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Angular harmonics of the excitonic polarization conversion effect
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We suggest a phenomenological theory of the polarization conversion effect, an excitonic analog of the
birefringence phenomena, which is, however, observed in the photoluminescence rather than in the passing
light. The optical polarization response of a model system of electrically neutral quantum dots subject to the
magnetic field along the growth axis is calculated by means of the pseudospin method. All possible forms of the
polarization response are determined by nine different field-dependent coefficients, which represent, therefore, a
natural basis for classification of a variety of conversions. Existing experimental data can be well inscribed in this
classification scheme. Predictions are made regarding two effects that have not been addressed experimentally.
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I. INTRODUCTION

The term “polarization conversions” appeared in mid-1990s
with regard to the polarization phenomena observed at the
conditions of optical pumping of GaAs/(Al,Ga)As layered
nanostructures.1,2 In particular, the external magnetic field
applied along the growth axis caused the appearance of
the circularly polarized component of the photoluminescence
(PL) at a linearly polarized optical excitation or, vice versa,
appearance of the linearly polarized component of the PL at
a circularly polarized excitation. The “linear-to-linear conver-
sion,” i.e., merely the rotation of the plane of polarization of
the PL with respect to that of the excitation light, was also
observed.2 Taking a broader view of things, one can consider
as “conversions” all the collection of the exciton-mediated
relationships between the three polarization parameters of the
excitation light and the three polarization parameters of the
PL. With such a definition, well-known effects of optical
orientation and optical alignment of excitons3 are particular
forms of the conversions.

Later on, the conversion effect was reported for quantum dot
(QD) layers.4,5 Reciprocal conversions of the linear and the cir-
cular polarizations were found to occur even without any mag-
netic field applied.6,7 The “swings of optical alignment” were
observed.8 Recently, very efficient polarization conversions
by single quantum dots were reported.9,10 Incidentally, the
recent experimental studies6–10 widely exploited the method
of angular harmonics of polarization, where the sample was
rotated about the growth axis, while the polarization responses
(various conversions) were studied in their dependency on
the rotation angle ϕ. This fact motivated us to undertake an
explicit analysis of possible ϕ-dependences of the polarization
responses—in more general terms than it has been attempted
in Ref. 8 .

There exists a profound analogy between the polarization
conversions (which are excitonic effects by definition and
which are observed in the PL) and a group of first-order
spatial dispersion effects like birefringence and Faraday
rotation.11,12 This analogy stands behind the similarity between
the pseudospin method (which was first adopted to describe
the problem of polarization conversions by Dzhioev et al.2

and later used in many studies) and the Poincaré sphere
construction, which was developed well earlier by Mallard
and Poincaré13 to describe the polarization of light in a

birefringent gyrotropic media. We shall use the pseudospin
method to calculate various forms of the polarization response
(circular and linear PL polarization degrees responding to
100% circular or linear optical excitation) as functions of
the sample orientation ϕ and the value of magnetic field B,
with the field B directed along the growth axis and the light
propagation direction.

II. MODELS AND RESULTS

We shall calculate optical polarization responses of a layer
of uncharged quantum dots in which neutral excitons are
created by the polarized optical excitation. We consider two-
step models of the exciton evolution, and the spin relaxation
is not taken into account. The exciton is created in the upper
(excited) state and subsequently jumps to the lower (ground)
state to remain there until the recombination. The lifetime
in the upper state, limited by the relaxation to the lower
state, is τupper; the lifetime in the lower state, limited by the
recombination, is τlower. This scheme corresponds to typical
experimental conditions and gives a more complete description
of optical experiments2,8,14 than the one-step model which is
frequently used.

The essence of the conversion phenomenon is in recon-
struction of the symmetry of the bright exciton states by the
magnetic field B applied along the growth axis. At B = 0, the
two bright states correspond to two orthogonal linear dipole
oscillators and are detuned in the energy scale by a value of
anisotropic exchange splitting δ1. At B strong enough, they
correspond to two opposite circular dipole oscillators and
are detuned by a larger value

√
δ2

1 + δ2
Z, where the Zeeman

energy δZ ∝ B. Thus the characteristic field range where the
conversions occur is limited by δZ several times δ1.

We shall use a pseudospin description of the time evolution
of the polarization state of the exciton. The pseudospin concept
works well as long as only the bright exciton states take part,
while dark excitons are not involved. The dark states are off
the bright states by the value of the isotropic exchange splitting
δ0, and, typically, δ1 ∼ 0.1δ0. So in all the essential B range
δZ ∼ δ1, the bright states are well isolated, which justifies
introduction of the pseudospin.

The components of the polarization response of the QD
layer to the linearly or circularly polarized excitation were
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sought by conventional means. The Bloch equation for the
exciton pseudospin �S

�̇S = �� × �S (1)

was solved in the upper and in the lower state, where each
state was characterized by its own effective Larmor frequency
��, depending on the exciton g-factor, the applied magnetic
field B, the value of δ1, and the in-plane orientation of the QD
potential. The time-dependent solution �S(t) was then averaged
in the upper state with the corresponding lifetime distribution
τ−1

upper exp(−t/τupper) and transformed into the starting condi-
tion for the lower-state evolution. Analogously, the lower-state
solution was weighted with τ−1

lower exp(−t/τlower) and split into
the polarization components of the optical response (each the
component is equal to twice the corresponding projection of
the mean pseudospin4).

We allow for random orientations of the principal axes of the
QDs’ lower (ground) state potential (in-plane “elongations”
of QDs, where the inhomogeneous in-plane strain distribution
can add to the QD shape effect15,16). Confirmed by various
ensemble and single QD experiments, the directional scatter is
a well-established reality for many epitaxial QD systems. We
shall describe it by a probability density function8

R(ψ) = 1

2π
[1 + α cos 2ψ + β cos 4ψ], (2)

α = a/(1 + a + b), β = b/(1 + a + b); a,b > 0, where
R(ψ)dψ characterizes the fraction of QDs elongated within
the dψ angular range and the direction ψ = 0 corresponds to
the [110] axis. Here α measures the excessive likelihood to
find a QD with the “long” axis parallel to [110] (over [11̄0],
i.e., an overall orthorhombic distortion of the layer) while
β measures the similar preference of 〈110〉-directions (over
〈100〉-directions, i.e., a reflection of the cubic symmetry of
the crystal lattice). Based on the previous experience,8,17 we
believe that the function Eq. (2) correctly reproduces the main
symmetry features of the real directional density functions for
the popular QD systems. The directions of the upper-state
potential will be specified in what follows.

Let us establish a convenient notation allowing a compact
presentation of results. We shall describe the external and
internal parameters and their essential combinations in terms
of four phase gains

	e = δ1,upper

h̄
τupper,	B = μBgupperB

h̄
τupper,

θe = δ1,lower

h̄
τlower, θB = μBglowerB

h̄
τlower, (3)

where capital 	s refer to the upper, small θs—to the lower
state. Together with the parameters α,β of the angular function
Eq. (2), they form the full parameter system of the problem.

We searched for all the polarization components of the
luminescence for the cases of linearly (L) and circularly (C)
polarized excitation as functions of the magnetic field B and
the angle ϕ the [110] axis of the sample makes with a fixed
direction L in the laboratory reference frame (conventionally,

“vertical”). The resulting polarization degrees can be written
in a unified form

Pij = 1

1 + 	2
e + 	2

B

· 1

1 + θ2
e + θ2

B

·

× [
C inv

ij + C
cos 2ϕ

ij cos 2ϕ + C
sin 2ϕ

ij sin 2ϕ

+C
cos 4ϕ

ij cos 4ϕ + C
sin 4ϕ

ij sin 4ϕ
]

i = L,C; j = L,L′,C, (4)

where i specifies the incoming, j—the outgoing polarization,
L′ stands for the linear polarization degree in the axes rotated
by 45◦ with respect to the vertical direction, coefficients Cij

are functions of B but not of ϕ.
Specific expressions of the coefficients Cij depend on the

conventions regarding the upper exciton state and here diverge
three models that we shall consider. First, a fully correlated
conversion, i.e., the excited-state QD potential is elongated
in the same direction as the ground-state one. (This is as
the two-step model of Ref. 8 , but here we consider a more
general case with no limitations imposed on the ground-state
lifetime.) The corresponding cells in Table I are marked (corr).
By this model we have in mind large QDs (each of them
contains several exciton levels) being excited by photons
whose energy exceeds the PL energy only slightly. Second,
a fully noncorrelated conversion (marked n/corr), i.e., the
excited-state potential has arbitrary direction of the in-plane
elongation with no relationship to the ground-state elongation.
Third, an almost noncorrelated conversion (marked n/corr∗),
i.e., the excited-state potential is elongated parallel to [110] for
all the QDs with no relationship to the ground-state elongation.
The latter two models can be compared to the case of small
QDs as emitting states and the excitons being generated in
the wetting layer. For the n/corr model, the localization of the
excited states can be, e.g., on some conglomerates of QDs
or “islands” in a strongly corrupted wetting layer, while for
the n/corr∗ model—in a more perfect quasi-two-dimensional
layer, a quantum well with nonequivalent interfaces.

III. DISCUSSION

Generally, in the framework of the two-step models of the
conversion effect, the polarization response of the system is
determined by Eq. (4) and nine nonequivalent field-dependent
coefficients Cij (see Table I). Five of these nine are even, other
four—odd functions of the magnetic field. Each the coefficient
corresponds to some contribution to the PL polarization, which
can be experimentally measured by choosing an appropriate
polarization configuration and by separation of a certain
harmonic of the ϕ-dependence of the polarization signal.

In fact, the nine coefficients Cij form a very natural basis
for classification of a manifold of the conversion effects. We
shall see that various experimental manifestations reported by
different authors for different systems can be well inscribed in
this classification scheme. So perhaps the classification based
of the coefficients Cij is a central message of this paper.

We begin the analysis of Table I by a checkup of simple
passages to the limit. First, if the anisotropic exchange in the
upper stage is small enough (the phase 	e → 0, while 	B

is arbitrary), the direction of elongation of the upper-stage
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TABLE I. Nonzero coefficients Cij for different models as described in the text.

(Number) coefficient Model Expression

(1) C inv
LL Two-step (corr) 1 + 1

2 	2
e + 1

2 θ 2
e − 1

2 	eθe − 	BθB + 1
2 	2

eθ
2
e + 1

2 	e	BθeθB

Two-step (n/corr) 1 + 1
2 	2

e + 1
2 θ 2

e − 	BθB + 1
4 	2

eθ
2
e

Two-step (n/corr∗) 1 + 1
2 	2

e + 1
2 θ 2

e − 	BθB + 2+β

8 	2
eθ

2
e − 1

4 α(	eθe − 	e	BθeθB )
One-step 1 + 1

2 θ 2
e

(2) C
cos 4ϕ

LL = C
sin 4ϕ

LL′ Two-step (corr) 1
4 β(	2

e + 	eθe + θ2
e + 	2

eθ
2
e + 	e	BθeθB )

Two-step (n/corr) 1
4 β(θ2

e + 1
2 	2

eθ
2
e )

Two-step (n/corr∗) 1
4 (2	2

e + 2+β

2 	2
eθ

2
e + βθ2

e + α(	eθe + 	e	BθeθB ))
One-step 1

4 βθ2
e

(3) C
sin 4ϕ

LL = −C
cos 4ϕ

LL′ Two-step (corr) 1
4 β(	Bθ 2

e − 	2
eθB + 	e	Bθe − 	eθeθB )

Two-step (n/corr) 1
4 β	Bθ 2

e

Two-step (n/corr∗) 1
4 (−2	2

eθB + β	Bθ 2
e + α(	e	Bθe − 	eθeθB ))

One-step 0
(4) Cinv

LL′ Two-step (corr) 	B + θB + 1
2 (	2

eθB + 	Bθ 2
e − 	e	Bθe − 	eθeθB )

Two-step (n/corr) 	B + θB + 1
2 (	2

eθB + 	Bθ 2
e )

Two-step (n/corr∗) 	B + θB + 1
2 (	2

eθB + 	Bθ 2
e ) − 1

4 α(	e	Bθe + 	eθeθB )
One-step θB

(5) C
cos 2ϕ

LC Two -step (corr) 1
2 α(	e	B + 	Bθe + θeθB + 	2

eθeθB + 	e	Bθ 2
B )

Two -step (n/corr) 1
2 α(	Bθe + θeθB + 1

2 	2
eθeθB )

Two-step (n/corr∗) 	e	B + 	e	Bθ 2
B + 1

2 α(	Bθe + θeθB + 	2
eθeθB )

One-step 1
2 αθeθB

(6) C
sin 2ϕ

LC Two -step (corr) − 1
2 α(	e + θe + 	eθ

2
B − 	BθeθB )

Two -step (n/corr) − 1
2 α(θe + 1

2 	2
eθe − 	BθeθB )

Two -step (n/corr∗) −	e − 	eθ
2
B − 1

2 α(θe − 	BθeθB )
One-step − 1

2 αθe

(7) C
cos 2ϕ

CL = C
sin 2ϕ

CL′ Two -step (corr) 1
2 α(	e	B + 	eθB + θeθB + 	e	Bθ 2

e + 	2
BθeθB )

Two -step (n/corr) 1
2 α(θeθB + 	2

BθeθB )
Two -step (n/corr∗) 	e	B + 	eθB + 2+β

4 	e	Bθ 2
e + 1

2 α(θeθB + 	2
BθeθB )

One-step 1
2 αθeθB

(8) C
sin 2ϕ

CL = −C
cos 2ϕ

CL′ Two -step (corr) 1
2 α(	e + θe + 	2

Bθe − 	e	BθB )
Two -step (n/corr) 1

2 α(θe + 	2
Bθe)

Two -step (n/corr∗) 	e − 	e	BθB + 2−β

4 	eθ
2
e + 1

2 α(θe + 	2
Bθe)

One-step 1
2 αθe

(9) C inv
CC Two -step (corr) 1 + 	2

B + θ2
B − 	eθe + 	2

Bθ 2
B + 	e	BθeθB

Two -step (n/corr) 1 + 	2
B + θ2

B + 	2
Bθ 2

B

Two -step (n/corr∗) 1 + 	2
B + θ2

B + 	2
Bθ 2

B − 1
2 α(	eθe − 	e	BθeθB )

One-step 1 + θ2
B

potential should be insignificant. Then different versions of
the two-step model must produce the same results, and this
is obeyed. If, further, the upper stage is insignificant at all, so
that 	B → 0 too (e.g., because the lifetime of the upper state
is very short), then all the two-step scenarios must be reduced
to a simple one-step evolution in the lower state. This is also
obeyed (compare with “one-step” cells in Table I).

Using Eq. (4) and Table I, one can directly calculate the field
and angular dependences of the polarization responses within
every scenario and at any parameter values. However, in esti-
mation of typical trends, a further simplification of formulas
can be productive. For example, a realistic assumption of long
lifetime in the lower stage8 can be accepted for several existing
QD systems. This assumption implies θe � 1 and θe � 	e,
while the ratio between 	e and unity is not specified since
both the upper-state anisotropic exchange and the upper-state
lifetime can be, in principle, very different. We shall perform
the further analysis with an eye on the above two “standard”
assumptions.

Turning to the one-by-one discussion of the coefficientsCij ,
we start with the coefficient No. 9. It describes the CC

response and is readily identified as “optical orientation of
excitons.” If both exciton states make no conversion of the
polarization (i.e., with all the phases 	e,	B,θe,θB → 0), the
initial value of PCC = 1 is maintained. Let, for a while,
the external magnetic field be zero (	B,θB = 0). Then, the
zero-field optical orientation degree PCC(0) is controlled by
the values 	e,θe and, under the “standard” assumptions, is
small in θ−1

e . This is quite typical for QDs—the optical
orientation signal is absent or nearly absent at zero field. But
the optical orientation can be restored by application of the
longitudinal magnetic field; formally it is reproduced by the
limit PCC = 1 at 	B,θB → ∞ in all the models. Finally, worth
commenting on is the possible inversion of sign of PCC within
the (corr) model at zero magnetic field, when 	eθe > 1. This
behavior is well known from the two-level (“cascade”) Hanle
effect,3 with the effective field of the anisotropic exchange
interaction acting for the transverse magnetic field of the Hanle
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effect experiment. Qualitatively, it is quite clear why it is
not possible with the noncorrelated directions of precession
[(n/corr) scheme].

Coefficient No. 1 in Table I (C inv
LL) describes the isotropic

part of “optical alignment of excitons,” which can be
suppressed by the longitudinal magnetic field, the effect
sometimes referred to as the longitudinal Hanle effect. This
contribution dominated in the experimental LL response of
CdSe/ZnSe QDs.8 To illustrate the distinction of different
two-step scenarios, we note that within the (corr) model, at
a zero magnetic field, under “standard” assumptions and at
	e � 1 the maximum value of polarization is 1

2 . This is
because the transverse components of the mean pseudospin
vanish as a result of long-lasting precession in the chaotically
oriented exchange fields. At all the same conditions, the
maximum polarization within the (n/corr) model equals 1

4 since
the transverse components vanish twice—in the upper and in
the lower stages.

Regarding coefficient No. 2, the corresponding contri-
butions to the LL and LL′ responses (“swings of optical
alignment”) were experimentally observed in Ref. 8. By its
B-dependence, this coefficient is similar to coefficient No. 1. In
the majority of schemes, this coefficient is proportional to the
β-factor, which describes the 90◦ periodicity in the distribution
of elongations [Eq. (2)], i.e., preferential elongations parallel
to 〈110〉 type axes. However, within the (n/corr∗) scheme, it
also includes terms that do not contain β. Such terms appear
due to combination of two factors: (i) presence of the fourth
angular harmonic in the polarization response of a single QD
and (ii) presence of the regular direction of elongation in the
upper stage of the (n/corr∗) scheme.

Coefficient No. 3 also concerns with the fourth angular
harmonic of the polarization response but characterizes its
B-odd component phase shifted by quarter period. What
catches the eye is that this coefficient strictly equals zero
within the one-step approach. So once the corresponding
polarization is observed, the one-step scheme is not adequate
to the experimental conversions for sure. By its B-dependence,
coefficient No. 3 resembles coefficient No. 4 but is smaller in
value. (The related two conversions can be conventionally en-
titled “anisotropic and isotropic linear-to-linear conversions,”
respectively). A B-odd behavior of the LL′ response was
reported for the first time in Ref. 2, but because the angular
scan of the effect was missing there, one cannot know whether
that result should be associated with coefficients No. 3 or No. 4.
Thus a clear observation of the harmonic related to coefficient
No. 3 is a minor challenge for future studies.

Contributions associated with the other two B-odd coeffi-
cients, No. 5 and No. 7, can be named “odd (or conventional)
linear-to-circular and circular-to-linear conversions.” It is these
S-like conversions that were discovered in the early papers by
Blackwood et al.1 and Dzhioev et al.2 We note that difference
in amplitude between the experimental linear-to-circular and
circular-to-linear conversions was reported in Ref. 2 and was
associated with the two-step evolution of the exciton. Indeed,
one can see that while the one-step model predicts equal
amplitudes for the two conversions, any version of a two-step
model allows them to be not equal.

Finally, coefficients No. 6 and No. 8 describe, in par-
ticular, the zero-field linear-to-circular and circular-to-linear
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FIG. 1. “Even” linear-to-circular (a) and circular-to-linear
(b) polarization conversions calculated for different scenarios of
evolution, as functions of the magnetic field B (the latter is quantified
by the dimensionless phase gain θB ). A realistic sample parameter set
was used: θe = 100 (δ1,lower ∼ 0.3 meV, τlower ∼ 200 ps), 	e = 0.3,
θB/	B = 200, and α = 0.35, β = 0.22, as obtained in Ref. 8
(a = 0.8, b = 0.5). Calculated with Eq. (4) and coefficients No. 6
and No. 8 from Table I.

conversions reported by Astakhov et al.6 Unlike the previous
pair, coefficients No. 6 and No. 8 are even in B. According to
our classification, this unusual parity in B as well as the specific
phase of the second angular harmonic are really distinctive
features of the two conversions (rather than just their nonzero
value at zero field6), so the proper entitlement might be “even
linear-to-circular and circular-to-linear conversions.” In fact,
the experimental investigation of the field dependences of
the even conversions is of interest. Figure 1 gives examples
of the calculated field dependences of the “even” conversions.
The W- (M-) shaped dependences like those shown in Fig. 1(a)
are not known from experiment, which constitutes a second
minor challenge of the present paper.

One can see that at B = 0, the amplitudes of the LC

and CL conversions are equal within the one-step model;
more interestingly, they are also equal within the (corr)
version of the two-step model. Within the (n/corr) model,
the zero-field conversions amplitudes ratio depends on 	e:
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The amplitudes are equal again at 	e � 1 while the LC

conversion exceeds the CL one by 	2
e/2 times at 	e � 1.

With all that, both conversions remain small in θ−1
e under

the “standard” assumption θe � 1. The situation is different
within the (n/corr∗) model. As compared to the LC conversion
(coefficient No. 6), the CL conversion (coefficient No. 8)
additionally includes the term ∝ 	eθ

2
e , which will dominate at

a “standard” θe � 1. Because of this term, the CL conversion
is no longer small in θ−1

e and can be as large as 25% if the
optimal value 	e = 1 is assumed. In effect, the CL conversion
itself occurs in the upper, short lifetime state. The resulting
circular polarization is then merely “stored” in the lower-level
state by means of the optical alignment LL, the effect that does
not vanish in the limit of long-lasting times of the pseudospin
precession (coefficients No. 1 and No. 2, one-step model). We
note that the LC conversion is still small in θ−1

e . Thus the loss
of correlation between the upper and lower level according to
the (n/corr∗) scenario, even occurring for a fraction of excitons
only, can be the reason for the amplitudes ratio PCL > PLC

reported from the zero-field experiments in Ref. 6.

IV. CONCLUSIONS

In conclusion, we have calculated the excitonic polarization
conversions by a model system of semiconductor quantum
dots. The unified presentation of all kinds of the polarization
response in the form of Eq. (4) shows relationships between
them and gives a natural basis for the classification of the
conversions. The classification is based on the nine nonzero
coefficients Cij whose explicit expressions were calculated for
several scenarios and presented in Table I.

Overall, the classification scheme well inscribes the results
obtained by different authors, including the nonequal values
of the zero-field LC and CL conversions observed in Ref. 6.
One can see, however, a few lacunas in the well-developed
experimental picture of the phenomenon, like the anisotropic
linear-to-linear conversion (coefficient No. 3) and the B-
even magnetic field patterns of the linear-to-circular and
circular-to-linear conversions (coefficients No. 6 and No. 8,
see Fig. 1). In order to promote filling these lacunas, we briefly
consider (in the Appendix) the symmetry features of sideways
contributions to the polarization signals that can be expected
to appear for real quantum dot samples.
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APPENDIX: ACCOMPANYING CONTRIBUTIONS TO
THE PL POLARIZATION

This paper studies the polarization responses of QD
excitons, i.e., different components of the PL polarization
signal, which are induced by the polarization of the excitation
light. But there exist other components of the polarization

that have nothing to do with the polarized excitation—they
would equally well appear if the luminescence were induced
by nonpolarized light, or even not by light. Since these
components of the PL polarization are constantly observed
in experiments, their properties should be clearly recognized,
and they should be separated for a correct measurement of the
polarization responses.

The first accompanying contribution is usually referred to
as MCPL—magnetic field induced circular polarization of the
PL. It appears, microscopically, due to preferential Boltzmann
population of the low-energy bright exciton state, inasmuch
this state acquired the helical symmetry in the applied field
B (it is linearly polarized at B = 0). This polarization is
not transformed under the sample rotation, thus giving a ϕ-
independent contribution into the configurations with outgoing
C light:

PLC,PCC = �inv(B). (A1)

This contribution is distinct in the LC configuration since
the true conversions do not include any ϕ-independent terms
in LC. It is not so easy with optical orientation CC, which
is ϕ-independent, too (coefficient No. 9). The MCPL and
coefficient No. 9 can be separated using their opposite parity
in the magnetic field, since the MCPL is odd in B. The more
fundamental approach is a separate measurement of �inv(B),
using the LC configuration or the NC configuration8 (where
N symbolizes the “non-polarized” state of the excitation light
prepared with the polarization scrambler).

The second accompanying contribution is often referred to
as built-in linear polarization of the PL. Microscopically, it
can be produced by two different mechanisms: (i) preferential
Boltzmann population of one bright exciton state like in
the MCPL, but inasmuch the state keeps its linear symme-
try (temperature-dependent mechanism) or (ii) deformation-
induced heavy-light hole mixing (temperature-independent
mechanism). Phenomenologically, both lead to a certain
amount of linear polarization in the PL, with the direction
being along (or perpendicular to) the [110] axis, and with
the degree ℘ being independent of the type of the incident
polarization.

The built-in polarization will manifest itself as a second
harmonic of the ϕ-dependences of the polarization, a trivial
result of the rotation of the sample. It will accompany
conversions in the configurations with the outgoing L (LL

and CL) as

PLL,PCL = ℘ cos 2ϕ (A2)

and will appear in the configurations with outgoing L′ as

PLL′ ,PCL′ = ℘ sin 2ϕ. (A3)

Conversions in the LL and LL′ configurations do not
contain any second harmonic contribution, so it should not
be a problem to select the built-in polarization here. The
circular-to-linear configurations are more vulnerable, since
coefficient No. 7 shows absolutely the same angular pattern.
Thus the built-in polarization ought be evaluated using the LL

or LL′ results, or the most reliable, measured independently
using the polarization scrambler in the laser beam.8
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