noise

The thermal noise of a force sensor at a bandwidth B is
given by2

δfthermal

f0
=

√
kBT B

πkA2f0Q
. (43)

Thus, the thermal noise in force gradient measurement is given
by

δkts thermal =
√

4kkBT B

πA2f0Q
∝

√
k

f0Q
. (44)

For the needle sensor, reasonable Q values are 15 000 at
room temperature and 80 000 at 4 K.30 For the qPlus sensor,
Q ≈ 3000 at room temperature, reaching up to 200 000 at
4 K.42 Thus, at room temperature the thermal contribution to
the minimal detectable force gradient is δkts thermal = 6 mN/m
per

√
Hz for the needle sensor and δkts thermal = 3 mN/m per√

Hz for the qPlus sensor. At T = 4 K, the minimal detectable
force gradient is δkts thermal = 390 μN/m per

√
Hz for the

needle sensor and δkts thermal = 40 μN/m per
√

Hz for the qPlus
sensor. Again, these calculations refer to A = 100 pm.
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FIG. 9. (Color online) Effect of temperature changes on the
measured tip-sample force gradient. Both the needle sensor and the
qPlus sensor change their frequency as a function of temperature.
Although the relative frequency shift is much smaller than for silicon
cantilevers, the effect on the measured force gradient scales with
stiffness k. This thermal frequency drift noise is almost three orders
of magnitude smaller for the qPlus sensor than for the needle sensor.

C. Oscillator noise

Recently, Kobayashi et al.39 discovered a new contribution
to frequency noise in FM-AFM that arises in particular in low-
Q environments. However, this contribution is not explicitly
temperature-dependent and thus can become significant at low
temperatures where thermal noise becomes small. The origin
of this noise can be understood as a driving of the cantilever
off resonance because the amplitude feedback is fed with a
noisy input signal (due to a finite nq). The lower the Q value,
the more of this noise pushes the cantilever at the correct
phase, therefore this noise contribution is proportional to nq

and inversely proportional to Q:

δfosc

f0
= nqB

1/2

√
2AQ

. (45)

With Eq. (33), we find

δkts osc =
√

2
knq

Q

B1/2

A
. (46)

Similar to thermal noise, oscillator noise is proportional to
the square root of the detection bandwidth B and inversely
proportional to amplitude. For the Q values given above, we
find room-temperature values of δkts osc = 4.6 mN/m per

√
Hz

for the needle sensor and δkts thermal = 0.6 mN/m per
√

Hz for
the qPlus sensor. At T = 4 K, the contribution of oscillator
noise to the minimal detectable force gradient is δkts osc =
1.4 mN/m per

√
Hz for the needle sensor and δkts thermal =

9.5 μN/m per
√

Hz for the qPlus sensor. Again, these
calculations refer to A = 100 pm.

D. Thermal frequency drift noise

Temperature variations cause a drift in eigenfrequency.
For silicon cantilevers, the relative frequency variation is
linear with temperature with a value of −35 ppm/K at room
temperature.9 Thus, a hypothetical Si cantilever with k = 1
kN/m (this large stiffness would be required to enable stable
oscillation at small amplitudes) would be subject to a 〈kts〉 drift
of −35 mN/m/ K. Quartz sensors show a quadratic frequency
shift with temperature, and the eigenfrequency varies with
temperature as an inverted parabola centered around the
turnover temperature Tp,43

δfsensor

f0
= −χ (T − Tp)2. (47)

The turnover temperature depends on the crystal cut (see Fig. 9
in Ref. 44). Tuning fork crystals are often cut to yield Tp = 298
K such that the turnover temperature is close to the temperature
that a watch strapped to a wrist typically develops. Length-
extensional resonators, in contrast, are often oriented such that
their turnover temperature is around 313 K,43 probably because
1 MHz crystals are typically not worn on the wrist but built into
printed circuit boards that have higher operating temperatures
than the human body. Here we chose an LER with Tp =
298 K to be able to compare the frequency drift of both types
of sensors at room temperature. This thermal frequency drift
causes a thermal drift in force gradient measurement given by

δkts drift = −2kχ (T − Tp)2. (48)

Although the temperature stability of quartz is excellent with
very small values of χ = 35 × 10−9 K−2,43 the net effect on
the precision on the measurement of 〈kts〉 is proportional to the
effective stiffness of the sensor k (see Fig. 9).

The quadratic dependence of the frequency variation with
temperature is only valid for temperatures around Tp. For the
temperature range from 300 to 4 K, the frequency variation has
been measured by Hembacher et al.45 and is approximately
given by

δfsensor

f0
≈ −0.000 81{1 − cos[(T/Tp − 1)π ]} (49)

with a total relative frequency change of −1620 ppm over the
temperature range from 300 to 4 K. An et al. have found a
similar frequency change of a needle sensor (Fig. 3 in Ref. 30)
from 998 066 Hz at 300 K to 996 314 Hz, corresponding to
−1755 ppm. This equation shows that frequency drift with
temperature is particularly large for temperatures between
room temperature and absolute zero. This approximate for-
mula models the data measured by Hembacher et al.45 quite
precisely down to liquid-helium temperatures. Because the
relative frequency shift is mainly dependent on the variation
of the velocity of sound with temperature (pp. 38 in Ref. 46),
we expect a similar relative frequency shift for the qPlus sensor
and the needle sensor also in the whole temperature range from
0 to 300 K.We now analyze the effect of temperature drift on
the measured tip-sample force gradient. First, we look at the
frequency drift of the sensor for a given rate of temperature
change. Figure 10(a) shows temperature versus time for a con-
stant drift rate of dT /dt = 125 μK/s at T − Tp = 10 K over
a time interval of 10 min. The frequencies of quartz sensors
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vary according to Eq. (47) by a rate rns = 100 μHz/s for the
needle sensor and rqPlus = 3.3 μHz/s for the qPlus sensor.

Now, we can compute the power spectral density of
the frequency drift noise contribution by taking a Fourier
transform of the square of the frequency drift. The reason
we are not just adding the frequency noise contributions but
adding the squares is that the detector, thermal oscillator, and
thermal drift noise are statistically independent and the net
effect of statistically independent variables is computed by
taking the square root of the sum of squares. For a frequency
drift that is linear with time, we find δf (t) = r × t within a
time interval [−τ/2 . . . τ/2]. With � = 2π/τ , we can express
the time dependence of the frequency as

δf 2(t) =
∞∑

n=0

an cos (n�t) (50)

with Fourier coefficients

an = �

π

∫ τ/2

t=−τ/2
r2t2 cos (n�t)dt (51)

and

an = (−1)n
r2τ 2

π2n2
. (52)

We can now interpret |an| as the equivalent power component
at a frequency fmod = n/τ in a frequency interval of 1/τ .
Therefore, the power spectral density (power per frequency)
becomes

n2
�f drift(fmod) = r2τ

π2f 2
mod

(53)

and

n�f drift(fmod) = r
√

τ

πfmod
. (54)

Thus, a linear frequency drift leads to 1/f noise in the
frequency spectrum of the phase-locked loop (PLL) output.
The magnitude of this noise component depends on the drift
rate of the frequency r and the measurement period τ . The
time period τ is at least the time it takes to complete one
image. Thus, for fast measurements, frequency drift noise can
be reduced provided that the frequency detector (PLL) is reset
before an image is taken. To obtain the effect of this noise on the
force gradient measurement, we need to multiply n�f (fmod)
by 2k/f0 [see Eq. (2)] to obtain

nkts drift(fmod) = 2kr
√

τ

f0πfmod
. (55)

Because the frequency drift rate is proportional to f0, the
force gradient noise due to thermal drift is proportional to the
stiffness of the sensor k, and thus this noise source is 600 times
larger for the needle sensor than for the qPlus sensor. We also
note, that there are other long-term frequency drift contribu-
tions that are difficult to quantify such as crystal aging etc. The
effect of these frequency instabilites on the measurement of
experimental force gradients are proportional to the stiffness
of the sensors, and therefore these noise contributions are 600
times larger in the needle sensor than in the qPlus sensor.

FIG. 10. (Color online) Effect of temperature drift on frequency
drift, frequency noise at the PLL output, and force gradient noise.
(a) A temperature drift of 125 μK/s is assumed, yielding a tempera-
ture increase of 75 mK over 10 min. (b) Frequency drift at at temper-
ature 10 K above or below the turnover temperature Tp; see Eq. (47).
For the needle sensor, the absolute frequency change over 10 min is
78 mHz, while for the qPlus sensor it is 2.5 mHz. (c) Power spectral
density of the frequency drift noise for the needle and the qPlus sen-
sors. A linear frequency drift with time causes a 1/f power spectrum.
(d) Power spectral density of the tip-sample force gradient noise due
to drift. This noise contribution is linear with the force constant of
the sensor, i.e., it is 600 times larger for the needle sensor than for the
qPlus sensor.
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E. Summary of noise calculations

In summary, we find that the large spring constant of
the needle sensor is not a significant disadvantage regarding
deflection detector noise, because although the frequency shift
that a sensor is subject to is proportional to 1/k, the sensitivity
is proportional to k, and the two effects cancel. However, k does
affect the other three noise sources: thermal noise increases as√

k, and both oscillator noise and frequency drift noise are
proportional to k. Therefore, the recommendations in Eq. (1),
stating that k should be large enough to enable stable sensor
oscillations at the optimal amplitude but otherwise be as small
as possible, are still valid. High-Q values are desirable to min-
imize thermal and oscillator noise. The frequency drift noise
can be minimized by operating the sensors in a thermally stable
environment, preferentially at temperatures at or close to Tp.

VI. EXPERIMENTAL NOISE MEASUREMENTS

A. Deflection spectrum at thermal excitation

So far, we have only considered theoretical calculations to
compare the noise characteristics of the two sensors studied
here. Now, we supplement the calculations by measurements.
First, we measure the thermal noise peak of the needle sensor
and the qPlus sensor with sensors of standard dimensions listed
in Table I. The equipartition theorem states that an oscillator
carries a thermal energy kBT /2 per degree of freedom, where
kB is Boltzmann’s constant and T is the temperature in degrees
Kelvin. For the standard qPlus sensor, we find the thermal
amplitude by equating the average potential energy to the
thermal energy kA2

rms/2 = kBT /2, yielding a thermal rms
amplitude of Arms = 1.52 pm or a peak amplitude of A0p =
2.14 pm. For the needle sensor, we need to take into account
that it is a coupled oscillator, therefore 2 × k′A2

rms/2 = kBT /2,
yielding a thermal rms amplitude of Arms = 62 fm or a peak
amplitude of A0p = 88 fm. Figure 11 shows the thermal peak
of a needle sensor without tip in ambient conditions. The power
spectral density in Fig. 11 was recorded by connecting the

FIG. 11. Thermal spectrum of a needle sensor with standard
dimensions at room temperature and ambient pressure. A commercial
preamplifier41 was used. The sensitivity of the sensor is calculated
to 45.4 μC/m, the Q factor is 18 500, and the deflection detector
noise density is 1.89 fm/

√
Hz. The Q-factor is determined by fitting

the resonance curve of a damped harmonic oscillator to the thermal
spectrum.

output of the FEMTO amplifier41 to the input of the oscillation
controller (OC4 from Nanonis47) using the Zoom-FFT (fast
Fourier transform) feature and correcting the filter error by
comparing the output with a dedicated FFT analyzer at
low frequencies (Agilent 35670A Dynamical Analyzer). The
input of the FEMTO amplifier was connected to a length
extensional resonator (no tip attached) with dimensions given
by Table I with a coaxial cable with a length of 1 m (capacity
approximately 100 pF). The commercial preamplifier has a
noise density of namp = 90 zC/

√
Hz when loaded with a 1

m coaxial cable (100 pF cable capacitance)41 and namp =
40 zC/

√
Hz without a cable (sensor directly connected to

the amplifier) at the operating frequency of the needle sensor
(1 MHz). From Fig. 11, we can calculate the sensitivity as
well as the deflection detector noise density by following the
procedure published in Ref. 16.

For the needle sensor, we find an experimental sensitivity
of S

exp
needle sensor = 45.4 μC/m, which is 100% of the theoretical

value. In a previous measurement, the needle sensor reached
only 44% of the theoretical value.29 A possible reason for
a deviation between theoretical and experimental sensitivity
in the previous measurement might be attributed to cable
capacity between sensor and amplifier and nonideal amplifier
performance. The deflection detector noise density is thus
nq = 2 fm/

√
Hz with a 1 m cable and nq = 0.89 fm/

√
Hz

when the sensor is directly connected to the preamp (not
feasible for vacuum operation).

At 30 kHz, the operating frequency of the qPlus sensor,
we measured namp = 122 zC/

√
Hz with a 1 m coaxial

cable (100 pF cable capacitance) for the FEMTO amplifier41

and namp = 86 zC/
√

Hz without a cable. Thus, a standard
qPlus sensor would yield nq = 122 zC/

√
Hz/1.44 μC/m =

85 fm/
√

Hz. When directly connected to the commercial
amplifier, the qPlus sensor would achieve a deflection detector
noise density of nq = 60 fm/

√
Hz at room temperature. Using

our home-built amplifier for the qPlus sensor, we obtained a
deflection detector noise density of nq = 62 fm/

√
Hz (see

Fig. 12). The home-built amplifier is a current-to-voltage
converter based on an OPA 657 operational amplifier with

FIG. 12. Thermal spectrum of a qPlus sensor with standard
dimensions at room temperature and ambient pressure. A home-built
preamplifier was used. The sensitivity of the sensor is calculated to
1.44 μC/m, the Q factor is 2900, and the deflection detector noise
density is 62 fm/

√
Hz.
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a feedback resistance of 100 M�.17 The power spectral
density in Fig. 12 was recorded by connecting the output of
a home-built UHV-compatible amplifier to the input of a FFT
analyzer (Agilent 35670A Dynamical Analyzer). This thermal
noise spectrum allows to determine all the relevant noise data
of the sensor and its amplifier as shown in Ref. 48. The input
of the amplifier was connected to a qPlus sensor without tip
with dimensions given by Table I with a short cable with
a length of approximately 0.1 m (capacity approximately 1
pF). The experimental result is S

exp
qPlus = 1.44 μC/m—about

51% of the theoretical value. The deviation between the
theoretical and experimental values is probably due to edge
effects—the calculation of the sensitivity is based on a
homogeneous field distribution and an electrode configuration
in the quartz crystal as in Fig. 3(e), while the actual field
distribution is perturbed by edge effects as in Fig. 3(c). For
the needle sensor, the deviation between the actual [Fig. 3(h)]
and the ideal field [Fig. 3(j)] is much smaller, therefore its
experimental sensitivity is essentially equal to the calculated
sensitivity. It is UHV-compatible and therefore can be con-
nected closely to the sensor, thereby greatly reducing Ccable.
At low temperatures the home-built amplifier can be cooled,
and its noise at 4 K typically drops to 50%,45 yielding nq =
31 fm/

√
Hz at 4 K.

B. Power spectral density of the frequency detector output

When the sensor is operating in the AFM, it is excited
at a constant amplitude, and the frequency of the sensor is
measured as the physical observable that relates to the tip-
sample forces.

Figure 13 shows the calculated (smooth lines) and exper-
imental (jagged lines) power spectral density of the force
gradient noise nkts as a function of modulation frequency
fmod. This graph is produced by inserting the output of
the phase-locked-loop detector to a FFT analyzer (Agilent)
and multiplying the spectral frequency shift noise density

FIG. 13. (Color online) Total experimental and calculated force-
gradient noise densities as a function of modulation frequency for
the needle sensor (red line) and the qPlus sensor (blue line) at room
temperature. The calculated force-gradient noise densities are derived
with the experimental values for S, k, namp, Q, and f0 at an amplitude
of A = 100 pm. The 1/f component for small fmod is due to thermal
frequency drift noise [see Eq. (55)].

by the corresponding scaling factor (kts = 2k/f0 × �f , thus
nkts = 2k/f0 × n�f ). For these measurements, it is essential
that the Nanonis OC4 PLL is set to sufficiently fast settings
(here, demodulation bandwidth 1300 Hz, lock range 305 Hz).

All four noise sources contribute to the experimental noise
graphs. The absolute force gradient noise figures outlined in
Sec. V can be transformed in a density representation by

nkts (fmod) =
√

∂δk2
ts

∂B

∣∣∣∣
B=fmod

. (56)

Thus, we can explicitly calculate the four spectral noise
contributions from quantities that can be obtained from the
thermal noise spectrum as shown in Fig. 12 and a measurement
of sensor stiffness.

(i) For the detector noise contribution, we find

nkts det(fmod) =
√

8
knq

f0A
fmod. (57)

(ii) Thermal noise is constant with respect to fmod:

nkts th =
√

4kkBT

πA2f0Q
. (58)

(iii) Oscillator noise is also constant with fmod:

nkts osc =
√

2
knq

QA
. (59)

(iv) Frequency drift noise is inversely proportional to fmod:

nkts drift(fmod) = 2kr
√

τ

f0πfmod
. (60)

The total noise of the force gradient measurement is given
by

δkts =
√∫ B

1/τ

n2
kts

(fmod)dfmod (61)

with

n2
kts

(fmod) = n2
kts det(fmod) + n2

kts th + n2
kts osc + nkts drift(fmod)2.

(62)

The calculated graphs include deflection detector noise
(linear with fmod), thermal noise (constant with fmod), and
oscillator noise (also constant with fmod). Frequency drift
noise, which is large for long measuring times (i.e., small
fmod), is not included in the calculation, but clearly apparent
in the measurement by the increase of the experimental needle
deflection detector noise density for small fmod. As expected,
the qPlus sensor shows less thermal, oscillator, and frequency
drift noise, but more detector noise. This is due to the excellent
adaption of the FEMTO/Kolibri amplifier41,50 to the needle
sensor, and to the fact that the standard qPlus sensor as
described in Table I only has 50% of the calculated sensitivity.

Table II summarizes the results in a way that all noise
contributions can be identified.
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TABLE II. Noise contributions of the four noise sources for the qPlus sensor (f0 = 30 kHz) and the needle sensor (f0 = 998 kHz) for
A = 100 pm and B = 1 Hz. Note that detector noise scales with B3/2 [after Eq. (34)], while thermal noise [after Eq. (44)] and oscillator
noise [after Eq. (46)] scale with B1/2. Thus for B = 100 Hz, detector noise would increase by a factor of 1000, while thermal and oscillator
noise would only increase by a factor of 10. Frequency drift noise [after Eq. (48)] is independent of amplitude and becomes large for small
bandwidths. For both sensors, the δkts drift data at 300 K are based on the parabolic frequency drift according to Eq. (47) for T = Tp ± 2 K,
while the data at 4 K are based on a relative frequency drift of 1 ppm/K (see fig. 2 in Ref. 49).

Sensor nq Q
δkts det
B3/2

δkts th
B1/2

δkts osc
B1/2 δkts drift (300 K) δkts drift (4 K)

( fm
Hz1/2 ) ( μN/m

Hz3/2 ) ( μN/m
Hz1/2 ) ( μN/m

Hz1/2 ) ( mN
m ), �T = 0.1 K ( mN

m ), �T = 10 mK

qPlus 300 K air 62 2900 60.7 3290 544 0.05
qPlus 300 K UHV 62 5000 60.7 2510 316 0.05
qPlus 4 K UHV 31 200 000 30.4 46 4 0.036
needle 300 K air 1.89 18 500 33.4 5530 1560 31
needle 300 K UHV 1.89 50 000 33.4 3370 577 31
needle 4 K UHV 1.89 80 000 33.4 308 361 21.6

VII. SUGGESTIONS FOR IMPROVEMENTS ON QPLUS
AND LER SENSORS

A. Decreasing deflection detector noise

With the equations that link signal and noise to the physical
parameters of the sensors, we can now attempt to tailor the
design values for optimal performance. Equation (40) connects
the relative frequency noise (detector contribution) to the
sensitivity of the sensor and the noise performance of the
amplifier. For both sensors, we find

δkts det = 2k

√
2

3

namp

SAf0
B3/2. (63)

With Eqs. (20), (21), and (28) in the ideal situation of Le =
L, we can express the spring constant k, sensitivity S, and
eigenfrequency f0 in terms of the geometrical parameters t, w,
and L, we find for the detector noise contribution for the needle
sensor:

δkts det ns = 8

√
2

3

nampt

d21Avs

B3/2. (64)

For the qPlus sensor, we use Eqs. (17), (18), and (19) assuming
again Le = L, finding

δkts det qPlus = 2.06

√
2

3

nampt

d21Avs

B3/2. (65)

This result seems quite surprising: deflection detector noise
only depends on the thickness t of the sensor—all the other
geometrical dimensions cancel, and when comparing a qPlus
and a needle sensor with the same thickness, the qPlus sensor
should only display about 1/4 of the noise of the needle sensor
if the charge noise of the amplifier in use is similar. If we take
into account that the quartz-cantilever geometry only produces
about 50% of the theoretical sensitivity, a qPlus sensor with
the same thickness of a needle sensor should display only 1/2
of the noise. Miniaturization, therefore, appears to be the road
to success. The reason for the superior signal-to-noise ratio of
the cantilever geometry implemented in the qPlus sensor over
the length-extensional principle utilized in the needle sensor
lies in the fact that the cross section of the qPlus sensor beam
shows a strain and stress profile that is zero in the center
and increases toward the edges, where the charge-collecting

electrodes are located, while the cross section of the needle
sensor has a uniform stress and strain profile [see Figs. 3(d)
and 3(h)]. Figure 14 displays the noise figures of standard
needle and qPlus sensors and a modified qPlus sensor with a
smaller thickness t and smaller length L with f0 = 92.8 kHz,
k = 3500 N/m, Q = 1650, and nq = 28 fm/

√
Hz. This sensor

is not only superior to the needle sensor in thermal, oscillator,
and frequency drift noise, but also in detector noise.

B. Decreasing thermal noise

As outlined in Eq. (44), the thermal noise in the force
gradient measurement is given by

δkts thermal(z) =
√

4kkBT B

πA2f0Q
. (66)

Thus, thermal noise can be minimized by a reduction of
temperature, using a stiffness k as small as possible compatible
with stability and choosing a high eigenfrequency f0 while
maintaining a high-Q value.

FIG. 14. (Color online) Calculated force-gradient noise densities
nkts as a function of modulation frequency for the standard needle
sensor (red line), qPlus sensor (blue line), and a modified qPlus
sensor with f0 = 92.8 kHz, k = 3500 N/m, Q = 1650, and nq =
28 fm/

√
Hz (green line). The calculated values for nkts are based on

measured values of namp, S, k, f0, and Q.
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C. Decreasing oscillator noise

Oscillator noise can be minimized by combining the recipes
to reduce deflection detector noise and thermal noise, because
oscillator noise goes down with decreasing deflection detector
noise, increasing Q, and minimizing k.

D. Decreasing frequency drift noise

Again, frequency drift noise is minimized by choosing the
appropriate stiffness k of the cantilever. Because frequency
drift noise is proportional to k, we need a stiffness as small as
possible (yet allowing stable oscillation at small amplitudes). A
second factor concerns temperature stabilization and choosing
an operating temperature close to the turnover temperature of
the corresponding quartz crystal orientation. Another possibil-
ity would be to tailor the turnover temperature of the quartz
crystal by cutting it along the corresponding crystal direction.
For the needle sensor, it might be useful to trigger the frequency
detector (PLL) with an atomic clock because the frequency
shift changes can become very small for weakly interacting
samples. More precise measurements on the thermal frequency
variation at low temperatures are needed to assess frequency
drift noise for cryogenic microscopes (here, we have used a
value of 1 ppm/K according to Fig. 2 in Ref. 49).

VIII. PRACTICAL CONSIDERATIONS
REGARDING TIP MOUNTING

Tip mass plays a crucial role in the needle sensor, because
an imbalance in the effective mass of the coupled beams
reduces Q. Rychen has analyzed the effect of mass imbalance
and found that for tuning fork geometries, an imbalance of
1.5% leads to a drop of the Q value by 63.5% (Fig. 4.8 in
Ref. 51). Probably, the effect of mass imbalance is smaller for
length extensional resonators than for tuning forks, however
mass imbalance will effect the Q value of the needle sensor.
Therefore, the tip of a needle sensor needs to be very small.
Long and thin tips, however, can show significant thermal
lateral oscillations and bend strongly under lateral forces.
Young’s modulus of tungsten is around 400 GPa, thus a wire
with a diameter of 0.01 mm and a length of 0.3 mm has a
lateral stiffness of only 22 N/m. In contrast, the qPlus sensor
can easily accommodate heavy and more stable tips that can be
resharpened more easily, with significant abrasion52 and even
cleaved in situ.53

IX. NOISE COMPARISON BETWEEN
LARGE-AMPLITUDE (Si CANTILEVERS) AND

SMALL-AMPLITUDE (QUARTZ SENSORS)
OPERATION

This paper focuses on quartz force sensors, but many
impressive results have been obtained with AFM using
Si cantilevers, such as high-resolution force spectroscopy54

imaging the rest atoms on Si(111)-(7×7),37,55 imag-
ing of insulators,56,57 atomic manipulation,58 chemical
identification,59 and the detection of short-range magnetic
exchange forces.60 It is instructive to compare the noise
performance of quartz sensors with silicon cantilevers. When
comparing only the thermal force gradient noise for silicon
cantilevers and quartz sensors (see Table I in Ref. 31), Si
cantilevers appear to be superior by more than four orders of
magnitude. However, we need to consider that Si cantilevers
cannot be operated in the force gradient regime when the
tip comes close enough to feel chemical bonding forces.61,62

Standard Si cantilevers need to be operated at amplitudes of
about 10 nanometers, and the frequency shift in that case is
given by the normalized frequency shift γ (Ref. 61) with

γ = �f

f0
kA3/2 ≈ 1√

2π
Ftsλ

1/2, (67)

where Fts is the tip-sample force and λ is its range.33,61 For
small-amplitude operation, we find

kts = 2k
�f

f0
. (68)

While we cannot compare a minimal detectable force gradient
and a minimal detectable normalized frequency shift, we can
calculate a minimal detectable force δFts min for a given range
λ. For the large-amplitude regime, we find

δFts min =
√

2πk
δ�fmin

f0

A3/2

λ1/2
. (69)

For small amplitudes, the force noise is given by the product
between the minimal detectable force gradient and the range

δFts min = 2k
δ�fmin

f0
λ. (70)

As shown in Table III, Si cantilevers with refined optical
readout schemes are better in detector, thermal, and oscillator
noise but show profoundly larger thermal drift noise. Also
shown are the calculated noise figures for a qPlus sensor
with optical deflection detection, reaching lower values for

TABLE III. Noise contributions of the four noise sources for different Si cantilevers, the qPlus sensor, the needle sensor, and B = 1 Hz
with respect to an exponential attractive force with λ = 79 pm (Morse potential, as shown in Fig. 6).

Sensor k f0 nq Q A
δFts det
B3/2

δFts th
B1/2

δFts osc
B1/2 δFts drift (300 K)

(N/m) (kHz) ( fm
Hz1/2 ) (nm) ( fN

Hz3/2 ) ( fN
Hz1/2 ) ( fN

Hz1/2 ) (pN), �T = 0.1 K

Si cantilever37,63 46 298.0 272 54200 4 0.6 34 2.9 11.5
Si cantilever64 42 281.5 17 50000 8 0.04 50 0.3 29.7
qPlus opt. det.65 1500 27.8 15 6100 0.1 1.0 170 4.1 0.003
qPlus el. det. 1800 32.8 62 2900 0.1 4.4 250 43 0.004
needle 1080000 1000 1.89 18500 0.1 2.6 437 123 2.5
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detector noise than in the electrically detected mode.65 At low
temperatures, the first three noise types decrease significantly
for quartz sensors, but it is unclear how effective a Si cantilever
can be cooled even in a low-temperature environment when
intense laser light from the optical deflection detector is
shined on them. Although Si cantilevers with good optical
deflection detectors show less noise than quartz cantilevers,
detector noise, thermal noise, and oscillator noise can be
reduced by bandwidth reduction, and the thermal drift noise
is significantly smaller for quartz cantilevers than for Si
cantilevers.

X. SUMMARY AND OUTLOOK

Concluding, we compared force sensors based on length-
extensional resonators and based on quartz tuning forks.
We found that in contrast to applications in the literature,
the effective spring constant of a needle sensor is actually
twice as large as the stiffness of one tine [see Eq. (16)]. We

have discussed four types of noise: deflection detector noise,
thermal noise, oscillator noise, and frequency drift noise. Sur-
prisingly, the deflection detector noise is independent of sensor
stiffness, because while a stiffer sensor has less frequency shift
proportional to 1/k, its deflection signal increases linear with
k. The other three noise sources, however, clearly favor sensors
with spring constants around 1 kN/m. The cantilever geometry
provides more charge per force than the length-extensional
geometry. However, the longitudinal outline of the needle
sensor is more suited to a space-conserving microscope.
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