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Cooling of cryogenic electron bilayers via the Coulomb interaction
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Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of
states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource
for carrier cooling via coupling to a nearby cold electron reservoir. Specifically, we consider the geometry of
an electron bilayer in a silicon-based heterostructure and analyze the power transfer. We show that, across a
range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon
heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when
phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform
coherent manipulations of single spins.
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I. INTRODUCTION

As researchers continue to probe smaller electronic devices
at lower temperatures, a detailed understanding of heat man-
agement applicable on such length and energy scales becomes
increasingly important. For example, recent experiments to de-
tect the spin resonance of a single electron1 and to perform fast
charge sensing in few-electron quantum dots2 are both limited
by heating effects. Other applications, such as the search for
the ν = 5/2 non-Abelian quantum Hall state, are expected to
require very low temperatures,3 making the development of
schemes for cooling such devices a necessary challenge.

The main problem is that, whenever current is applied to
a device to perform a measurement, the conduction electron
temperature increases due to Joule heating.4 In devices oper-
ating near room temperature, heat can be readily dissipated
through phonons, as the conduction electrons and lattice are
strongly coupled. However, as temperature is decreased, the
conduction electrons decouple from the lattice. The phonon
modes contribute less and less to cooling because the phonon
density of states decreases as energy is decreased.5 Hence, as
the system gets colder, it becomes more difficult to cool via
conventional means.

In addition to phonon cooling, systems can be cooled by
electron diffusion through the leads.6 However, in common
nanoscale devices, the leads extend hundreds of micrometers
from critical regions to regions that are well cooled. This large
distance scale limits the effectiveness of electron diffusion for
device cooling.6

Here, we investigate using the Coulomb interaction directly,
a strategy for cooling that remains largely unexplored. Electron
diffusion through grounded, close-proximity leads can effec-
tively cool samples to about 10 mK.7 However, experiments
with electrically sensitive structures, such as quantum dots,2

make this direct cooling impractical. To bypass this problem,
we consider placing a cold conductor near the hot conduction
electrons, using the Coulomb interaction for heat transfer. In
analogy with a macroscopic heat exchanger, the cold conductor
is a heat sink for the hot conduction electrons, enabling
cooling without electrical disruption to the experiment. It is
important to note that lowering the electron temperature of the
two-dimensional electron gas (2DEG) is of crucial importance
to quantum dot experiments, even though the dot electrons are

typically isolated from the leads. This is because increased
electron temperature results in thermal broadening in charge
sensing measurements,4 as well as phonon-mediated back
action in the dot.8

While it may seem that remote Coulomb interactions are not
strong enough to facilitate meaningful power transfer, several
recent experiments have shown that remote interactions can
indeed drastically affect electron relaxation. For instance, the
widely studied Coulomb drag (CD) effect9–11 involves the
transfer of momentum from one two-dimensional electron
gas to another via the Coulomb interaction, due to the
layers’ close proximity. Another example of the importance
of remote Coulomb interactions arises in the metal-oxide-
semiconductor (MOS) geometry, where it has been found that
device performance can be reduced due to interactions of the
conduction electrons with those in the gate when the distances
are too small.12–14

In this paper, we consider two parallel silicon 2DEGs,
separated by tens of nanometers. We make the simplifying
approximation that both 2DEGs are of zero thickness. Similar
devices have been implemented experimentally in the form of
silicon electron-hole bilayers.15,16 One of the layers is taken
to have a temperature on the order of tens to hundreds of
millikelvins; this is the active layer that we are interested
in cooling. The second, auxiliary layer is taken to be the
heat sink and is assumed to be at temperature T = 0 K.
As we mentioned, the auxiliary layer can be effectively
cooled through close-proximity grounded leads. Since the two
layers are electrically decoupled, this would not interfere with
electrical measurements on the active layer.

We study the temperature, separation, and carrier density
dependencies of the heat transfer and compare it to experimen-
tal results for heat dissipation due to phonons. The Coulomb
interaction is found to be competitive and even dominant
over phonons for a range of temperatures and densities, for
separations up to several tens of nanometers. Specifically, we
find that lowering the electron density enhances the power
transfer due to the Coulomb interaction but decreases the
power dissipation due to phonons.

This paper is organized as follows. In Sec. II we use
a formalism similar to that used for CD to formulate the
physical problem. Next, in Sec. III we find an expression
for the power transfer and discuss its asymptotic behavior
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in both near- and far-distance regimes. In Sec. IV we compare
the results of the previous sections to experimental results
for phonon-mediated cooling. Finally, in Sec. V we discuss
the implications of cooling nanosystems using carrier-carrier
interactions and suggests directions for future study.

II. FORMULATION OF THE PROBLEM

In this section, we describe the physical situation we will
consider throughout this paper: two parallel 2DEGs, one
serving as a heat sink for the other. We then review the standard
scattering formalism that is used to perform Coulomb drag
calculations. Using this Boltzmann transport formalism, we
write down an equation for power transfer, which we will
evaluate in subsequent sections.

The physical situation we consider here is very similar to
that which has been well studied in the CD literature.9–11,17

Specifically, we have a sample that contains two 2DEGs that
are parallel but spatially separated by some distance d. In
the case of CD, one of the 2DEGs is driven by a current,
while the other is not. Because of the current flow, the
distribution function in the active layer is out of equilibrium,
and the resulting charge fluctuations generate a response in
the auxiliary layer, mediated by the Coulomb interaction
between the layers. Although complicated by screening, the
basic picture is that the presence of the current in the active
layer “drags” electrons in the auxiliary layer, creating a net
voltage.

In our case, we do not consider the nonequilibrium effects
of a current flowing. Rather, we suppose that each layer is
internally at thermal equilibrium, but at different temperatures.
We will consider the active layer to be at a finite temperature
T , and the auxiliary layer (the heat sink) to be at T = 0 K.
Intuitively, we expect that energy should be transferred from
the active layer to the heat sink. Microscopically, this is due to
density fluctuations in the hot, active layer causing responses in
the cold, auxiliary layer, mediated by the Coulomb interaction.
Fortunately, we can borrow much of the initial setup of the
problem from the CD formalism. However, the evaluation of
the resulting expression is quite different because we focus
on energy transfer between 2DEGS of unequal temperature,
rather than momentum transfer due to a driving electric field.
In Fig. 1, we show an illustration of our proposed cooling
cooling scheme.

Since we will be working at very low temperatures (<1 K),
binary Coulomb collisions are the primary method of heat
transfer between layers. If we were to consider temperatures
T � 0.2EF /kB , where EF is the Fermi energy, we would
also need to take into account collective scattering effects,
the so-called plasmon enhancement.17 Hence, we consider
interactions that transfer energy from an electron in the active
layer 2DEG to an electron in the auxiliary layer 2DEG. Below,
we denote quantities for the active layer with a subscript 1,
and quantities for the auxiliary layer with a subscript 2. The
electrons involved in the interaction have initial (2D) momenta
(k1,k2) and final momenta (k′

1,k
′
2) = (k1 + k,k2 − k), where

k is the transferred momentum. This carrier-carrier scattering
falls into the category of distinguishable particle scattering
since events only occur between particles in different layers.
The formalism for treating such a scattering problem is well
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FIG. 1. (Color online) Illustration of our proposed cooling
scheme. Two 2DEGs, an active layer and an auxiliary layer, are
separated by a distance d . The active layer is involved in an electrical
experiment and is heated by hot electrons that enter the sample
through the measurement leads. The auxiliary layer is wired to the
dilution refrigerator and is held at its base temperature. Heat is
transferred from the active to the auxiliary layer via the Coulomb
interaction. For mathematical simplicity, in this work we take the
sample material, spacer, and both layers to be Si. Further, we
approximate the two 2DEGs to have zero thickness.

known,18 and the power transfer is shown in appendix A to be

P = 16A3

(2π )6

∫
d2k1d

2k2d
2kE�, (1)

where A is the sample area, E is the transfer energy for an
individual event, and � is the scattering rate. In the next section,
we evaluate Eq. (1) using the Thomas-Fermi approximation to
describe screening (which in this context is equivalent to the
random phase approximation approach taken in Ref. 17).

III. RESULTS

In this section, we evaluate Eq. (1) using some standard
methods incorporated into the calculation of CD. However, the
resulting expression is quite different, so we work through its
derivation in Appendix C. We set the temperature of the active
layer to T , the temperature of the auxiliary layer to absolute
zero, the Fermi level of the active layer to EF , and the Fermi
level of the auxiliary layer to EF /x, where x = n1/n2, the
ratio of carrier densities between active and auxiliary layers.
The power transfer is then

P

A
= E4

F

64h̄

(
ε0εb

q2

)2 ∫
dη

(
η

sinh(η/η0)

)2

Y (η,ζ0), (2)

where

Y (η,ζ0) =
∫ ∞

0
dζ

ζ

η3
[coth (ζ/ζ0) − 1]

×Re(
√

2(2 + ζ )η2 − η4 − ζ 2

−
√

2(2 − ζ )η2 − η4 − ζ 2)

×Re

[√
2

(
2

x
+ ζ

)
η2 − η4 − ζ 2

−
√

2

(
2

x
− ζ

)
η2 − η4 − ζ 2

]
, (3)
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FIG. 2. (Color online) The dimensionless function Y (η,ζ0)
[Eq. (3)] plotted vs η for various values of ζ0 and with layer
densities n1 = n2. Here, η = k/kF is the scaled momentum and
ζ0 = kBT /EF is the characteristic magnitude of energy fluctuations
due to temperature. The function follows a power law for both low
and high η, with a maximum occurring for an intermediate η, which
we denote as η∗.

and the dimensionless parameters are ζ ≡ E/EF , η ≡ k/kF ,
ζ0 ≡ kBT /EF , and η0 ≡ 1/(kF d), with kF = √

2m∗EF /h̄ the
Fermi momentum. Here, the η/ sinh(η/η0) term is due to
the interlayer Coulomb interaction [Eq. (A5)], while the
distribution functions give rise to Y (η,ζ0).

The function Y (η,ζ0) is plotted in Fig. 2, where it is shown
that Y is a peaked function in η varying as a power of η on
either side of the peak. We define η∗ to be the location of
the peak and note that η∗ ≈ ζ0. Physically, Y (η,ζ0) tracks the
availability of energy fluctuations corresponding to a particular
momentum transfer k = ηkF and temperature kBT = ζ0EF .
If η < η∗, Y is limited by the Fermi-Dirac distributions that
govern the occupation of states in each 2DEG. For η > η∗, Y

is instead constrained by the temperature difference between
the 2DEGs.

From Eq. (2), we see that the Coulomb potential causes η to
be cut off at approximately η0. Hence, there are two asymptotic
regions of interest: when η0 � η∗ and when η0 	 η∗. In the
first region, the Coulomb potential cuts off the integration
over η well before η∗, which corresponds to large separations
between 2DEGs. Here, the separation distance limits the mag-
nitude of the momentum transfer, which in turn limits power
transfer. For η0 	 η∗, the Coulomb interaction truncates the η

integration after η∗, corresponding to small separation. In this
regime, Y is already rapidly decreasing, so the power transfer
is instead mainly constrained by the temperature difference
between the 2DEGs. The crossover between these two regions
occurs when η0 ≈ η∗ ≈ ζ0, corresponding to a separation of
d ≈ EF /(kF kBT ).

In Appendix D, we work out the asymptotic forms for
power transfer. We consider the specific case of equal-density
2DEGs, when x = 1. In the large-separation regime when d 	
EF /(kF kBT ), we find

P

A
∼ kFh̄5

512m∗3

(
ε0εb

q2

)2
kBT

d5
[8.3 + 13.0 ln (kF d)], (4)

where we use ∼ to denote asymptotic equivalence. For the
short-distance limit where d � EF /(kF kBT ), we have

P

A
∼ h̄

128EF m∗

(
ε0εb

q2

)2
k4
BT 4

d2

×
[

0.46 − 1.32 ln

(
kBT

EF

)
− 0.81 ln (kF d)

]
. (5)

Hence, up to logarithmic corrections, P/A ∝ T/d5 for large
distances and P/A ∝ T 4/d2 for small distances, which can be
qualitatively understood as follows. At low temperatures (T �
kBEF ), it is reasonable to assume that energy fluctuations
are small and concentrated about the Fermi level, so that
the transfer momentum obeys k � kF . Expanding Eq. (3) for
small η, while working in the large-separation regime where
η � η∗, we find that

Y (η,ζ0) ∝ ζ0η
2. (6)

Here, the scaling is determined by the Fermi-Dirac distribu-
tions limiting the power transfer. Likewise, if we work in the
small-separation region where η 	 η∗, we find

Y (η,ζ0) ∝ ζ 4
0

η
, (7)

where the scaling is now determined by the layer temperature.
In these limits, since the Coulomb interaction sets the scale of
η ∝ η0, we can easily see the rough dependences (neglecting
the logarithmic corrections) via power counting in Eq. (2).
Figure 3 shows the numerical evaluation of Eq. (2) as a function
of separation, clearly demonstrating both distance regimes.

IV. COMPARISON WITH COOLING DUE TO PHONONS

In this section, we compare Coulomb-mediated cooling to
experimentally measured energy dissipation due to phonons
at low temperatures. In silicon-based heterostructures at low
temperatures, two types of phonon coupling are impor-
tant: acoustic phonons governed by a deformation potential
coupling19 and the Pekar coupling.20 Pekar phonons arise
from the sharp electrostatic confinement potentials present in
heterostructure devices, such as quantum wells, and hence are
not present in bulk samples.20 They also share a characteristic
T 3 dependence with piezoelectric phonons,20 making them
especially important in low-temperature experiments with
nonpolar materials, such as few-electron quantum dots in Si.

Indeed, both deformation potential and Pekar phonons have
been experimentally observed in silicon-based heterostruc-
tures at low temperature.6 The characteristic temperature
dependence for deformation potential coupling is T 5,19 so for
very low temperatures we expect Pekar phonons to dominate,
while for higher temperatures deformation potential phonons
become more important.
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FIG. 3. (Color online) Calculated values for the power per unit
area P/A transferred via the Coulomb interaction versus separation
[Eq. (2)]. Here, the sheet density is 4 × 1011 cm−2 in both layers, the
temperature of the active layer is T = 100 mK, and the temperature
of the auxiliary layer is 0 K. As can be seen by the dashed lines,
the power transfer varies as approximately 1/d2 at small distances
and 1/d5 at large distances. The crossover length scale occurs when
d ≈ EF /(kF kBT ).

As established in Eq. (5), for small separations the power
transfer to the auxiliary layer via the Coulomb interaction
varies as T 4. Whether or not this Coulomb cooling is larger
than phonon cooling over a given temperature range depends
on the numerical magnitude of Eq. (2), which we now
compute. We compare Coulomb cooling to experimental
measurements of phonon-mediated cooling in Ref. 6. There,
it is found that the power dissipation due to phonons is
Pph/A = aT 3 + bT 5, where a = 2.2 × 10−8 W K−3 cm−2

and b = 5.1 × 10−8 W K−5 cm−2. The structure used is a
silicon MOS inversion layer, with dielectric thickness 200 nm
and carrier density 5.4 × 1011 cm−2.

It is known that the phonon couplings depend on the
electron density, with P ∝ n−3/2 for the deformation poten-
tial coupling.19 Pekar phonons have both an explicit n−1/2

dependence and a dependence on the electric field in the
2DEG of F 2.20 Since in a 2DEG F ∝ n,21 Pekar phonons
scale as P ∝ n3/2 in total. By comparison, Eq. (5) tells us that
for equal density 2DEGs, Coulomb power transfer varies as
P ∝ 1/n.

Typically, in an experiment the density is fixed by desired
electronic properties (for instance, the ability to pinch off cur-
rent with depletion gates). For low-temperature applications
that attempt to reach few-electron regimes, it is desirable to
have a low density. It is therefore important to determine the
dependence of power transfer on the density n. Figure 4 shows
the effect of varying the layer density on the power transfer,
for three different layer separations at constant temperature
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FIG. 4. (Color online) Calculated values for the power per unit
area P/A transferred between an active (T = 50 mK) and a heat
sink (T = 0 K) 2DEG via the Coulomb interaction as a function of
the layer density at three different values for the separation between
layers. Here, the densities of both layers are identical. For comparison,
P/A due to phonons from experimental data in Ref. 6, scaled for
changing density, is shown as a dotted line.

T = 50 mK. As expected, the Coulomb power transfer is
greatest in the case of small density, making it especially
pertinent for few-electron experiments.

It is important to note that our formalism for static screening
is only valid when the transfer momentum obeys k < 2kF ,21

which means that we cannot make the density too small. The
Coulomb interaction limits the transfer momentum to k � 1/d.
Hence, setting k = 1/d for d = 10 nm corresponds to n >

0.79 × 1011 cm−2. Another constraint on low-density 2DEGs
is the metal-insulator transition, which occurs for sufficiently
low densities. In silicon MOS structures, the critical value
of density is known to be around nc ≈ 1 × 1011 cm−2.22

More recently, calculations for dopantless Si/SiGe de-
vices predict that this value can be much lower, about
nc ≈ 2 × 1010 cm−2.23

In Fig. 5, we plot the temperature dependence of the
power transfer per unit area P/A for several separations
and compare with the power dissipation due to phonons.
There, we fix the carrier density to be n = 1 × 1011 cm−2

for both layers. One sees that for small separations (less than
20 nm), Coulomb-mediated power transfer exceeds phonon
power dissipation over a potentially wide temperature range
(roughly up to 300 mK for a 10 nm separation). For very
low temperatures, phonons again become more important than
Coulomb cooling. This is because the low-temperature phonon
cooling occurs through the Pekar mechanism and scales as T 3,
while Coulomb cooling scales as approximately T 4.
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FIG. 5. (Color online) Values for the power per unit area scaled
by T 4, P/(AT 4), transferred via the Coulomb interaction between
two 2DEGs versus the temperature of the active layer at three
different values for the separation between the layers. The auxiliary
layer temperature is set to absolute zero. For comparison, the scaled
P/(AT 4) due to phonons from experimental data in Ref. 6 is shown.
The density of both layers is 1 × 1011/cm2.

V. DISCUSSION

The understanding of relevant heat dissipation mechanisms
at low temperatures in electronic devices is an important
problem, especially as spin-based, few-electron devices ma-
ture. In this paper, we considered a geometry consisting of
parallel 2DEGs in silicon and calculated the expression for
power transfer between two layers at temperatures T > 0
and T = 0 respectively, in the approximation of Thomas-
Fermi screening. We then presented analytical results for
the asymptotic regimes of small and large separations. We
showed that in this geometry, power transfer due to the remote
Coulomb interaction can be the dominant heat loss mechanism.
This Coulomb cooling is most effective at low densities,
making it especially important for experiments attempting to
access few-electron regimes.

There have been a number of studies of heat transfer be-
tween close bodies, including a semiclassical kinetic treatment
by Boiko and Sirenko24 and an electromagnetic formulation
by Volokitin and Persson.25,26 However, these are largely
interested in hot devices, where complicating features such
as plasma excitations are important. Further, as noted in
Ref. 25, there are discrepancies between this electromagnetic
formalism and Boltzmann transport approaches. More recent
work by Krüger, Emig, and Kardar extends the electromagnetic
formalism to arbitrary geometries with a focus on heat
transfer.27 It would be beneficial to compare the present work
to the electromagnetic treatments to attempt to address the
origin of any discrepancies.

While the results for two parallel 2DEGs are promising,
one could almost certainly engineer a better geometry for
optimizing heat dissipation. Indeed, the main reason for a
preliminary evaluation of the 2DEG-2DEG geometry was due
to its computational simplicity. An idea for a more effective
heat sink might be a standard MOS geometry or a top-gated
nanostructure. Due to the drastically higher density of states
in the metal, one could expect an enhanced power transfer.
However, screening would also be enhanced, so careful
calculations, similar to those presented in this paper, should be
done for that geometry. Also, studying the effects of high-k di-
electrics might be fruitful, since the power transfer scales as ε2

b .
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APPENDIX A: DERIVATION OF THE POWER
TRANSFER RATE

In this appendix, we briefly sketch the derivation of Eq. (1),
the formal expression for the power transfer between two
2DEGs, using the methods of Ref. 18. First, recall that
we are interested in the scattering of two particles with
initial (2D) momenta (k1,k2) and final momenta

(
k′

1,k
′
2

) =
(k1 + k,k2 − k). The transition rate � for the above process is
given by the balance equation

�(k1,k2; k′
1,k

′
2) = S(k1,k2; k′

1,k
′
2)

× [
f

(1)
k1

(
1 − f

(1)
k′

1

)
f

(2)
k2

(
1 − f

(2)
k′

2

)
− f

(1)
k′

1

(
1 − f

(1)
k1

)
f

(2)
k′

2

(
1 − f

(2)
k2

)]
, (A1)

where S is the transition rate given that the appropriate states
are available, f (1) is the Fermi-Dirac distribution function in
layer 1,

f
(1)
k =

[
1 + exp

(
Ek − EF

kBT

)]−1

, (A2)

where Ek = h̄2k2/(2m∗), EF is the Fermi level, m∗ is the
effective mass, and T is the temperature in layer 1, and f

(2)
k is

likewise the Fermi-Dirac distribution function in layer 2. Note
that here we restrict our attention to Fermi-Dirac distribution
functions, but Eq. (A1) remains valid even for nonequilibrium
distribution functions.

The first term in the square brackets of Eq. (A1) can be
understood as the particles starting with momenta (k1,k2) and
ending with momenta

(
k′

1,k
′
2

)
. The second term corresponds

to scattering from momenta
(
k′

1,k
′
2

)
to momenta (k1,k2). To

calculate the scattering rate S, we use Fermi’s golden rule:

S(k1,k2; k′
1,k

′
2) = 2π

h̄
|H |2 δ

(
Ek1 + Ek2 − Ek′

1
− Ek′

2

)
,

(A3)

where H is the interaction matrix element,

H = q

A
φ̃scr(k,d), (A4)
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and φ̃scr is the Fourier-transformed screened Coulomb inter-
action between layers. Defining the Thomas-Fermi screen-
ing wave vector kT F = 2m∗/(πh̄2)q2/(2ε0εb), the Fourier-
transformed screened Coulomb interaction between the layers,
calculated within the Thomas-Fermi approximation is17

φ̃scr(k,d) = kq

4k2
T F ε0εb

1

sinh(kd)
, (A5)

where we have assumed k � kT F . For clarity of presentation,
we present a self-contained derivation of this expression in
Appendix B.

Now that we have an expression for the scattering rate
between particular states, we obtain the power transfer between
the layers:

P = 16
∑

k1,k2,k

E� (k1,k2; k1 + k,k2 − k) , (A6)

where the factor of 16 is due to spin degeneracies of 2 and
valley degeneracies of 2 in each electron layer,28 and E =
Ek1+k − Ek1 is the transferred energy. Converting the sum to
an integral gives us Eq. (1).

APPENDIX B: THE SCREENED COULOMB POTENTIAL

In this appendix, we present a self-contained derivation of
the screened interlayer Coulomb potential within the Thomas-
Fermi approximation. Although this result can be obtained as
a special case of the random phase approximation result as
described in Ref. 17, assuming a static screening formalism
from the beginning results in a considerably more transparent
calculation. The technique we present here can also easily be
implemented numerically to treat more complex geometries.

To start, we consider placing an electron into one of the
2DEGs. This results in an external, unscreened potential
φext(r,z) due to the external electron, where r is the 2D
position within the plane of the 2DEG. The electron gas
in both layers can rearrange to screen this external charge,
resulting in an induced potential φind(r,z). The screened
potential that an electron in the other layer experiences is then
φscr(r,d) = φext(r,d) + φind(r,d), where we have assumed that
the two 2DEGs are separated by a distance d. Our objective is
to calculate φind, from which we can compute φscr.

We assume that our system is translationally invariant in
the plane parallel to the 2DEGs, which we define to be the x-y
plane. It is convenient to exploit this translational invariance
by taking a Fourier transform of the Poisson equation in the
x-y plane, yielding

[∂zε(z)∂z − ε(z)k2]φ̃ind(k,z) = −ρ̃ind(k,z), (B1)

where we denote the Fourier transform of a function f (r,z) as

f̃ (k,z) =
∫

d2rf (r,z) e−ir·k. (B2)

In Eq. (B1), ρind is the induced charge density, responsible for
the production of φind, and ε(z) is the dielectric function. In a
homogeneous medium, Eq. (B1) has the general solution29

φ̃ind(k,z) = 1

2kε0εb

∫
dz′e−k|z−z′ |ρ̃ind(k,z′), (B3)

so to find φind, we must calculate ρind.

To determine ρind, we first note that the total charge density
ρtot obeys

ρtot(r,z) = ρ0 + ρind, (B4)

where ρ0 is the charge density without an external charge
present, and we have neglected the small density contribution
from the external charge itself. The dispersion relation for the
electrons is given approximately by

E(k,r,z) ≈ h̄2k2

2m∗ − qφscr(r,z), (B5)

where −q is the charge on an electron. By using the functional
form of the Fermi-Dirac distribution, we can view charge
density as a functional of Fermi energy:5

ρind(r,z) ≈ ρ0 (EF + qφscr) − ρ0 (EF ) . (B6)

Now, assuming that qφscr � EF , to first order in φscr Eq. (B6)
is

ρind(r,z) ≈ −q2 dn0

dE

∣∣∣∣
EF

φscr, (B7)

where ρ0 = −qn0. For low temperatures, dn0/dE
∣∣
EF

≈
g(r,EF ), the local density of states evaluated at the Fermi level,
which might vary spatially. For our geometry with two 2DEGs
separated by a distance d, g varies only in the z direction:

g(z) = g2D [δ(z) + δ(z − d)] , (B8)

where g2D is the energy-independent two-dimensional density
of states.

Substituting Eq. (B7) into Eq. (B3), we find

φ̃ind(z) = − q2g2D

2kε0εb

{e−k|z|[φ̃ind(0) + φ̃ext(0)]

+ e−k|z−d|[φ̃ind(d) + φ̃ext(d)]}. (B9)

The external potential due to the external electron in the first
2DEG satisfies21

φ̃ext(k,z) = q

2kε0εb

e−k|z|. (B10)

Hence, evaluating Eq. (B9) for z = 0 and z = d leaves us
with a system of two linear equations. Solving gives Eq. (A5),
where we note that the Thomas-Fermi screening wave vector
kT F is defined to be twice what is typical for GaAs, due to
the extra valley degeneracy in Si, and we have assumed that
k � kT F .

APPENDIX C: CALCULATION OF THE POWER
TRANSFER

This appendix presents the derivation of Eq. (2). The cal-
culation begins similarly to those done in the case of Coulomb
drag.17 However, it proceeds quite differently because the
symmetry of the momentum transfer relevant to CD differs
from that of power transfer, which we consider here. Following
the CD literature,17 we seek to decouple the k1 and k2

integrals. First, it is conventional to split the energy-conserving
δ function in Fermi’s golden rule by introducing an integration
over the transfer energy. The relevant identity is17

δ(Ek1 + Ek2 − Ek1+k − Ek2−k)

=
∫

dE δ(E + Ek1 − Ek1+k)δ(E − Ek2 + Ek2−k). (C1)
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Next, note that Fermi-Dirac distributions at a common tem-
perature T satisfy the algebraic relationship for two energies
Ex and Ey :17

f (Ex)[1 − f (Ex + Ey)] = f (Ex) − f (Ex + Ey)

1 − e−Ey/(kBT ) . (C2)

A third useful algebraic identity is

1

1 − e−a

1

1 − e+b
− 1

1 − e+a

1

1 − e−b
= coth b − coth a,

(C3)

which is verified by using the definition of the hyperbolic
tangent. With these identities, it is tedious but straightforward
to show that Eq. (1) can be written as

P

A
= 16q2

h̄(2π )5

∫
d2k dE E|φ̃tot(k,d)|2I (k,E)J (k,E)

×
[

coth

(
E

kBT2

)
− coth

(
E

kBT1

)]
, (C4)

where

I (k,E) =
∫

d2k1δ
(
E + Ek1 − Ek1+k

)
× [

f (1)
(
Ek1

) − f (1)
(
Ek1 + E

)]
(C5)

and

J (k,E) =
∫

d2k2δ
(
E − Ek2 + Ek2−k

)
× [

f (2)
(
Ek2

) − f (2)
(
Ek2 − E

)]
. (C6)

Again, f (1) is the Fermi-Dirac distribution function of the
active layer and f (2) that of the auxiliary layer. We next make
the simplifying assumption that the carriers in the two layers
have the same effective masses but possibly different Fermi
levels. Assuming that the temperature is sufficiently low, we
also approximate the distribution functions as step functions at
the Fermi level, from which it follows that I (k,E) ≈ −J (k,E)
when the Fermi levels are identical.

We calculate I (k,E) within the effective mass approxima-
tion with a simple parabolic dispersion, E = h̄2k2/(2m∗), by
using Cartesian coordinates and integrating over k1, yielding

I (k,E) = m∗

h̄2k

√
m∗

2h̄2 Re(
√

Eβ −
√

Eα), (C7)

where m∗ is the (transverse) effective mass, Eα = EF − E0 −
E, Eβ = EF − E0, EF is the Fermi level of the active layer,
and

E0 = h̄2

2m∗

(
k

2
− Em∗

h̄2k

)2

. (C8)

It is now useful to switch to dimensionless coordinates, where
we define ζ ≡ E/EF and η ≡ k/kF , where kF = √

2m∗EF /h̄

is the Fermi momentum. Doing this gives

I = m∗

4h̄2

1

η2
Re(

√
2(2 + ζ )η2 − η4 − ζ 2

−
√

2(2 − ζ )η2 − η4 − ζ 2). (C9)

The calculation of J is very similar, except that the Fermi level
of the auxiliary layer is taken to be EF /x, where x = n1/n2 is

the ratio of carrier densities. Recall that we wish to consider
systems where T1 	 T2. Hence, for simplicity, we let T2 ≈ 0.
Introducing the parameters ζ0 ≡ kBT1/EF and η0 ≡ 1/(kF d)
and substituting Eqs. (A5) and (C9) into Eq. (C4) gives us

P

A
= E4

F

64h̄

(
ε0εb

q2

)2 ∫
dη

(
η

sinh(η/η0)

)2

Y (η,ζ0), (C10)

which is Eq. (2), where Y is defined by Eq. (3).

APPENDIX D: ASYMPTOTIC ANALYSIS OF HEAT
TRANSFER

In this appendix, we seek to obtain an accurate analytic
expression for Eq. (2) for both large [d 	 EF /(kF kBT )]
and small [d � EF /(kF kBT )] separations between the 2DEG
layers. In the following, we set the densities of the two 2DEGs
to be equal for simplicity. To, proceed, we first expand for small
momentum excitations about the Fermi level. Using this, we
work out the asymptotic form of Y [Eq. (3)] on either side of
its peak. Then we calculate the resulting integral in Eq. (2) and
derive formulas for asymptotic power transfer for both large
[Eq. (4)] and small [Eq. (5)] separations.

1. Asymptotic forms of Y

To begin, we calculate the asymptotic forms of Y . Since we
are at low temperatures, we may assume that the transfer mo-
mentum k � kF , the Fermi momentum. In this approximation,
we find that

Y (ζ,η0) ≈
∫ 2η−η2

0

ζ [coth(ζ/ζ0) − 1]

η3

4ζ 2η2

4−ζ 2/η2

+
∫ 2η+η2

2η−η2

ζ [coth(ζ/ζ0)−1]

η3
[2(2+ζ )η2−η4−ζ 2].

(D1)

The two limiting cases we consider are η � ζ0, correspond-
ing to the region well to the left of the peak in Y , and η 	 ζ0,
corresponding to the right of the peak. When η � ζ0, we make
the approximation that

coth(ζ/ζ0) ≈ ζ0 − ζ. (D2)

Using this, Eq. (D1) reduces to

Y (η,ζ0) ∼
η�ζ0

η � ζ0∼4ζ0 ln(4/η)η2. (D3)

When η 	 ζ0, we may take η 	 ζ , so

3ζ 2η2

4 − ζ 2/η2
≈ ζ 2η2. (D4)

In this limit, the second integral in Eq. (D1) does not contribute.
Evaluating the first integral, we find

Y (η,ζ0) ∼
η	ζ0

ζ 4
0

η

∫ ∞

0
dx(coth x − 1)x3, (D5)

which reduces to

Y (η,ζ0) ∼
η	ζ0

ζ 4
0

η

π4

120
. (D6)
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FIG. 6. (Color online) The rescaled function υ(θ ) [Eq. (D7)],
plotted versus the scaled coordinate θ = η/ζ0. Here, η = k/kF ,
the momentum transfer scaled by the Fermi momentum, and ζ0 =
kBT /EF . For small θ , υ takes on the expected asymptotic value
of 1. The curves essentially coincide until around θ � 1. This
enables us to treat υ as approximately independent of ζ0 before that
point.

Now that we have the asymptotic forms of Y on either side of
the peak, we may proceed to evaluate Eq. (2) in the limits of
η0 � ζ0 and η0 	 ζ0.

2. Power transfer in the limit of large separation

Next, we evaluate Eq. (2) in the large-distance limit, when
η0 � ζ0, which corresponds to d 	 EF /(kF kBT ). To do this,
we first define a scaled function υ:

υ(θ,ζ0) ≡ Y (θζ0,ζ0)

4ζ 3
0 ln[4/(θζ0)]θ2

, (D7)

which is just Y scaled by its asymptotic value in the region
where η � ζ0 as a function of the scaled coordinate θ ≡ η/ζ0.

We plot υ for various values of ζ0 in Fig. 6. The integral we
need to evaluate can be written as

�(η0,ζ0) ≡ 4ζ 6
0

∫ ∞

0
dθ

θ4 ln[4/(θζ0)]υ(θ,ζ0)

sinh2(θζ0/η0)
, (D8)

which is related to Eq. (2) by

P

A
= E4

F

64h̄

(
ε0εb

q2

)2

�(η0,ζ0). (D9)

Since we are in the region where η0 � ζ0, we can approx-
imate υ(θ,ζ0) ∼ 1. The integration can then be carried out
numerically, resulting in

�(η0,ζ0) ∼
η0�ζ0

ζ0η
5
0 (8.3 − 13.0 ln η0) , (D10)

which reduces to Eq. (4) when inserted into Eq. (D9).

3. Power transfer in the limit of small separation

Now, we evaluate Eq. (2) in the small-distance limit, when
η0 	 ζ0, corresponding to d � EF /(kF kBT ). We begin with
Eq. (D8), but unlike before we cannot assume that υ(θ,ζ0) = 1.
Instead, we note that from Fig. 6 υ is approximately indepen-
dent of ζ0 until some cutoff θ , θc � 1. Hence, we split the
integration region of � into two pieces at θc. For θ < θc, we
take υ to be independent of ζ0, and also

sinh(θζ0/η0) ≈ θζ0

η0
, (D11)

where this second approximation is valid since θ � θc �
η0/ζ0. For θ > θc, we calculate υ(θ,ζ0) according to the
asymptotic formula for Y in the limit of η 	 ζ0, given in
Eq. (D6). These approximations result in

�(η0,ζ0) ∼
η0	ζ0

4ζ 4
0 η2

0

∫ θc

0
dθ ln[4/(θζ0)]θ2υ(θ )

+ π4

120
ζ 6

0

∫ ∞

θc

dθ
θ

sinh2(θζ0/η0)
. (D12)

In the limit where ζ0 � η0 and with θc = 2.0, the result is

�(η0,ζ0) ∼
η0	ζ0

ζ 4
0 η2

0 (0.458 − 1.32 ln ζ0 + 0.182 ln η0) .

(D13)

In this evaluation, we picked ζ0 = 0.001 for the calculation
of υ in the region where it is approximately ζ0 independent.
Insertion of this result into Eq. (D9) gives Eq. (5), as
desired.
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