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ac response of quantum point contacts with a split-gate configuration
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The alternating-current response of a quantum point contact (QPC) is numerically investigated using the
nonequilibrium Green function method combined with an effective mass theory. We found that the susceptance
of a QPC increases stepwise with increasing gate voltage, when the width of the quantization plateau in the gate
voltage-conductance curve is narrower than the width of the region where the conductance changes gradually. We
also show that the height of a susceptance step is proportional to the ac-bias frequency. These simulation results are
in excellent qualitative agreement with recent experimental results. Moreover, we found that the transition from
capacitive susceptance to inductive susceptance occurs with increasing gate voltage. The capacitive-inductive
transition point is independent of the ac-bias frequency, but it does depend on the contact width.
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I. INTRODUCTION

Electronic transport in quantum point contacts (QPCs)
has been extensively investigated both experimentally and
theoretically1,2 because QPCs are not only test systems for
quantum transport but also potential candidates for basic
elements of future nanoscale devices.3,4 Although there has
been substantial progress for direct current transport in QPCs
over the last two decades, little attention has been paid to the
alternating current transport in QPCs.5–9 However, ac transport
in QPCs is critical for designing and manipulating ultrafast
operations in future QPC-based devices.10

Recently, Hohls et al. measured the admittance of QPCs
at frequencies up to 300 MHz.8,9 They formed a QPC in
a GaAs/AlGaAs heterostructure by using a pair of metallic
gate electrodes (known as the split-gate configuration). Their
admittance data for the QPC exhibits four remarkable charac-
teristic features: (i) the width of quantization plateaus seen in
the change of the real part of the admittance (ac conductance)
with increasing gate voltage is narrow and in most regions the
ac conductance increases gradually; (ii) there is no notable
difference between the ac conductance up to 300 MHz and
the dc conductance; (iii) the imaginary part of the admittance
(the susceptance) has a stepwise variation with respect to
the gate voltage; and (iv) the height of susceptance step is
proportional to the frequency ν of the ac-bias voltage. In
other words, the susceptance is a linear function of ν below
ν = 300 MHz. In addition to these four features, the following
problem remains to be resolved: (v) due to experimental
difficulties (e.g., the influence of parasitic admittance), it
has not been clarified whether the susceptance changes its
sign from positive (i.e., inductive response) to negative (i.e.,
capacitive response) at a certain gate voltage.

The ac response of QPCs has also been investigated
theoretically by Büttiker5 and Aronov et al.6 They succeeded
in reproducing some of the experimental observations of
features (i)–(iv). Büttiker predicted features (ii) and (iv)
using the Wentzel-Kramers-Brillouin (WKB) approximation.
Aronov et al. also showed features (ii) and (iv) by solving
the Boltzmann kinetic equation for QPCs in the form of a
smooth constriction whose dimension is much longer than the

wavelength (the adiabatic approximation). For point (v), they
argue that the inductive-capacitive transition does occur at a
certain gate voltage.

Although these theoretical studies succeeded in explain-
ing two characteristic features, (ii) and (iv), the theoretical
results are inconsistent with the other two features, (i) and
(iii). More specifically, the calculated conductance exhibits
well-developed conductance quantization and changes steeply
between plateaus in quite narrow voltage ranges. In addition,
although the calculated susceptance displays a stepwise
structure, it has sharp peaks at the step edges, which were not
observed in the experiment by Hohls et al. The appearance
of sharp peaks in previous theoretical studies implies that
the WKB approximation and the adiabatic approximation are
broken at the susceptance step edges, as Büttiker already
pointed out in Ref. 5. Thus, approaches besides the WKB
and adiabatic approximations are required to reproduce the
susceptance without the sharp peaks at the step edges. In
this study, we adopt Ando’s expression for a confinement
potential formed by a split gate and the nonequilibrium
Green function (NEGF) method as a numerical technique
to calculate the admittance of QPCs whose dimensions are
less than the electron wavelength.12 Based on these theoretical
tools and keeping in mind the conditions under which the
approximations used in previous studies5,6 are appropriate, we
attempt to reproduce the characteristic features (i)–(iv) and to
answer point (v).

This paper is organized as follows. In Sec. II, we briefly
describe the effective-mass Hamiltonian of a QPC (Sec. II A)
and give its discretized expression, which is required for
numerical calculations (Sec. II B). Next, we briefly review
the NEGF description of admittance (Sec. II C). Section III
reports the simulation results for the admittance of a QPC.
Finally, the paper is summarized in Sec. IV.

II. MODEL AND METHOD

A. Effective-mass theory of quantum point contacts

In this subsection, we briefly review the effective-mass
theory of QPCs.13 The effective-mass Hamiltonian in two
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FIG. 1. (Color online) (a) Confinement potential of a QPC with a
length Lx = 30a and a width Ly = 30a with a = 2.5 nm. The arrow
shows the direction of the electron flow. (b) Confinement potential
profile for −eVb/EF = 0.5 and � = Ly/4. The solid curves represent
the potentials at x/a = 0, ±5, and ±10 as a function of y.

dimensions is described by

H = − h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x,y), (1)

where m∗ is the effective mass of a band electron and
V (x,y) represents the confinement potential of a QPC. In
our simulation, we use Ando’s expression for a confinement
potential (Fig. 1),11 which is given by

V (x,y) = −eVb

2

(
1 + cos

[
2πx

Lx

])

+EF

∑
±

(
y − y±(x)

�

)2

� (y2 − y±(x)2), (2)

with

y±(x) = ±Ly

4

(
1 − cos

[
2πx

Lx

])
, (3)

where e(>0) is the elementary charge and Lx and Ly are,
respectively, the length and width of the confinement regions of
a QPC (−Lx/2 � x � Lx/2 and −Ly/2 � y � Ly/2). �(t)
represents the Heaviside step function [ i.e., �(t) = 1 for t > 0
and �(t) = 0 for t < 0]. � determines the curvature of the
confinement potential so that it modulates the contact width
of the QPC. EF is the Fermi energy of the electrodes, and Vb

is the potential barrier height at x = 0. The potential barrier
is induced around the center of the QPC for Vb < 0, while
Vb > 0 gives an attractive potential along the x axis. Outside
the confinement region, the potential is given by V (x,y) = 0
in the electrode regions (|x| > Lx/2 and |y| � Ly/2) and by
V (x,y) = ∞ for |y| > Ly/2.

For a fixed width Ly , the length Lx determines the length
scale of the system. The adiabatic limit used in the previous
studies corresponds to Lx � λF .5,6

The split gate mainly modulates the potential barrier
height Vb, and the curvature of the confinement potential �.
Therefore, we examine the Vb- and �-dependences on the
admittance of QPCs in Sec. III.

B. Discretized expression for the effective-mass Hamiltonian

To perform numerical calculations for the admittance of
the QPC, we discretize the effective-mass Hamiltonian in
Eq. (1) on a square lattice with a lattice constant a. Discrete
lattice points are located at x = na and y = ma, where n =
−(Nx − 1)/2, −(Nx − 3)/2, · · · , (Nx − 1)/2(=Lx/2a) and
m = −(Ny − 1)/2, −(Ny − 3)/2, · · · , (Ny − 1)/2(=Ly/2a).
Thus, the effective-mass Hamiltonian in Eq. (1) is mapped
onto a nearest-neighbor tight-binding Hamiltonian as

H =
∑
n,m

εnm|n,m〉〈n,m|

−
∑

〈n,m;n′,m′〉
t(|n,m〉〈n′,m′| + H.c.), (4)

where t = h̄2/2m∗a2 is the hopping energy and εnm = 4t +
Vnm is the onsite energy. The confinement potential in Eq. (2)
is also discretized as

Vnm = −eVb

2

(
1 + cos

[
2πn

Nx − 1

])

+EF

∑
±

(
m − y±,n

�/a

)2

�
(
m2 − y2

±,n

)
, (5)

where

y±,n = ±Ny − 1

4

(
1 − cos

[
2πn

Nx − 1

])
. (6)

In this paper, we focus on the QPC formed in a
GaAs/AlGaAs heterostructure with electron density ne = 5 ×
1011 cm−2. The lattice constant is chosen to be a = 2.5 nm14

and Ly = 30a (Ny = 31), both fixed throughout this study.
The hopping parameter is estimated to be t ≈ 90 meV using
a typical effective mass of an electron in AlGa/AlGaAs
heterostructures, m∗ = 0.067me, where me is the free electron
mass. A typical Fermi wavelength (Fermi energy) of electrons
in AlGa/AlGaAs heterostructures is given by λF = 35 nm
(EF = 20 meV). Thus, λF is much longer than the channel
length Lx in our simulation system (Lx 	 λF ). This is
opposite to previous theoretical studies.5,6

C. Nonequilibrium Green function method

In this subsection, we briefly describe the NEGF method
for ac transport. It has been successfully applied to various
mesoscopic15,16 and nanoscale systems.17–21 Within the linear
response approximation with respect to the amplitude of the
ac-bias voltage Vβ , the electric current flowing from the QPC
to the left (α = L) or right (α = R) lead is expressed by

Iα(t) = Re[Iα(ω)e−iωt ] (7)
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with

Iα(ω) =
∑

β=L,R

Yαβ(ω)Vβ. (8)

Here, ω is the ac-bias frequency and Yαβ(ω) is the admittance
between the α- and β-leads; the admittance consists of two
parts associated with the conduction current Y c

αβ(ω) and the
displacement current PαY d

β (ω):

Yαβ(ω) = Y c
αβ(ω) + PαY d

β (ω), (9)

where Pα are the partition coefficients. These coeffi-
cients should satisfy the conditions

∑
α Pα = 1 and Pα =

−∑
γ Y c

αγ (ω)/
∑

γ Y d
γ (ω), which are derived from cur-

rent conservation [
∑

β Yαβ(ω) = 0] and gauge invariance
[
∑

α Yαβ(ω) = 0], respectively.22,23 These two requirements
give a relation between the admittance elements:

Y (ω) ≡ YLR(ω) = YRL(ω) = −YLL(ω) = −YRR(ω). (10)

The conductance [the real part of Y (ω)] is an even function with
respect to ω, and it is always positive, whereas the susceptance
[the imaginary part of Y (ω)] is an odd function with respect to
ω and it can be both positive and negative. In our convention for
the sign of the phase difference between the current and the ac-
bias voltage, positive and negative susceptances, respectively,
indicate inductive and capacitive susceptances. Note that this
convention is opposite to that commonly employed in electric
circuit theory.

The conduction current admittance Y c
αβ (ω) and the displace-

ment current admittance Y d
β (ω) are expressed within the NEGF

formulation under the wide-band limit, where the energy-
dependent self-energy is replaced with the energy-independent
self-energy: �α(ε) → �α(EF).12 The conduction-current ad-
mittance Y c

αβ(ω) is expressed by

Y c
αβ(ω) = 2e2

h

∫ ∞

−∞
dε

fα(ε) − fα(ε + h̄ω)

h̄ω
Tαβ(ε,ω), (11)

where fα(ε) is the Fermi-Dirac distribution function of the
α lead, and the factor 2 in Eq. (11) is the spin degrees of
freedom. Tαβ(ε,ω) is the effective transmission function under
an ac-bias voltage with frequency ω, which is given by

Tαβ(ε,ω) = Tr[G(ε + h̄ω)�β G†(ε)�α]

− iδαβTr[G(ε + h̄ω)�α − �α G†(ε)]. (12)

Here, G(ε) = [(ε + iη)I − H − ∑
α �α]−1 is the retarded

Green function, where η is a positive infinitesimal and I is
the identity matrix. H is the matrix representation for the
discretized effective-mass Hamiltonian (4) in the confinement
region of a QPC (|x| � Lx/2, |y| � Ly/2). The self-energy
due to the α lead can be analytically expressed as13

�α(EF ) =
Ny∑
l=1

EF − εl −
√

(EF − εl)2 − 4t2

2
ulu

†
l . (13)

Here, εl and ul are, respectively, given by

εl = −2t cos
πl

Ny + 1
+ 4t. (14)

and

ul,m =
√

2

Ny + 1
cos

πl

Ny + 1
m, (15)

where m = −(Ny − 1)/2, −(Ny − 3)/2, · · · , (Ny − 1)/2.
The level broadening function �α is obtained from the

relation �α = −2Im�α . In the dc limit (ω → 0), the con-
duction current admittance expression in Eq. (11) reduces to
the Landauer formula for dc transport.13 On the other hand,
the displacement current admittance Y d

β (ω) is described by

Y d
β (ω) = 2e2

h̄

∫ ∞

−∞
dε[fβ(ε) − fβ(ε + h̄ω)]Y d

β (ε,ω), (16)

where the energy-resolved admittance Y d
β (ε,ω) is expressed

by

Y d
β (ε,ω) = −iTr[G(ε + h̄ω)�β G†(ε)], (17)

in terms of Green functions. The displacement current admit-
tance in Eq. (10) vanishes, Y d

β (ω) = 0, in the zero-frequency
limit. In the NEGF formalism combined with the current
partition of Eq. (9),23 the displacement current admittance
vanishes when no electrons transfer between a lead and the
QPC, i.e., Y d

β (ω) = 0 for �β = 0. This means that only the
charge accumulation due to the electron transfer is taken into
account in this treatment, while the accumulation due to the
long-range Coulomb interaction is not. This treatment is valid
in the limit of weak Coulomb interactions, such as considered
in the present work. On the other hand, when effects of the
long-range Coulomb interaction in the admittance are not
negligible, discussion of displacement current, taking into
account a solution of the Poisson equation(or a geometrical
capacitance as a simplified representation),24 is necessary,
instead of the current partition as described in Eq. (9).

In our numerical simulation, the Green functions were
calculated using a recursive method.25

III. NUMERICAL RESULTS

In this section, we present the numerical results for the
ac response of the QPC obtained by the NEGF simulation.
As mentioned in Sec. II A, the split-gate voltage modulates
the potential barrier height Vb and the potential curvature
� of the confinement potential in Eq. (2). In Sec. III A,
we discuss the Vb dependence of the ac response of the
QPCs by comparing our simulation results with experimental
results and previous theoretical results. In Sec. III B, we
explain the � dependence of the ac response of the QPC,
focusing particularly on the transition between the capacitive
susceptance and the inductive susceptance.

A. Barrier-height dependence of ac response

Figures 2(a) and 2(b), respectively, show the Vb-dependence
of the conductance and the susceptance of the QPC with
a fixed � = Ly/4 and Lx = 30a at zero temperature. As
seen in Fig. 2(a), the conductance of the QPC exhibits only
small and partially formed quantization plateaus, and changes
continuously in most of the region as a function of the height
of barrier potential. This is because the Fermi wavelength
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FIG. 2. (Color online) (a) Conductance and (b) susceptance of a
QPC as a function of the height of the potential barrier induced by
the gate voltage Vb. The solid, dotted, and dashed curves correspond
to ac-bias frequencies of ν = 100, 200, and 300 MHz, respectively.
Open squares in (a) denote the dc conductance. The inset shows
the ac-bias frequency dependence of the susceptance for susceptance
steps of Vb = 10 mV (circles) and −10 mV (triangles). The step edge
height is proportional to the ac-bias frequency in the low-frequency
regime that is shown in the inset.

λF of a GaAs/AlGaAs heterostructure is typically much
longer than the QPC length Lx in the present simulation
(see Sec. II B). This conductance behavior is consistent with
the experimental data obtained by Hohls et al.,8,9 whereas
it differs from previous theoretical results obtained under
the condition λF 	 Lx imposed by the WKB5 and adiabatic
approximations.6

In addition, there is no notable difference between the
conductances under ν = 300 MHz (solid curve) and the dc
conductance (open squares) in Fig. 2(a). This implies that the
ac-bias frequency, ν = 300 MHz, is sufficiently low to neglect
the frequency dependence of the conductance. This result
is consistent with experimental data8,9 as well as previous
theoretical results.5,6

As Fig. 2(b) shows, the susceptance also depends on
the barrier height Vb. Here, the solid, dotted, and dashed
curves correspond to ac-bias frequencies ν = ω/2π = 100,
200, and 300 MHz, respectively. The susceptance exhibits a
stepwise structure with respect to Vb. In contrast to previous
theoretical studies,5,6 the susceptances in Fig. 2(b) do not

exhibit sharp peaks at the step edges corresponding to van Hove
singularities. The unphysical susceptance peaks disappear due
to the wavelength of an electron flowing through the QPC
being much longer than the channel length of the QPC at
van Hove singularities with zero wave number k = 0. That
is, the WKB5 and adiabatic approximations6 are unsuitable
for describing the behavior of susceptance edges, as Büttiker
states in Ref. 5.

Another important phenomenon is dependence of the sus-
ceptance on the ac-bias frequency ν, which is in sharp contrast
with the conductance in Fig. 2(a). The inset of Fig. 2 shows the
ν dependences of the susceptance at Vb = 10 mV (circles) and
−10 mV (triangles). The susceptance at Vb = 10 mV increases
linearly with ν, whereas that at Vb = −10 mV decreases
linearly with ν. The linear dependence of the susceptance on ν

implies that 300 MHz is sufficiently low to neglect higher-order
components of the susceptance with respect to ν. The linear
dependence of the susceptance on ν implies that 300 MHz
is sufficiently low to neglect higher-order components of the
susceptance with respect to ν. This coefficient corresponds
to the emittance E, which was originally defined in terms of
the partial density of states.24,26,27 This is also consistent with
previous experimental observations.8,9 The difference between
the signs of the susceptances at Vb = ±10 mV is important in
connection with point (v) mentioned in the introduction. Thus,
our answer to the problem (v) is the same as the theoretical
arguments given by Büttiker5 and Aronov et al.6 As a result of
our work, we found from Fig. 2(b) that the inductive-capacitive
transition point is independent of the ac-bias frequency ν. The
question now arises: what does the IC transition point depend
on? In the next subsection, we show that it depends on the
curvature of the confinement potential.

B. Effects of confinement-potential curvature on ac response

The curvature of the confinement potential is expressed by
the parameter � in Eq. (2). Figures 3(a) and 3(b), respectively,
display the conductance and susceptance for � = Ly/4 (solid
curve), Ly/5 (dotted curve), and Ly/6 (dashed curve) for ν =
300 MHz, where Lx = Ly = 30a with a = 2.5 nm.

As Fig. 3(a) shows, the conductances decrease mono-
tonically with decreasing �. This means that the electron
transmission decreases with decreasing contact width. This
can be understood from the local density of states (LDOS) at
the center (x = 0) of the QPC. It is intuitively obvious that the
LDOS decreases with decreasing contact width, as shown in
the inset of Fig. 3(a). Due to the reduction in the LDOS, the
electron transmission decreases as � decreases.

Next, we focus on the � dependence of the susceptance,
particularly of the IC transition point. The emittance increases
with decreasing � for a fixed barrier height Vb, i.e., the split
gate voltage adds a capacitive contribution to the emittance
even when the geometrical capacitance is not taken into
account. If the geometrical capacitance is taken into account,
a stronger capacitive contribution to the emittance is expected
with decreasing �.28

The IC transition point moves toward higher Vb as �

decreases. However, the IC transition occurs immediately after
the conductance exceeds 2G0 for any value of �. This critical
conductance value corresponds to half the number of energy
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FIG. 3. (Color online) (a) Conductance and (b) susceptance of a
QPC with � = Ly/4 (solid curve), Ly/5 (dotted curve), and Ly/6
(dashed curve) as a function of the gate voltage. Here, the ac-bias
frequency is fixed at ν = 300 MHz.

bands of the electrode crossing the Fermi level EF = 20 meV.
In the present models, the conduction channels are almost
mutually independent, and the left and the right leads are
connected symmetrically. Therefore, we can consider the IC
transition to be similar to that in a double-barrier quantum
well. Since the emittance E is expected to behave as E ∝
R − T ,5,20 where R and T are the reflection and transmission
probabilities, respectively, the critical conductance value at
the IC transition is 2G0 irrespective of � and EF in the
present models. It should be noted, however, that in general
the critical conductance value depends on the Fermi level and
the electrode structure.

Finally, we show the dependence of admittance on the
height of the potential barrier for the QPC with Lx = 30a

(solid curve) and Lx = 50a (dotted curve) at � = Ly/6a,
Ly = 30a, and ν = 300 MHz in Fig. 4. Here, the increase
of the contact length corresponds to a smaller curvature of
the confinement potential along the direction of the electron
path through the QPC. As seen in Fig. 4(a), the conductance
quantization plateaus appear more clearly with increasing QPC
length, while the conductance transition becomes narrower. On
the other hand, the susceptance continues to show a stepwise
structure, although with inclined steps [see Fig. 4(b)]. This
inclination comes from the small increase in susceptance at Vb

corresponding to the step edges, which correspond to the van

0

-6

-12Im
[Y

] 
/ L

x
(1

0 
  G

  )
-6

0

FIG. 4. (Color online) Dependence of the gate voltage on (a) the
conductance and (b) susceptance of the QPC with Lx = 30a (solid
curve) and Lx = 50a (dotted curve). Here, the ac-bias frequency and
the potential curvature are fixed at ν = 300 MHz and � = Ly/6,
respectively. The left and right axes in (b) are shown on the
susceptance in the case of Lx = 30a and of Lx = 50a.

Hove singularities. It is worth noting that the behavior of the
susceptance for Lx = 50a is much closer to the one obtained
in previous theoretical studies,5,6 than that for Lx = 30a. This
is because the QPC length of Lx = 50a is comparable to
the Fermi wavelength,29 and therefore the approaches of the
previous studies are valid.

IV. CONCLUSION

We performed numerical simulations of the ac response of
a QPC using the NEGF method combined with a discretized
effective-mass Hamiltonian. We describe QPCs using the
confinement potential first proposed by Ando.11 We found that
the geometry of the QPC strongly influences both the dc- and
ac-response behaviors. In contrast to the ac-response behavior
of quantum wires with lengths longer than a typical electron
wavelength, the susceptance of QPCs increases stepwise while
the conductance changes gradually between the quantization
plateaus with changes in gate voltage, and the region of this
gradual change is broader than the plateau region. Moreover,
the susceptances calculated in this study did not exhibit sharp
peaks at the step edges corresponding to van Hove singularities
of the energy band structure of the electrodes, in contrast
with the sharp peaks observed in previous studies.5,6 We also
found that the QPCs undergo a transition from capacitive
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susceptance to inductive susceptance with increasing barrier
height of the confinement potential. The inductive-capacitive
transition point is independent of the ac-bias frequency, but it
is sensitive to the curvature of the confinement potential. Thus,
we succeeded in explaining characteristic features (i)–(iv) of
recent experimental data for a QPC formed in a GaAs/AlGaAs
heterostructure,8,9 and we predicted the IC transition of QPCs.
In addition, the simulation method used in this paper can be
widely applied to calculate the ac characteristics of various
mesoscopic and nanoscale systems in addition to a QPC
formed in a GaAs/AlGaAs heterostructure.
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