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Rashba-type spin accumulation near a void at a system edge
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We consider the spatial distribution of spin accumulation Sz near a void (edge void) located at a system edge.
The edge void is semicircular in shape with a radius R0 ≈ lso, the spin-relaxation length, and it is formed out of a
Rashba-type two-dimensional electron system in the diffusive regime. The nonuniform driving field provides the
essential condition, and diffusive contributions to the spin currents from spin polarizations provide the primary
impetus for the spin accumulation. The edge void reveals an underlying asymmetry of the bulk-void counterpart,
namely, a finite bulklike spin flow at the system edge. This bulklike spin flow gives rise to spin accumulation
when open boundary occurs. The bulklike spin flow is found to exhibit a similar spatial profile as that of Sz at the
system edge. This bulklike spin flow is expected to be a primary impetus for local spin injection at the sample
edge near the edge void when a local protrusion occurs. Spin orientation of the bulklike spin flow varies with the
locations on the edge-void boundary.
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I. INTRODUCTION

All-electrical generations and manipulations of spin po-
larization are the main goals of semiconductor spintronics.
Rashba spin-orbit interaction1 (RSOI) has been the key knob
for achieving this goal due to its gate-tuning capability.2–4

However, in the diffusive regime (lso � le), the RSOI’s
contribution to the edge-spin accumulation Sz is completely
quenched due to the linear-k dependence of the SOI.5–9 The
edge-spin accumulation is an essential feature of spin Hall
effect (SHE),10–27 and k, lso, and le are, respectively, the
electron momentum, spin-relaxation length, and mean-free
path. Although RSOI contributes to SHE in the mesoscopic
ballistic regime28,29 (lso < le and the system dimension L < lφ ,
the phase coherent length), it remains important to seek
for ways to restore the RSOI contribution to edge-spin
accumulation (or SHE) in the diffusive regime. Furthermore,
the edge-spin accumulation, if current induced, could lead to
spin injection into a region where the driving field is absent,30

even though great care must be exercised when the RSOI is
changed across the injection boundary.31

Effects of RSOI on SHE in the diffusive regime have been
obtained at two corners of an electrode-sample interface7,32

and in its competing interplay with the cubic-k Dresselhaus
SOI (DSOI).33 However, the former has the spin accumulation
restricted to within a lso region about the interface corners,
whereas the latter has the RSOI restricted to suppressing the
spin accumulations due to the cubic-k DSOI.21,22 Seeking for
more flexible ways of RSOI’s contribution has prompted a
recent study on a nonuniform field SHE.34 A void in the bulk
of a Rashba-type two-dimensional electron system (2DES)
and its surrounding nonuniform driving field were found to
generate a spin accumulation Sz.34 The underlying physical
process is different from the conventional one. While the
conventional one is associated with a finite out-of-plane spin
current (SC) I z

ν , the key process in Ref. 25 is associated with
an in-plane SC Iμ

ν , and with its vanishing at the edge-void
boundary. Here, μ,ν ∈ {x,y}, and the superscript (subscript)
denotes spin (flow) direction.

Spin accumulation at a system edge, however, is even
more interesting in its own right,26,27 and also in its possible

connection with spin injection.30,31,35 It is legitimate then to
consider the spin accumulation near a void (edge void, see
Fig. 1) at a system edge to get a clear physical understanding of
the physical processes that contribute to the phenomenon, and
to make connection with spin injection. In this work, we find
out that the edge void (EV) reveals an underlying asymmetry,
namely, a bulklike spin flow (spin-current source in the next
section) at the system edge. This asymmetry feature does not
produce spin density Sz in a bulk void along the longitudinal
symmetry axis (y = 0),34 but it is the sole source for the Sz

at the sample edge in the case of an EV. Furthermore, we
show that the spatial profile of the bulklike spin flow is quite
similar to that of Sz at the system edge. As the bulklike spin
flow provides a primary impetus for Sz when open boundary
occurs, it will provide a primary impetus for spin injection
when an elongated protrusion occurs at the sample edge near
the edge void. The edge-spin-accumulation profile will thus
provide us a guide for the favorable sites for spin injection.
Detailed investigation of the specific spin retrieval scheme
will be carried out in future study.

A physical picture for the spin-accumulation processes is
presented below, and it starts from the finding in Ref. 25 that the
nonuniform driving field E(ρ) gives rise to an Edelstein-type
spin polarization34

SEd
‖ = −N0ατe/h̄ ẑ × E(ρ), (1)

for which spin is in plane and spatial variation at position ρ

is from the driving field. Here, N0, α, τ , and e are the energy
density per spin, RSOI coupling constant, mean-free time,
and charge magnitude, respectively. Already, SEd

‖ satisfies the
spin-diffusion equation, but the boundary condition for the SC
has not. The SC I i

n(S,J E
n ) contains terms related to the spin

polarization S and to the direct field-driving term JE
n , and is

given by22,34,36

I ν
n = −2D∇nSν − RνzνSz (ν̂ · n̂),

(2)
I z
n = −2D∇nSz −

∑
ν=x,y

RzννSν (ν̂ · n̂) + JE
n ,
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FIG. 1. An edge void of radius R0 is positioned at a system
edge. Asymptotic driving field is E0 and the origin of the coordinate
coincides with the void center.

where the gradient terms correspond to diffusive contributions
with D the diffusion constant, the Rνlm denotes the precession
of Sl into Sν when the flow is along m̂, and JE

n corresponds to
the direct effect of the driving field. Setting S = SEd

‖ leads to
zero I z

n but nonzero I ν
n . That the former SC is zero reflects

the quenching of the conventional RSOI’s contribution to
SHE, but the nonzero value for the latter SC shows that
diffusive contributions from in-plane spin polarization provide
the primary impetus for the SHE. A nonuniform driving field
opens up this unconventional contribution of RSOI to SHE.
The condition I ν,z

n = 0 at the EV boundary (n̂ normal to
the boundary) generates an additional �S including, most
importantly, a nonzero spin accumulation �Sz, as is evident
from the I ν

n expression in Eq. (2). The conditions that the spin
currents are zero at both the void boundary and the system
edge, where the symmetries are incompatible, mandates a
self-consistent procedure for the determination of the spin
accumulation. To this end, we have devised a semianalytical
approach, which provides us a transparent view of the physical
processes involved.

The SC given by Eq. (2) has D = v2
F τ/2, where vF

is the Fermi velocity, and Rilm = 4τ
∑

n εilnhn
kv

m
k , where

εiln is the Levi-Civita symbol, hk the effective RSOI field,
and the overline denotes angular average over Fermi sur-
face. The direct field-driving term in the SC is given by

JE
n = ∑

ν 4τ 2vn
k (hk × ∂hk

∂kl
)z eN0∇lϕ(r), where the nonuni-

form driving field E = −∇ϕ(ρ) = σ0 j has the electric current
density j satisfying the steady-state condition ∇ · j = 0
and the boundary condition jn = 0 for n̂ normal to the
boundary. Here, σ0 is the electric conductivity and E = E0x̂ −
E0(R0/ρ)2(cos 2φx̂ + sin 2φŷ) outside the circular edge void,
with ρ and φ being the coordinates originated from the EV
center.

In this paper, we calculate the spin polarization S in the
vicinity of the EV. Our result is in the form S = SB + �SEV.
The first term SB = SEd

‖ + �SB is the spin polarization for a
bulk circular void,34 where I i

n(SB,JE
n ) = 0 at the EV boundary.

JE
n ’s sole contribution to SC is in i = z and is exactly canceled

by that from SEd
‖ . Along the seemingly symmetry axis (φ =

0,π , or y = 0) of the bulk void, we find that the SCs I x
n (SB,0)

and I z
n (�SB,0) are nonzero for n̂ = ŷ. This hidden asymmetry

in SC is revealed when the circular void is positioned at a
system edge and is exhibited via its generation of an additional
�SEV.

The calculation of �SEV is carried out in a two-step
procedure. The first step produces �SE1, which, together with
SB , has I i

n(SB + �SE1,J E
n ) = 0 at the sample edge (y = 0).

This step is solved analytically and �SE1 is found to have
already incorporated an essential part of the spin accumulation
at the system edge, especially at the corners junctioning the
edge and the void boundary. The second, and final, step is to
find �SE2 such that, with �SEV = �SE1 + �SE2, S satisfies
the SC boundary conditions at both the void boundary and the
system edge. All the �S’s above for each step are solutions
to the spin-diffusion equation [Eq. (3)], but each has to satisfy
a designated SC boundary condition and each is driven by a
designated SC source term. Nonzero SC at the boundary or
edge in a step of our calculation will be treated as a SC source
term for the determination of �S in the next step.

We note, in passing, that the SC is used for the establishment
of a boundary condition for the spin-diffusion equation. A con-
ventional form of the spin-current operator J i

l = (1/4)(Vlσi +
σiVl) is appropriate for hard wall boundary,22,37,38 where
the kinetic velocity Vl = (1/ih̄)[x̂,H ], and spin unit of h̄ is
implied. As the boundary condition is applied to a region
much shorter in distance than lso from the boundary, the effect
of spin torque39,40 should be of secondary importance here.

In the following, we present our model and theory for
the nonuniform driving-field effects in the vicinity of an EV.
Numerical results and discussions are presented in Sec. III. A
conclusion is presented in Sec. IV.

II. MODEL AND THEORY

The spin-diffusion equation (SDE) for the case of nonuni-
form driving field has been derived in Ref. 25. For the case
of RSOI, the Hamiltonian Hso = hk · σ has the effective SOI
field hk = −αẑ × k, where σ denotes the Pauli matrices. The
SDE is given by

D∇2Sν − 
νν

h̄2 Sν + Rνzν

h̄
∇νSz − Mν0 · ∇

2h̄3 D0
0 = 0,

(3)

D∇2Sz − 
zz

h̄2 Sz − Rzxx

h̄
∇xSx − Rzyy

h̄
∇ySy = 0,

where S is in units of h̄.
The spin-charge coupling term is −Mν0∇D0

0 where

Mν0 = 4τ 2h3
k

∂nν
k

∂k , and ∇D0
0 becomes position dependent in

a nonuniform driving field. Here, D0
0 = 2N0eϕ(ρ), n̂k =

hk/hk , and Rzνν = −Rνzν = −2hF vF τ for RSOI. Further-
more, 
il = 4τh2

k(δil − ni
kn

l
k) are the D’yakonov-Perel’ (DP)

spin-relaxation rates for which 
xx = 
yy = 
zz/2 = 2h2
F τ

in the RSOI case.41 The boundary condition for the SDE, as
mentioned above, is given by I i

n = 0 for n̂ normal to either the
system edge or the EV boundary.

Our main goal is to solve for �SEV. Adding this term to
SB , the spin polarization for a bulk circular void, will give
us the total spin polarization S. The expression for SB has
been obtained analytically,34 but it is too lengthy and is not
presented here. An essential part of �SEV, namely, �SE1, is
the spin accumulation at the system edge, and it can be captured
by first applying our SC boundary condition to the edge at
y = 0 and for n̂ = ŷ. The remaining part of �SEV, namely,
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�SE2, is obtained by imposing the SC boundary conditions
at both the EV boundary and the sample edge. Thus, �SEV =∑

j=1,2 �SEj .
To address the SC boundary condition at the system edge,

we start from the SDE for �SEj (j = 1,2), which is obtained
from Eq. (3), given by

∇2�SEj
x − 4�SEj

x + 4∇x�SEj
z = 0,

∇2�SEj
y − 4�SEj

y + 4∇y�SEj
z = 0, (4)

∇2�SEj
z − 8�SEj

z − 4∇x�SEj
x − 4∇y�SEj

y = 0.

This equation has adopted a length unit lso = √
Dτso, where

τso = 2h̄2/(h2
F τ ) and hF is the RSOI field at the Fermi surface.

A Fourier transform solution to this SDE with respect to x is
facilitated by writing �SEj in the form

�S
Ej

i =
∫

dk
∑

q=1,2,3

η(j )
q (k) aiq eikxe−βqy, (5)

where index q denotes the qth mode of solution for the SDE
and e−βqy indicates that �SEj is localized near the y = 0 edge.
The eigenmodes, given by aiq , depend on k, and the amplitude
for each such mode is attributed to η

(j )
q (k).

By substituting �SEj into Eq. (4), we obtain

⎡
⎢⎣

−k2 + β2
q − 4 0 4ik

0 −k2 + β2
q − 4 −4βq

−4ik 4βq −k2 + β2
q − 8

⎤
⎥⎦

⎡
⎢⎣

axq

ayq

azq

⎤
⎥⎦ = 0, (6)

where β1 = √
k2 + 4, β2 =

√
k2 − 2 + 2i

√
7, and β3 =

β∗
2 . The eigenmodes are (ai1) = (1,g1,0), (ai2) = (g2,g3,1),

and (ai3) = (−g∗
2 ,g

∗
3 ,1) with g1 = ik/

√
k2 + 4, g2 = ik(3 +

i
√

7)/8, and g3 = ig2

√
k2 − 2 + 2i

√
7/k. The fact that �SEj

are real requires η
(j )
1 to be pure imaginary and η

(j )
2 (k) =

[η(j )
3 (−k)]∗. The amplitudes η

(j )
q (k) will be fixed by the SC

boundary conditions.
The boundary condition I i

n(SB + �SE1,J E
n ) = 0 at y = 0,

and n̂ = ŷ is obtained from Eq. (2), given by

[
− ∂

∂y

(
�SE1

x + �SB
x

) + 2αẼ
R2

0

x3

]
y=0

= 0,

[
− ∂

∂y

(
�SE1

y + �SB
y

) − 2
(
�SE1

z + �SB
z

)]
y=0

= 0, (7)

[
− ∂

∂y

(
�SE1

z + �SB
z

) + 2
(
�SE1

y + �SB
y

)]
y=0

= 0,

where Ẽ = eE0N0τ/h̄, and the term involving Ẽ is due to SEd
‖ .

Note that, if the terms in Eq. (7) that involve �SB and Ẽ were
to add up to zero for their respective equations, then �SE1

would be obviously zero. However, the contrary turns out to
be the case here. Therefore, by moving these �SB and Ẽ terms
to the right-hand side of Eq. (7), they become the SC sources
f

(1)
i for the �SE1 generation, as is given by

[
− ∂

∂y
�SE1

x

]
y=0

= f (1)
x ,

[
− ∂

∂y
�SE1

y − 2�SE1
z

]
y=0

= f (1)
y , (8)

[
− ∂

∂y
�SE1

z + 2�SE1
y

]
y=0

= f (1)
z ,

where f
(1)
i = −I i

y(SEd
‖ + �SB,JE)|y=0 for |x| � R0 and

f
(1)
i = 0 for |x| < R0. Analytical forms of f

(1)
i are obtained

to be

f (1)
x (x) = 4π

x
{−X2 + 2 Im[gZ2]} − 2αẼ

R2
0

x3
,

f (1)
y (x) = 0, (9)

f (1)
z (x) = −4π

|x| Im[Z1] + 4π{X0 + 2 Im[gZ0]}
+ 4π{−X2 + 2 Im[gZ2]},

where g = γ2/(γ 2
2 + 4), Xm = itxH

(1)
m (γ1|x|), and Zm =

tzH
(1)
m (γ2|x|). Here, H (1)

m (z) denotes the Hankel function of the

first kind, and the constants γ1 = 2i and γ2 =
√

2 + 2i
√

7. 34

Explicit expressions for tx and tz are not shown here, but they
were defined for the expression of SB in a bulk circular void.34

Specifically, both tx and tz depend linearly on α, the RSOI
coupling constant.

It is worth mentioning that f
(1)
i can also be interpreted as a

bulklike spin flow at the system edge, which gives rise to the
edge-spin accumulation, as is evident in Eq. (8). Furthermore,
f

(1)
i 	= 0 reflects an unexpected asymmetry. The symmetric

structure of a bulk circular void seems to suggest that all
currents, including charge and spin, flowing normally to the
symmetry axis (φ = 0,π ) must be zero. This is indeed the case
for the charge current, but is otherwise for the spin current. The
reason is related to the fact that SB

x and SB
z are odd in y, while

that for SB
y is even.34 As a consequence, according to Eq. (2),

there are diffusive contributions to f (1)
x and f (1)

z but not to
f (1)

y . Furthermore, there is an additional contribution to f (1)
z

through the spin precession of SB
y . Thus, we have nonzero f

(1)
i

except for i = y, as is shown in Fig. 2(a).
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FIG. 2. (Color online) Spin-current source terms f
(j )
i for j = 1,2

are plotted, respectively, in (a), (b), and with abscissas x and φ. In
(a), empty symbols denote f (1)

i , and solid lines denote SC I i
y at y = 0

when �SE1 is included. In (b), open symbols denote f (2)
i , and solid

lines denote SC I i
n for n̂ = ρ̂ and at ρ = R0 when the total S is used.

The amplitudes η(1)
q (k) for the q modes are determined by

Fourier transforming Eq. (8), via the integral 1
2π

∫
dx e−iκx , to

obtain

⎡
⎢⎣

β1 β2g2 −β3g
∗
2

β1g1 β2g3 − 2 β3g
∗
3 − 2

2g1 β2 + 2g3 β3 + 2g∗
3

⎤
⎥⎦

⎡
⎢⎢⎣

η
(1)
1

η
(1)
2

η
(1)
3

⎤
⎥⎥⎦ =

⎡
⎢⎣

f̃ (1)
x

0

f̃ (1)
z

⎤
⎥⎦ , (10)

and from it, the η(1)
q (k). Here, f̃

(1)
i (κ) is the Fourier transform

of f
(1)
i .

The amplitudes η(2)
q (k) for �SE2 can be calculated similarly.

However, we need to address both the SC boundary conditions
at the EV boundary and the system edge. The construction of
�SE1 has removed any further need of introducing the SC
source at the system edge. Yet, additional spin polarization
is generated because the SC from �SE1 does not satisfy the
boundary condition at the EV boundary. In effect, this gives
rise to a SC source at the EV boundary that, in turn, generates
�SE2. In this work, we find out that it is convenient to replace
the SC sources f

(2)
i at the EV boundary by an auxiliary SC

source f aux
i at y = 0, but located outside the system edge,

for |x| < R0. This approach is in line with the concept of
introducing image charges for the electrostatic problem where
the image charges that help satisfy the boundary condition for
the electrostatic potential must locate outside the region of
interest. Taking into account the parity of SB with respect to

x, the auxiliary SC sources f aux
i (|x| < R0) are written in the

form

f aux
x (x) = f aux

x0 +
∑

n=1,2,...

Ax,n sin

(
nπx

R0

)
,

f aux
y (x) = f aux

y0 +
∑

n=1,2,...

Ay,n cos

(
(2n − 1)πx

2R0

)
, (11)

f aux
z (x) = f aux

z0 +
∑

n=1,2,...

Az,n cos

(
(2n − 1)πx

2R0

)
,

where f aux
i0 = [f (1)

x (R0) x/R0, 0, f (1)
z (R0)] is to make sure

that f aux
i connects to f

(1)
i continuously to avoid the Gibbs

phenomenon in the Fourier transformation. With the Fourier
transformed auxiliary SC sources f̃ aux

i substituted into the
right-hand side of Eq. (10), the column vector on the left-hand
side of the equation becomes η

(2)
i . Thus, η

(2)
i and �SE2 are

expressed in terms of Aj,n. These Aj,n coefficients will then
be fixed by the SC boundary condition at the EV boundary
I i
n(ρ = R0) = 0, which is obtained from Eq. (2), given by[

− ∂

∂ρ
�SEV

x − 2 cos φ�SEV
z

]
ρ=R0

= 0,

[
− ∂

∂ρ
�SEV

y − 2 sin φ�SEV
z

]
ρ=R0

= 0, (12)

[
− ∂

∂ρ
�SEV

z + 2 cos φ�SEV
x + 2 sin φ�SEV

y

]
ρ=R0

= 0,

where φ ∈ (0,π ). Similar to Eq. (10), the contributions from
�SE1 in Eq. (12) will become the SC source f

(2)
i when it is

moved to the right-hand side of the equation. Solving the
equation by direct discretization leads us to the total spin
polarization S = SB + �SEV.

III. NUMERICAL RESULTS

Numerical examples presented in this section are organized
as follows. Figure 2 illustrates the effectiveness of our
approach. Figures 3 and 4 present our main results that,
respectively, spin accumulation Sz does occur near an EV
due to RSOI and the Sz exhibits similar spatial profile as the
bulklike spin flow at the system edge. The spin accumulation
Sz for voids of large (R0 � lso) and small (R0 
 lso) radii are
shown in Figs. 5 and 6. Finally, Fig. 7 presents the distribution
of the spin accumulation as probed by a scanning optical
beam.

We have assumed material parameters that are consistent
with GaAs. Specifically, the effective mass m∗ = 0.067m0,
with m0 the free-electron mass, electron density ne = 1 × 1012

cm−2, electron mean-free path le = 0.43 μm, the Rashba
coupling constant α = 0.3 × 10−12 eV m,2,42 and the spin-
relaxation length lso = 3.76 μm. Furthermore, the driving field
E0 = 40 mV/μm, and the EV structure radius R0 = 0.5lso in
Figs. 3 and 4.

The effectiveness of our self-consistent procedure is illus-
trated in Fig. 2. We plot the SC I i

n (solid curves) at the system
edge (y = 0) and at the EV boundary (ρ = R0) in, respectively,
Figs. 2(a) and 2(b). For comparison, we plot the SC source
terms f

(1)
i and f

(2)
i (open symbols) in Figs. 2(a) and 2(b),
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FIG. 3. (Color online) Out-of-plane spin densities �SB
z , �SE1

z ,
�SE2

z and spin accumulation Sz are plotted in (a), (b), (c), and (d),
respectively. Part (d) is the sum of (a), (b), and (c). The external
electric field E is applied along x̂ and the EV structure has a radius
R0 = 0.5 lso.

respectively. Our result that all the six solid curves, three each
for I i

y and I i
ρ , overlap on the zero abscissas shows that the SC

boundary conditions are satisfied remarkably. Furthermore, the
symmetries of the SC source are consistent with those derived
from SB , as has been discussed in the previous section for the
case of f

(1)
i .

Our main results are presented in Figs. 3 and 4. The
former is the out-of-plane spin polarization, while the latter
is the connection between the edge-spin accumulation and the
bulklike spin flow represented by f (1)

z . The spatial distribution
of out-of-plane spin densities �SB

z , �SE1
z , and �SE2

z are
shown, respectively, in Figs. 3(a), 3(b), and 3(c). The spin
accumulation Sz, given by the sum of these three out-of-plane
spin densities, is denoted by Fig. 3(d). It is clearly shown that
RSOI’s contribution to spin accumulation Sz can be turned
on locally by an EV due to the nonuniform driving field.
Basically, Figs. 3(a)–3(c) provide a pictorial way of viewing
the formation of the spin accumulation. Figure 3(a) shows
the spin density �SB

z that equals that for a bulk void.34 The
spin density is centered along the φ = π/2 direction and is

FIG. 4. (Color online) Spatial profiles of bulklike spin flow (SC
source) f (1)

z (triangles), edge-spin accumulation Sz (solid line), and
−∂Sz/∂y (dashed line) at the sample edge (y = 0) for the edge void
in Fig. 3. Numerical factors are introduced to facilitate comparison.

separated into two regions of opposite spin polarization: a
core region and an outer region. The core region concentrates
along the void boundary and has a radial thickness of about
0.3 lso ∼ 1.1 μm. The outer region has a much wider spatial
extent, in the form of a curved spin cloud, and having its center
located about a distance of one lso from the void boundary. This
spin density is driven by an in-plane SC of diffusive origin.
The SC boundary condition is satisfied at the void boundary
but not at the system edge. This results in a residual SC, or a SC
source term f

(1)
i [shown in Fig. 2(a)], at the system edge that

drives the generation of �SE1
z in Fig. 3(b). The spin density

�SE1
z concentrates mostly at the two corners of the EV with

a range of about 0.5 lso and with spin polarization opposite to
that of the core spin density in Fig. 3(a). �SE1

z also contains
a wide outer region of compensating spin cloud with much
smaller spin-density magnitude. The SC boundary condition,
however, is not satisfied at the void boundary. A residual SC,
or a SC source term f

(2)
i , then drives the generation of the spin

density �SE2
z . Although the spin density �SE2

z , in general, has
a smaller magnitude, it enhances the core region in Fig. 3(a)
at the void boundary. By our design, �SE2

z and f
(2)
i together

satisfy the SC boundary condition at both the system edge
and the void boundary. This approach has the advantage that
the self-consistently determined �SE2

z is of relatively small
magnitude, thus, the method is numerically more stable and
efficient. The total spin accumulation Sz, as shown in Fig. 3(d),
is the sum of the three spin densities.

Figure 4 compares the spatial profiles of the bulklike
spin flow f (1)

z [also shown in Fig. 2(a)] and the total spin

FIG. 5. (Color online) Total out-of-plane spin densities Sz for
edge voids of radii R0 = 0.2 lso and R0 = 7 lso in (a) and (b),
respectively.
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accumulation Sz at the sample edge. Both characteristic
behaviors of Sz, namely, Sz and −∂Sz/∂y, are included
for the comparison, where −∂Sz/∂y denotes the diffusive
contribution of Sz to spin current. To facilitate the comparison,
constant factors 2.5 and 0.5 are multiplied to Sz and −∂Sz/∂y,
respectively. The spatial variation of f (1)

z in Fig. 4 matches very
well with −∂Sz/∂y, except for the region x ≈ 2.5lso, where
their values are already quite small. Sz also exhibits a similar
spatial variation as f (1)

z , except again at around x ≈ 2.5lso,
when their respective values are small. The deviation comes
from �SE1

y , and the fact that it can contribute to I z
y is seen in

Eq. (7). We stress here that this close spatial correspondence
between the bulklike spin flow and the characteristic behaviors
of Sz in Fig. 4 collaborate the spin-current-driven nature of the
edge-spin accumulation Sz. It also sheds light on spin injection,
suggesting that the bulklike spin flow will be a driving agent
for spin injection. We note that f (1)

z is chosen to represent the
bulklike spin flow in the above consideration. The reason is
that, in Fig. 2(a), f (1)

y is zero and f (1)
x does not couple with Sz,

according to Eq. (7).
The magnitude of the out-of-plane Sz of EV is found to

decrease in both large (R0 � lso) and small (R0 
 lso) void
radii. These two regimes are shown in Fig. 5 as contour
plots of Sz, and in Fig. 6 as the plots of the Sz’s spatial
variations along two representing directions, namely, along
x and y, in Figs. 6(a) and 6(b), respectively. Comparing
with the intermediate-radius regime (R0 = 0.5 lso in Fig. 3),
three spatial modification features are found in Sz in both
the small-radius [R0 = 0.2 lso in Fig. 5(a)] and large-radius
[R0 = 7 lso in Fig. 5(b)] regimes. That the magnitude of Sz

at the EV boundaries drops drastically is clearly shown in
Figs. 6(a) and 6(b). The sizes of Sz clouds at the EV corners,
positive Sz in the small x − R0 region in Fig. 6(a), shrink

FIG. 6. (Color online) Spatial distribution of the total out-of-
plane spin densities Sz for edge voids in Figs. 3 and 4 along (a)
the x axis and (b) the y axis. The abscissas are the distances from the
void edge.

drastically from ∼ lso to ∼ 0.2–0.3 lso. Finally, the thickness
of the Sz at the void boundary, negative Sz in the small y − R0

region in Fig. 6(b), shrinks from ∼ 0.3 lso to less than 0.1 lso.
These modifications in Sz can be understood as diminishing
the effects of the nonuniform driving field for the case of large
void radius. In the small-radius regime, however, different
physical origins are at work for the Sz modifications. Since
the entire vicinity of the EV is within a lso, the SC source
terms f

(j )
i can exert their effects to the region and, thus, no

longer concentrated at the corner regions. This is supported,
in Fig. 5(a), by the shrinking of the positive Sz at the void
corners and the appearance of a positive Sz cloud around the
φ = π/2 direction. This positive Sz cloud has on its two sides
negative Sz clouds, which are understood as the compensating
spin cloud. Finally, this spin cloud configuration in Fig. 5(a)
is expected to vanish as R0 approaches zero. The integration
of the SC source terms f

(j )
i over the system edge (not shown)

decreases to zero as R0 → 0.
The spin accumulation Sz can be probed optically by Kerr

rotation. We plot, in Figs. 7(a) and 7(b), the net number of
out-of-plane spin within a circular probe as it is scanned,
respectively, along the directions φ = π/2 and 0. The radius
of the probe is the same as the void, and the distance between
the probe and the void centers is d. For φ = π/2, the net spin
number exhibits a negative dip at small-d region and a large
positive peak in the larger-d region. The former dip, located at
around d ≈ 0.5 lso, picks up the core region, and the latter peak,
located at around d ≈ R0 + lso, picks up the outer region of
the spin accumulation. The system edge has only a mild effect
on this curve, as is evident from the close resemblance of this
curve to that of a bulk void. In contrast, for the φ = 0 case, the

FIG. 7. (Color online) Net number of out-of-plane electron spins,
from Sz, within a circular probe area of the same radius as the EV
structure. The probe center is shifted by a distance d from the EV
center (a) along ŷ (φ = π/2) and (b) along edge (x̂, or φ = 0).
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positive peak in the small-d region and the negative dip in the
larger-d region reflects the sole effect of the system edge. The
former peak, located at around d ≈ lso − 1.3 lso, picks up the
spin accumulation at the corners of the EV, while the latter
dip, located at around d ≈ 2R0 + 0.8 lso, corresponds to the
situation when the probe moves out of the core region.

IV. CONCLUSIONS

In conclusion, we have studied in detail the physical
processes of the formation of spin accumulation near an edge
void and have demonstrated their spin-flow-driven nature. The
EV structure reveals an underlying asymmetry of the bulk
void, a nonzero bulklike spin flow on the y = 0 axis. The
spin accumulation consists of both bulklike (void-boundary)
and edgelike (system-edge) characteristics. Even though the
edgelike spin accumulation has comparable magnitude but

opposite signs compared with the bulklike spin accumulation,
the two spin accumulations occur in different spatial locations
so that the spin accumulation exhibits both characteristics
simultaneously. Moreover, the spin accumulation and the
bulklike spin flow correspond quite well in their spatial profiles
at the system edge. This bulklike spin flow is expected
to remain a driving agent for spin injection when a local
protrusion occurs at the system edge. The EV structure
could thus provide favorable sites for spin injection. These
results should be of interest to further research in all-electric
spintronics, both experimentally and theoretically.
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