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Spin-density-wave instability in graphene doped near the van Hove singularity
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We study the instability of the metallic state toward the formation of a different ground state in graphene doped
near the van Hove singularity. The system is described by the Hubbard model and a field theoretical approach
is used to calculate the charge and spin susceptibility. We find that for repulsive interactions, within the random
phase approximation, there is a competition between ferromagnetism and the spin-density wave (SDW). It turns
out that a SDW with a triangular geometry is more favorable when the Hubbard parameter is above the critical
value Uc(T ), which depends on the temperature T , even if there are small variations in the doping. Our results
can be verified by angle-resolved photoemission spectroscopy or neutron scattering experiments in highly doped
graphene.
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I. INTRODUCTION

Graphene, a newly realized two-dimensional crystal of
carbon atoms ordered on a honeycomb lattice,1 is being
extensively studied due to its unusual electronic and structural
properties. Undoped graphene is a zero-gap semiconductor
with a linear low-energy dispersion relation and a vanishing
density of states at the Fermi level.2 Although the Coulomb
interaction is unscreened in this regime, the system behaves
mostly as a noninteracting electron liquid, where the minor
effects of interactions are encoded in a renormalization of the
Fermi velocity and the quasiparticle lifetime.3 The opposite
case is that of a divergent density of states, the so-called van
Hove (VH) singularity, which is associated with a saddle point
in the band dispersion.4 If the Fermi level lies near such a
singularity, screening is perfect for wave vectors connecting
VH singularities and correlation effects may be enhanced.
Recently, several experimental groups have succeeded in
making this regime accessible for graphene.5–7 The techniques
used for this aim are different: In Ref. 5 the authors used
twisted graphene, obtained from a rotation between stacked
graphene layers, which allows one to tune the position of
the VH singularity. Other methods involve chemical doping
of graphene6 or intercalation of gold clusters between the
graphene layers.7 This opens up the fascinating possibility
of studying correlated electronic phases in this material,
such as superconductivity, charge-density waves (CDWs), or
spin-density waves (SDWs).

The proximity of the Fermi level to a VH singularity
in most of the cuprate superconductors has triggered large
efforts to understand the role of a peaked density of states
(DOS) on the electronic properties of an electron liquid.8

Superconductivity, itinerant ferromagnetism (FM), CDWs,
and SDWs are examples of competing instabilities associated
with the VH scenario. In graphene, the existence of some
of these instabilities has already been evidenced by recent
experiments, such as CDW (Refs. 5 and 7) or superconducting
pairing due to electron-electron interactions,6 following the
Kohn-Luttinger mechanism.9 CDW and SDW phases usually
occur in systems with Fermi surface nesting, i.e., when the
Fermi surface can be mapped onto itself by a (nonzero) k vector
(nesting vector). At low doping, graphene shows some nesting,

since the Fermi surface is composed of two circles around
the K and K ′ points. However, since the DOS is very low,
these peaks are small, and a very high (Hubbard) interaction
is required to enter the DW regime.10 The situation changes
if we strongly dope graphene around the value μ ≈ |t |, where
μ is the chemical potential and t ≈ 2.8 eV is the hopping
parameter. The Fermi surface then acquires a hexagonal shape
and nesting occurs in three directions (see Fig. 1). Furthermore,
the VH singularities lie at the Fermi surface for this doping. At
these points, the DOS diverges and we expect some nontrivial
peaks in the susceptibility.

In this paper, we investigate the Hubbard model in a
honeycomb lattice using a field theoretical approach. By
performing a Hubbard-Stratonovich transformation, we de-
termine the effective action in terms of an eight-component
order parameter, which accounts for charge and spin degrees
of freedom in the A and B graphene sublattices. We find that the
charge susceptibility never diverges for repulsive interactions,
thus excluding the possibility of a CDW formation, whereas
the spin susceptibility exhibits several peaks. The peaks at the
nesting wave vectors k are stronger than the one at k = 0 (see
Fig. 2), thus signaling that the SDW is the leading instability
that wins against FM for repulsive interactions.

In the following, we introduce the model and outline the
main steps of the calculations in Sec. II. Then, we present the
temperature vs interaction vs doping phase diagram and show
that the metallic state becomes unstable toward a SDW phase
for realistic values of the interaction parameter U in Sec. III.
Finally, we discuss possible experimental techniques which
could be used to observe our results and draw our conclusions
in Sec. IV.

II. THE MODEL

Due to the strong screening of interactions by the electron
gas at the VH filling, we consider only the local Coulomb
repulsion (the usual Hubbard U term), which is a good
approximation around this doping level.11–13 This term leads
to a deformation of the band dispersion toward the saddle
point,12 an effect that has been observed experimentally
by angle-resolved photoemission spectroscopy.6 Notice that
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FIG. 1. (Color online) Blue dashed line is the Brillouin zone of
monolayer graphene. Red solid line is the Fermi surface for μ = t .
Red dots are the van Hove singularities and the green dotted arrows
are the nesting vectors.

longer-range interaction terms, such as the nearest-neighbor
repulsion, would lead to a richer phase diagram, with the
possibility of a Pomeranchuk instability.14,15 This scenario is in
sharp contrast with low-doped graphene, for which the DOS
vanishes and the Coulomb interaction will be only slightly
screened and therefore will be long ranged. Hence, we use a
tight-binding model with a Hubbard interaction U ,

H = −t
∑

〈i,j〉,s
(a†

i,sbj,s + H.c.) + U
∑

j∈A,B

c
†
j,↑c

†
j,↓cj,↓cj,↑,

(1)

where the operator cj can be either aj or bj , depending on
whether j is a label of the A or B sublattice, respectively.
Defining c

†
j = (c†j,↑,c

†
j,↓), the Hubbard term can be rewritten

using the relation

c
†
j,↑c

†
j,↓cj,↓cj,↑ = 1

8n2
j − 1

2 Sj · Sj ,

where nj = c
†
j cj is the on-site number operator and Sj =

(1/2)c†jσcj describes the spin on the lattice site j . Note that the
inner product Sj · A, where A is some vectorial field, is defined

FIG. 2. (Color online) Density plot of the largest eigenvalue of
ηχ for T = 0.01t. Brighter regions correspond to higher peaks in the
spin susceptibility. The peaks at the three nesting wave vectors (see
Fig. 1) are higher than the one at k = 0, indicating that the SDW
instability wins over the FM one.

by Sj · A = (1/2)c†j (σ · A)cj , and that σ is the vector of Pauli
matrices. The grand canonical partition function describing
the system reads

Z = d[c†]d[c]e−S[c†,c]/h̄,

where the action is given by

S =
∫ h̄β

0
dτ

[ ∑
j

c
†
j

(
h̄

∂

∂τ
− μ

)
cj + H

]
.

In this expression, τ is the imaginary time variable, β =
1/kBT , and H is defined in Eq. (1). We will investigate the
possible appearance of CDW and SDW instabilities by using
a path integral formalism recently developed by some of the
authors.16 In the following, we briefly outline the procedure.

We start by performing a Hubbard-Stratonovich transfor-
mation that eliminates the quartic term in the action but
introduces eight auxiliary bosonic fields ρa , ρb, Ma , and Mb

related, respectively, to the electronic and the magnetic degrees
of freedom of the fermionic fields of each sublattice. In Fourier
space, the action then reads

S = −h̄
∑

k,n,k′,n′
(a†

k,nb
†
k,n) · G−1

k,n;k′,n′ ·
(

ak′,n′

bk′,n′

)
+ S2,

S2 = 1

2U

∑
k,n,α

[
Mα

k,n · Mα
k,n − (

ρα
k,n

)2]
,

where α = a,b. The inverse Green’s function is defined
by G−1

k,n;k′,n′ = G−1
0 k,n;k′,n′ − �k,n;k′,n′ , where the bare Green’s

function reads

−h̄G−1
0 k,n;k′,n′ =

[−(μ + ih̄ωn)I −tγkI

−tγ ∗
k I −(μ + ih̄ωn)I

]
δk,k′δn,n′ ,

with I a 2 × 2 identity matrix, ωn = π (2n + 1)/h̄β

the fermionic Matsubara frequency, and γk = eia0ky +
e−ia0ky/2 cos(

√
3a0kx/2). In what follows we set the lattice

constant a0 = 1. The self-energy is given by

h̄�k,n;k′,n′ = −1

2
√

Nh̄β

[
σ · Ma − ρaI 0

0 σ · Mb − ρbI

]
,

where N is the number of sites of each sublattice and both Mα

and ρα carry a subscript (k − k′,n − n′). By introducing the
eight-component vector

Mk,n = (
ρa

k,n,M
a
k,n,ρ

b
k,n,M

b
k,n

)T

and integrating out the fermionic fields, we obtain the effective
action

Seff = 1

2U

∑
k,n

Mk,n · η · M−k,−n − h̄Tr[In(−G−1)],

where η = diag(−1,1,1,1, − 1,1,1,1) and the partition func-
tion becomes Z = ∫

d[bf M] exp(−Seff/h̄). Finding the sus-
ceptibility from here is a two-step process. First, we introduce
external source fields J and then we expand the fields in the
action around their mean field value Mk,n = 〈Mk,n〉J + δMk,n.
This results in a self-consistent equation for the mean field
values of the fields. Using this equation, we may determine
how the bosonic fields react on a distortion of the source fields.
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FIG. 3. (Color online) Largest eigenvalue of ηχ for T = 0.0025t
for kx = 0. Notice that the peak corresponding to the SDW at ky = 2π

is larger than the FM peaks at ky = 0 and ky = 4π .

The mean field values are those at which the action has
an extremum. Thus, the linear terms in δMk,n are required to
vanish, yielding the self-consistent equation〈

Mr
k,n

〉
J = U

2
√

Nh̄β

∑
p,m

Tr[PrGJ p,m;p−k,m−n],

where P = [diag(I,0),diag(σ x,0),diag(σ y,0),diag(σ z,0),diag
(0,I),diag(0,σ x),diag(0,σ y),diag(0,σ z)]T and the trace is
taken over the matrices only, because the sum takes care
of the trace in k and frequency space. After differentiating
this equation with respect to the source J, one finds the
susceptibility through the relation

d〈M〉J = h̄UχRPA
J dJ, (2)

where

χRPA
J = (I − UχJη)−1χJ.

Moreover, we can also determine the free energy by per-
forming a Legendre transformation βF [〈M〉J ] = U−1〈M〉†J ·
J − ln(Z[J]) on the partition function which, up to quadratic
order in the deviation �〈M〉J ≡ 〈M〉J − 〈M〉0 and without an
additive constant, is

βF [〈M〉J ] = 1

2h̄U 2
[�〈M〉J ]† · (

χRPA
0

)−1 · �〈M〉J . (3)

The susceptibility χRPA
0 is evaluated in the absence of the

source field, J = 0. From here on, we assume that the system
is in a homogeneous state, for which the mean field values

of the boson fields are given by 〈Mr
k,n〉0 = 〈Mr

0,0〉δk,0δn,0.

As a consequence, the self-energy, the Green’s function, and
the susceptibility matrix χ0 are all diagonal in momentum
and frequency space. Due to a nonzero self-energy, the
Hamiltonian gets renormalized, such that

h̄G−1 = (μ + ih̄ωn)I − H0 − � ≡ (μ + ih̄ωn)I − Hren,

where H0 is given by the first term in Eq. (1). Assuming
a (renormalized) Hamiltonian, which may be diagonalized
by using the unitary operators Uk, such that U†

kHkUk =∑
α I (α)ε

(α)
k , where I (α) = diag(δα,1,δα,2,δα,3,δα,4) and ε̃

(α)
k =

ε
(α)
k − μ, the susceptibility can be written as16

χ
r,r ′
k (ih̄�n) = 1

N

∑
p,α,β

nF

(
ε̃

(α)
p+k

) − nF

(
ε̃

(β)
p

)
ε̃

(α)
p+k − ε̃

(β)
p − ih̄�n

T
r,r ′;α,β

p+k,p ,

T
r,r ′;α,β

p+k,p = −1

4
Tr[P rUp+kI

(α)U†
p+kP

r ′UpI
(β)U†

p],

where �n are bosonic Matsubara frequencies and nF (x) =
1/(eβx + 1) is the Fermi distribution function. Notice that the
overlap between the electron and hole wave functions is taken
into account through the term T

r,r ′;α,β

p+k,p .

III. NUMERICAL RESULTS

Next, we investigate the possible instabilities by consid-
ering the static susceptibility χk(0). To evaluate the latter,
one needs to perform a sum over all momenta in the
Brillouin zone. We proceed by dividing the Brillouin zone
into an N × N mesh, which implies that the sum in the
expression for the susceptibility has N2 terms. The instability
condition for repulsive interactions requires the interaction
strength U to exceed the critical value Uc defined by 0 =
det(χ−1

J=0 − Ucη) = det(ηχ−1
J=0 − Uc). This relation links the

critical interaction strength to the largest eigenvalue λk of the
matrix ηχk(0) by

U−1
c = max

k
λk ≡ λQ.

In Fig. 2 a density plot of the largest eigenvalue of the matrix
ηχk(0) is shown for a temperature of T = 0.01t ≈ 350 K.
One can distinguish four inequivalent peaks (bright regions
in Fig. 2). The one at k = 0 corresponds to a FM instability,

FIG. 4. (Color online) (a) The critical coupling required to enter the SDW regime (lower red line) and the FM regime (upper blue line) as a
function of temperature, starting from the metallic phase at small U. We observe that the SDW phase wins for all temperatures. (b) Zoom-in of
(a) for low temperatures. Both figures have been determined using a 10 000 × 10 000 mesh, for which convergence was eventually reached for
T/t > 0.5 × 10−3. (c) Same as (a), but calculated on a 700 × 700 mesh. When not enough points are taken into account, the two lines cross,
thus leading to an erroneous conclusion that a FM phase would be more favorable at low temperatures.
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FIG. 5. (Color online) Largest eigenvalue vs temperature and vs
chemical potential. The critical U scales as 1/λQ and will therefore
increase if the doping level is tuned away from μ = |t |.

while the other three, at nonzero k, correspond to the three
independent nesting vectors (see Fig. 1) and hence give rise to
a SDW. Although not expected, for all temperatures the SDW
peaks turn out to be higher than the peak corresponding to the
FM phase (see Fig. 3). However, this result depends heavily on
the size of the mesh: For low temperatures, the sum converges
slowly, and a wrong result can be inferred if N is not large
enough. Indeed, by considering a 700 × 700 mesh, we find that
a FM phase would set in at low temperatures [see Fig. 4(c)],
whereas the results for a finer mesh (10 000 × 10 000) indicate
that the true ground state is a SDW [see Figs. 4(a) and 4(b)].

For zero temperature and a doping value exactly at the VH
singularity, the critical coupling for both FM and SDW is zero.
As explained below, our formalism is not suited to determine
which state is more favorable. For finite temperatures, the
SDW phase transition has a lower critical U than the FM
one. Therefore, between the lower red and upper blue lines in
Figs. 4(a) and 4(b) we find a SDW phase. Above the upper blue
line, the system allows for a FM phase transition. The starting
point of our formalism is a homogeneous ground state, after
which we can determine the critical U that is needed to enter
a more ordered phase, such as the FM, SDW, or CDW phase.
To reach the regime above the upper blue line in Figs. 4(a)
and 4(b), one has to start from a SDW ground state and
subsequently determine if a phase transition to the FM phase
will occur. Since the SDW ground state is inhomogeneous, our
formalism is thus unable to determine the leading instability
when U is in this regime.

TABLE I. Numerical values of the critical coupling Uc (in units
of t) for FM and SDW phases calculated on a 10 000 × 10 000 mesh.

T/t (10−3) T (K) UFM
c USDW

c

0.025 0.87 1.0570 0.8444
0.05 1.74 1.6710 0.9954
0.075 2.6 2.0410 1.0776
0.15 5.2 2.5018 1.2184
0.25 8.7 2.6828 1.3322
0.5 17 2.8896 1.5118
1 35 3.1272 1.7288
2.5 87 3.5082 2.0920
5 175 3.8652 2.4444
10 350 4.3030 2.8878

If the system is tuned away from optimal doping, the VH
singularities will no longer lie on the Fermi surface and nesting
is reduced in general. This will result in a lowering of the peaks
in the maximal eigenvalue of the susceptibility and hence the
critical couplings will increase. This behavior is shown in
Fig. 5. The SDW peak is always higher than the FM one, but
the height decreases quite rapidly as a function of doping. The
interaction strength in graphene cannot be tuned externally.
Although at low doping the on-site Hubbard interaction is
estimated to be around U/t = 3.5,2,17 values of U for highly
doped graphene are, to the best of our knowledge, not yet
known, but should not be different from the low-doping values.
We therefore expect that a SDW phase should be observed
experimentally, in the regime of T and U parameters shown
in Fig. 5 (see also Table I).

IV. DISCUSSION AND CONCLUSIONS

Recently, a CDW has been experimentally observed in
twisted graphene bilayers doped at the VH singularity, but
it disappeared when the hopping parameter between the two
layers was set to zero.5 A CDW phase seems also to be
present for graphene grown on top of a superlattice of gold
intercalated clusters,7 and a superconducting phase has been
conjectured to occur for graphene heavily doped with Ca
and K on both sides.6 However, it is unclear which is the
appropriate theoretical model to describe graphene under these
circumstances, and for the conventional Hubbard model in
a single layer, a CDW can only occur for attractive on-site
interactions.

In conclusion, we have evaluated possible SDW and CDW
instabilities from a metallic phase for the honeycomb lattice
of a single layer of graphene doped at the VH filling. We
found that charge and spin degrees of freedom are decoupled,
and that CDWs occur for attractive interactions, whereas
SDWs occur for repulsive interactions. A peak in the spin
susceptibility at zero wave vector has also been found, although
precise calculations indicate that it is always subdominant with
respect to the ones appearing at the nesting wave vectors, thus
determining that the SDW instability must win over FM in the
neighborhood of the metallic phase. This finding contradicts
a previous result in the literature,10 and could only be reached
after a very careful and time-consuming computation on a
very large mesh. An interesting point is that the SDW phase
is expected to occur at rather high temperatures. This is not
very surprising, given that phenomena such as CDWs or the
integer quantum Hall effect, which usually occur at very low
temperatures, have already been detected at high temperatures
in graphene (T = 77 K for the former and room temperature
for the latter).7,18 We hope that our results may stimulate
further experiments to unveil the existence of a SDW phase in
heavily doped graphene.
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