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Valley degeneracy in biaxially strained aluminum arsenide quantum wells
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This paper describes a complete analytical formalism for calculating electron subband energy and degeneracy
in strained multivalley quantum wells grown along any orientation with explicit results for AlAs quantum wells
(QWs). In analogy to the spin index, the valley degree of freedom is justified as a pseudospin index due to the
vanishing intervalley exchange integral. A standardized coordinate transformation matrix is defined to transform
between the conventional-cubic-cell basis and the QW transport basis whereby effective mass tensors, valley
vectors, strain matrices, anisotropic strain ratios, piezoelectric fields, and scattering vectors are all defined in their
respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) QWs are
examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations
of electron confinement and strain for the (001), (110), and (411) facets determine the critical well width for
crossover from double- to single-valley degeneracy in each system. The biaxial Poisson ratio is calculated for the
high-symmetry lower Miller index (001)-, (110)-, and (111)-oriented QWs. An additional shear-strain component
arises in the higher Miller index (411)-oriented QWs and we define and solve for a shear-to-biaxial strain ratio.
The notation is generalized to address non-Miller-indexed planes so that miscut substrates can also be treated,
and the treatment can be adapted to other multivalley biaxially strained systems. To help classify anisotropic
intervalley scattering, a valley scattering primitive unit cell is defined in momentum space, which allows one
to distinguish purely in-plane momentum scattering events from those that require an out-of-plane momentum
component.

DOI: 10.1103/PhysRevB.84.125319 PACS number(s): 73.21.Fg, 73.50.Bk

I. INTRODUCTION

Calculating valley degeneracy in a quantum well (QW)
requires a comprehensive treatment of strain, quantum confine-
ment, and piezoelectric fields since all contribute at compara-
ble energy scales. Of the various multivalley semiconductors,
the indirect-bandgap zinc blende semiconductor aluminum
arsenide (AlAs) with its bulk threefold valley degeneracy is
of particular interest (Fig. 1) because its heavy anisotropic
electron mass allows for large interaction effects,1 and its
near-perfect lattice match to GaAs substrates allows for
high-mobility, modulation-doped quantum wells (QWs).2,3

AlAs/AlGaAs QWs can reach mobilities of the order of μ =
100 000 cm2/Vs in (001)-facet QWs4 and in the high-mobility
direction of anisotropic (110)-facet QWs.5 Unconventional
facets such as (411) have also proven useful in identifying
exchange effects like quantum Hall ferromagnetism in AlAs
QWs.6,7 Evidence for a QW width crossover from double-
to single-valley occupation has been shown for (001)AlAs
wells,8,9 as has evidence for single-valley occupancy in wide
(110)AlAs wells.5 Dynamic control of the valley degeneracy
has been realized with uniaxially strained (001)AlAs QWs
to induce valley degeneracy splitting.1,10,11 Such studies can
quantify interaction effects, calibrating valley strain suscepti-
bility and valley effective mass.10,12–14 Quantum confinement
to a one-dimensional multivalley system has been achieved
in cleaved-edge overgrown quantum wires15,16 and quantum
point contacts.17 Novel interaction effects in QWs include
anisotropic composite Fermion mass18 and valley skyrmions,
whereby electrons populate linear superpositions of two
valleys at once.19 Such interaction effects that result from
exchange splitting of a perfect SU(2) symmetry20 may prove
useful in future quantum device applications, where the valley
degree of freedom functions as a pseudospin.

Various formalisms have been developed to understand
valley occupancy in a multivalley system. AlAs QWs are
slightly strained with respect to the GaAs substrate, so one
must consider quantum confinement, strain, and piezoelectric
fields to estimate the electron subband energy and degeneracy
of the different electron valleys. Stern and Howard modeled
two-dimensional (2D) confinement of electron valleys in
Si for arbitrary crystal plane orientations neglecting strain
effects.21 Van de Walle theoretically studied the absolute
energy level for an unstrained semiconductor heterojunction,
considering strain effects only for bulk systems.22 Smith
et al. calculated the strain tensor theoretically for the case of
(001)- and (111)-oriented QW superlattices.23 Although Caridi
and Stark derived the complete strain tensor for arbitrarily
oriented substrates with cubic symmetry, they ignored a
critical shear component, which arises in the high Miller
index directions under relaxation.24 De Caro et al. calculated
the shear strain with commensurability constraint equations
accurately only for the low index (100), (110), and (111)

FIG. 1. (Color online) (Left) Real-space depiction of AlAs QW
structures defining the transport basis axes: a,b, and c. (Right)
Brillouin zone for bulk AlAs defining the conventional-cubic-cell
basis x,y, and z. Note the three degenerate valleys that are occupied
with electrons as indicated by ellipsoidal equienergy contours.
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orientations.25 Yang et al. corrected the constraint equations
and calculated piezoelectric fields arising from the shear
strain components for the general case of a pseudomorphic
film.26 Adachi calculated the strain tensor theoretically for
the case of bulk and superlattice structures but did not
address the case of single QW structures.27 Hammerschmidt
et al. focus on the case of isotropic planar strain arising in
QWs but do not carry out a combined treatment of strain
energy along with quantum confinement energy and how these
affect valley degeneracies.28 Theoretically, Rasolt proposed
an understanding of the various continuous symmetries and
symmetry breaking in a multivalley system in terms of an
SU(N ) symmetry, where N is the valley degeneracy number,20

but did not explicitly derive the vanishing intervalley exchange
integral, which underlies this theory. Material-specific calcu-
lations of quantum confinement and strain in high-mobility
Si and Ge structures are well studied for high-symmetry
facets29–40 and, recently, such calculations have been been
made in other quantum confined systems as well.41,42 However,
a combined treatment of quantum confinement, strain, and
piezoelectric fields to determine valley degeneracy in QWs is
lacking, especially, for low-symmetry facets.

To eventually model transport in such valley-degenerate
systems, one must also consider the extra scattering channel
not present in single-valley systems, namely, intervalley
scattering. It is therefore useful to introduce a k-space unit cell
that permits visualization of momentum-scattering events in a
geometry that is natural to the quantum-confinement direction.
However, the standard depiction of a 2D Brillouin zone of
a quantum-confined valley-degenerate system21 projects all
valleys to a single 2D plane. Such a depiction loses information
about the out-of-plane momentum-scattering component that
was projected out, which is necessary to determine the full
momentum-scattering matrix element. Thus it is useful to
develop a graphical representation for the unit cell in k space
that can clearly elucidate how valleys are coupled with both
in-plane and out-of-plane momentum-scattering events.

The paper is organized as follows. In Sec. II, the exchange
energy calculations demonstrate why the valley index can
function as a pseudospin index. In Sec. III, we develop the
notation and formalism for determining valley degeneracy in
multivalley strained semiconductor QWs. The three subband
energy components are defined: kinetic energy, confinement
energy, and strain energy. The two useful coordinate bases
are defined as well: the conventional-cubic-cell basis and the
transport basis, as well as the coordinate transformation matrix
that transforms between them. Single-electron analytical solu-
tions are provided to allow easy identification of characteristic
energy scales for multivalley systems. The explicit criteria
for valley degeneracy in arbitrarily oriented biaxially strained
QWs are defined in Sec. IV. Section V describes how shear
strain can induce piezoelectric fields in the QW. In Sec. VI, we
introduce the valley-scattering unit cell; a three-dimensional
(3D) primitive unit cell with the same volume as the Brillouin
zone but with the full symmetry of the reciprocal lattice vectors
that lie in the Miller index plane.

Momentum-space illustrations provide intuition for vi-
sualizing intervalley scattering and valley degeneracies.
Section VII applies the developed formalism to the case of
AlAs QWs, whereby the projected in-plane transport masses,

strain tensor, degeneracies, piezoelectric fields, and valley-
splitting energies for the specific cases of (001)-, (110)-,
(111)- as well as the unconventional (411)-oriented QWs
illustrate how valley degeneracies can be engineered. We
review the crossover width calculation for double-to-single
valley occupation in the (001)-, (110)-, and (411)-facet QWs.
For the high-symmetry low-Miller-index orientations (001),
(110), and (111), we calculate the biaxial Poisson ratio, and for
the low-symmetry high-Miller-index (411) facet, there arises
a shear component in the strain tensor and, consequently, a
shear-to-biaxial strain ratio. We calculate intervalley scattering
ratios for valley-degenerate AlAs QWs on various facets
in Sec. VIII and refer to the valley-scattering unit cell for
intuition. We complete our analysis by comparing the standard
2D Bravais lattice valley representation to our valley cell
representation. To generalize the formalism for calculating
valley subband energies in arbitrarily oriented facets, we end
in Sec. IX by adapting this notation for miscut samples.43

II. VALLEY EXCHANGE INTEGRAL AND VALLEY INDEX
AS A PSEUDOSPIN

Just as electrons with different spins are distinguishable and
have no exchange term in their interaction energy, electrons in
different valleys can be shown to be effectively distinguishable
from each other due to the vanishingly small intervalley
exchange energy. The valley index can thus be treated as
a pseudospin index. Rasolt20 discusses symmetry breaking
in a multivalley system but does not explicitly derive this
exchange integral. Previous work on Si quantum dots to study
Kondo effect44–46 calculates the exchange integral only for the
special case of identical spatial wavefunctions on Si quantum
dots. For completeness, in this section we explicitly derive
the inter and intravalley exchange integrals for arbitrary wave
functions to justify the valley index as a pseudospin, with
exchange interaction proportional to δττ , where τ and τ are
valley indices.

An electron wave packet within a single valley is described
with a weighted integral over Bloch functions. The normalized
wave packet ψτ,σ in valley τ is chosen to be in a spin-polarized
state σ described by the spinor χσ :

ψτ,σ (r) = 1√
V

∫
d3kAke

i(qτ +k)·ruqτ +k(r)χσ , (1)

where uqτ +k(r) is the component of the Bloch function periodic
in the Bravais lattice, Ak is the complex amplitude for a
particular k, qτ + k is the total crystal momentum. The center
of the valley is denoted with qτ and k denotes the additional
small momentum deviation away from this valley center,
and V is the volume of the system. Assuming k is much
smaller than the Umklapp vector for the lattice and taking the
envelope-function approximation uqτ +k

∼= uqτ , we obtain

ψτ,σ (r) = 1√
V

uqτ (r)eiqτ ·rχσ

∫
d3kAke

ik·r

= 1√
V

uqτ (r)eiqτ ·rχσφ(r), (2)

where φ(r) is the slowly varying envelope function. The
Coulomb exchange energy integral between the two electron
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wave functions ψτ,σ (r) and ψτ,σ (r) in valleys τ and τ with
coordinates r1 and r2 is given by

Eτ,τ ,σ,σ
ex =

∑
σσ

∫ ∫
dr1dr2

−e2

|r1 − r2|ψτ,σ (r1)ψ∗
τ,σ (r2)

×ψτ,σ (r2)ψ
∗
τ ,σ (r1). (3)

Substituting Eq. (2) in Eq. (3), we can show that two par-
ticles with different valley indices behave like distinguishable
particles by virtue of their vanishing exchange integral,

Eτ,τ,σ,σ
ex = δσσ

V 2

∫ ∫
dr1dr2φ(r1)φ∗(r2)φ(r2)φ

∗
(r1)

× −e2

|r1 − r2|e
iQττ ·(r2−r1)uqτ

× (r1)u∗
qτ (r2)uqτ (r2)u∗

qτ (r1) (4)

with intervalley scattering wave vector

Qττ = qτ − qτ , (5)

where the inner product of the spinors is given by χ
†
σχσ = δσσ .

This delta function denotes that the exchange integral vanishes
when the two spin indices are different σ �= σ . Analogously,
if τ �= τ , then Qττ is of the order of an Umklapp vector,
and the rapidly oscillating complex exponential makes the
integral vanish for envelope functions larger than a few lattice
constants. On the other hand, if τ = τ , then Qττ = 0, the expo-
nential term is unity, and the integral remains finite. Therefore,
the dependence of the exchange integral (4) on the valley index
can be approximated with a second delta function to notate the
vanishing exchange integral between different valleys:

Eτ,τ ,σ,σ
ex = δσσ δττ

V 2

∫
dr1φ(r1)φ

∗
(r1)|uqτ (r1)|2

×
∫

dr2φ
∗(r2)φ(r2)

−e2

|r1 − r2| |uqτ (r2)|2. (6)

We note that Eq. (6) cannot be simplified because the
Coulomb potential can vary rapidly over small distances of
order a lattice constant.

We conclude by virtue of this vanishing intervalley ex-
change interaction that wave functions in different valleys can
be treated like distinguishable particles and the valley index is
a valid pseudospin index. As was pointed out by Rasolt,20 the
valley pseudospin constitutes an SU(N ) group, where N is the
number of electron valleys.

III. VALLEY SUBBAND ENERGY

Crystal symmetry dictates that multiple energy-degenerate
valleys will occur whenever a local conduction band minimum
exists away from the origin in momentum space (the � point).
When such a multivalley system is quantum confined in a layer
with planar Miller indices M = (h k l), the energy Eτ (k) in the
lowest subband in valley τ is

Eτ (k) = Eτ
0 (k) + T τ (k) + 	Eτ , (7)

where k is the 2D in-plane momentum relative to the τ -valley
minimum, Eτ

0 (k) is the ground confinement energy, T τ (k)
is the in-plane kinetic energy, and 	Eτ is the strain-induced

energy shift caused by lattice mismatch of the QW with respect
to the substrate. Note that the Miller index M is not explicitly
superscripted because it is common to all valleys. To calculate
these terms in Eq. (7), we need to find the in-plane (parallel to
the QW) and out-of-plane (confinement direction) components
of the inverse mass tensor of the corresponding electron valley
as well as the various strain-tensor components in the QW.

We start by introducing two useful bases, the conventional-
cubic-cell (CCC) basis x = (x,y,z) and the transport basis
a = (a,b,c), along with the coordinate transformation matrix
RM , which transforms between them,

a = RMx. (8)

The CCC basis has the x, y, and z axes aligned along the axes
of the cubic cell of the reciprocal lattice of the crystal, see
Fig. 1 (right). The transport basis is chosen with the ab plane
parallel to the QW and the c direction perpendicular to this
plane, see Fig. 1 (left). Thus if the Miller index of the growth
plane is (h k l), the perpendicular unit vector in the transport
basis is ĉ = (h,k,l) 1√

h2+k2+l2 . To uniquely define the a and b

directions in the transport basis, we take â to be the in-plane
unit vector with the lowest Miller index and b̂ the unit vector
that maintains a right-handed coordinate system â × b̂ = ĉ.
With this definition we obtain a unique set of axes. These also
define the components of the coordinate transformation matrix
RM , whereby â, b̂, and ĉ are the top, middle, and bottom rows
of the coordinate transformation matrix RM , respectively. In
what follows, vectors and tensors expressed in the x-basis are
unprimed and in the a-basis are primed.

The mass tensor is naturally expressed in the unprimed
CCC x-basis, so by transforming it to the primed transport
a-basis, we can easily extract the in-plane and out-of-plane
confinement masses for a given electron valley. The matrix
inverse of the mass tensor for the τ -valley in the x-basis is
denoted by wτ = (mτ )−1. We assume parabolic bands so that
the mass is independent of the wave vector k. Applying the
transformation (w′τ ) = RM (wτ )(RM )−1, we obtain the inverse
mass tensor of the τ -valley in the primed transport a-basis:

(w′τ ) =

⎡⎢⎣w′τ
aa w′τ

ab w′τ
ac

w′τ
ba w′τ

bb w′τ
bc

w′τ
ca w′τ

cb w′τ
cc

⎤⎥⎦ . (9)

The upper left 2 × 2 submatrix w′τ
2×2 gives the inverse in-plane

mass tensor and w′τ
cc gives the inverse of the confinement mass

perpendicular to the QW.

A. Quantum confinement energy

We can now define the first energetic term in Eq. (7),
the quantum confinement energy Eτ

0 (k), using the coordinate
transformation matrix and out-of-plane component of the
inverse mass tensor in the primed a-basis. This is calculated
from the ground-state-energy solution of the 1D Schrödinger
equation for a particle confined along c direction with in-plane
momentum k,

−h̄2

2

d

dc

[
w′τ

cc(c)
dψk(c)

dc

]
+ V (c,k)ψk(c)=Eτ

0 (k)ψk(c),

(10)
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where w′ τ
cc(c) is the diagonal component of the reciprocal

mass tensor in the a-basis. Due to the different reciprocal
masses in the barrier (w′τ

B ) and the well (w′τ
W) layers, wave-

function derivatives at the boundary c0 must satisfy47

w′τ
B,cc

dψk(c)

dc

∣∣∣∣
c=c−

0

= w′τ
W,cc

dψk(c)

dc

∣∣∣∣
c=c+

0

. (11)

The confinement potential V (c,k) can be expressed as

V (c,k) =
{

0 if |c| < W/2,

V0(k) if |c| > W/2,
(12)

where the height of the potential barrier V0 is given by

V0(k) = Eτ
c,B − Eτ

c,W + h̄2

2
k · (

w′τ
2×2,B − w′τ

2×2,W

) · k, (13)

where Eτ
c,W is the conduction band energy of the τ -valley in

the QW, Eτ
c,B is the energy in the barrier, and W is the well

width. The last term accounts for the differences in the in-plane
effective mass as a k-dependent barrier height. This last term is
often neglected in calculations under the assumption that k is
small and the tensor mass difference w′τ

B − w′τ
W is also small,

making Eτ
0 and ψ(c) independent of in-plane momentum.

B. Kinetic energy

We can now calculate the second term in Eq. (7), the kinetic
energy T (k), from the in-plane inverse mass tensor w′τ

2×2.
The in-plane inverse mass tensor is determined by solving the
ground state from Eq. (10) and then determining a weighted
average of the well and barrier inverse mass tensors given by

w′τ
2×2 = 2w′τ

2×2,W

∫ W/2

0
|ψ(c)|2dc

+ 2w′τ
2×2,B

∫ ∞

W/2
|ψ(c)|2dc. (14)

In most cases, it is safe to assume the wide-well limit, whereby
the effective mass is equal to that in the well material only. The
kinetic energy is

T τ (k) = h̄2

2
k · (

w′τ
2×2

) · k. (15)

The projected in-plane effective masses can be solved from
the determinant of this same submatrix:

det
(
w′τ

2×2 − λI
) = 0. (16)

The eigenvalue solutions λ1 and λ2 directly give the reciprocal
masses along the major and minor axes of the projected mass
tensor. The cyclotron mass is the same as the 2D density-of-
states mass, and is given by

mτ
2D = det

(
w′τ

2×2

)−1/2 = (λ1λ2)−1/2. (17)

The spin-degenerate 2D energy density-of-states per unit area
in the τ -valley is nτ

2D = mτ
2D/πh̄2, so that the total energy

density-of-states is given by a sum over all valleys:

n2D(E) =
∑

τ

mτ
2D

πh̄2 �
(
E − Eτ

0 − 	Eτ
)
, (18)

where �(x) is the Heavyside step function.

C. Strain energy

We can now define the final term of Eq. (7), the strain
energy 	Eτ , in terms of the strain tensor and the coordinate
transformation matrix. Following the notation of Van de
Walle22 and Herring and Vogt,48 the absolute energy shift 	Eτ

of the τ -valley for a homogeneous deformation described by
the strain tensor ε in the x-basis is given by

	Eτ = (

τ

dδij + 
τ
u q̂

τ
i q̂τ

j

)
εij , (19)

where q̂τ is a unit vector in the direction of the τ -valley, and

τ

d and 
τ
u represent the deformation potentials due to a bulk

dilation and a uniaxial deformation, respectively. The average
shift in the energy of the subband extrema is given by

	Eav =
(


τ
d + 1

3

τ

u

)
δijε

ij = ac δijε
ij , (20)

where ac is the hydrostatic deformation potential for the
conduction band and δijε

ij = Tr(ε) is the trace of the strain
tensor εxx + εyy + εzz. Often the relative strain energy shift
	τ from the mean value is all that is needed to determine
subband occupancy:

	τ = 	Eτ − 	Eav = 
τ
u

(
q̂τ

i q̂τ
j − 1

3
δij

)
εij . (21)

To determine the strain tensor ε, it is easiest to explicitly
determine its components in the a-basis, which we will denote
with ε′, and then apply a rotational transformation to express it
in the x-basis for use in Eqs. (19)–(21). Heteroepitaxial QWs
are biaxially strained relative to an unstrained substrate with a
different lattice constant. Thus the strain tensor ε′ is diagonal
in the upper 2×2 block with ε′

aa = ε′
bb = ε′‖, where ε′‖ is the

in-plane strain component given by22,49

ε′
‖ = asubstrate − alayer

alayer
. (22)

Note that lattice matching to the unstrained substrate fixes
ε′
ab = ε′

ba = 0. The remaining components of the strain tensor
are linearly proportional to the parallel strain ε′

‖ as follows:

ε′ =
⎡⎣ 1 0 DM

1
0 1 DM

2
DM

1 DM
2 −DM

0

⎤⎦ ε′
‖, (23)

where DM
0 = −ε′

cc/ε
′
aa = −ε′

‖/ε
′
⊥ is the biaxial Poisson ratio

(notated DM by Van de Walle22), and we define DM
1 = ε′

ca/ε
′
aa

and DM
2 = ε′

bc/ε
′
aa as the shear-to-biaxial strain ratios.

The coefficients DM
i can be derived for a crystal with cubic

symmetry and arbitrary Miller index M by minimizing the free
energy of the layer in terms of its elastic constants.22,50 Using
Hooke’s law in the x-basis, stress (σ ) and strain (ε) tensors are
related by

σij = cijklεkl, i,j,k,l ∈ {x,y,z}. (24)

Here, c is the fourth-rank elastic stiffness tensor in the x-basis.
For crystals with cubic symmetry, c can be simplified using
the Voigt notation51 into a matrix form

σi = Cij εj , i,j = 1,2,...,6. (25)

The indices 1 through 6 denote xx, yy, zz, yz/zy, zx/xz, and
xy/yx, respectively. For cubic materials, most of the elements
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of the matrix Cij vanish and C11 = C22 = C33, C12 = C13 =
C23, and C44 = C55 = C66, simplifying the stress tensor σ to⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ε1

ε2

ε3

ε4

ε5

ε6

⎞⎟⎟⎟⎟⎟⎠ , (26)

where ε1 = εxx , ε2 = εyy , ε3 = εzz, ε4 = 2εyz, ε5 = 2εzx , and
ε6 = 2εxy . Table I lists the values of C11, C12, and C44 for
AlAs and GaAs. The strain tensor ε and the elastic constants
cklmn are used to obtain the free energy of isothermal elastic
deformations of a medium,28

F (ε) = 1

2

∑
klmn

cklmnεklεmn. (27)

For a cubic crystal, using the Voigt notation for the elastic
constants, the elastic energy reduces to

F (ε) = C11

2

(
ε2
xx + ε2

yy + ε2
zz

) + 2C44
(
ε2
xy + ε2

xz + ε2
yz

)
+C12(εxxεyy + εxxεzz + εyyεzz). (28)

The coefficients DM
i can be determined for a given crystal

facet orientation by transforming the strain tensor of ε′ into
the x-basis with the rotation matrix:

ε = (RM )−1(ε′)RM, (29)

and inserting these components into the elastic energy of
Eq. (28) and minimizing with respect to each DM

i :

F (ε) = F [(RM )−1(ε′)RM ], (30)
dF (ε)

dDM
i

= 0, (31)

to deduce a set of three equations, which can be simultaneously
solved to give the DM

i values. With the DM
i values solved for

this material and this facet, the strain tensor in the x-basis can
now be used in Eqs. (19)–(21) to deduce the strain-energy
contribution to each valley 	Eτ .

As discussed in Sec. VII, for high-symmetry crystal
orientations like (001), (110), and (111), there is no shear
component in the strain tensor when expressed in the transport
a-basis so that DM

1 = DM
2 = 0, whereas for (411) growth the

DM
2 coefficient is nonzero, and the direction of shear is defined

by the vector α given by

α = DM
1 â + DM

2 b̂. (32)

For AlAs and GaAs, we tabulate the nonzero DM
i in

Table I along with the elastic stiffness components in Voigt
notation. For completeness, the Appendix provides a compact
list of equations for determining the strain tensor for arbitrary
substrate orientation. From the above analysis, we can now
calculate all the terms in Eq. (7) for any valley and any QW
orientation.

IV. ROBUST VALLEY DEGENERACY AND CROSSOVER
VALLEY DEGENERACY

Two valleys τ and τ will be degenerate if

Eτ (k = 0) = Eτ (k = 0). (33)

When this condition holds for τ and τ regardless of the QW
width, we call the valley degeneracy robust, and if it holds only
for a specific well width W0, we call it crossover degeneracy.
The crossover-degeneracy condition can arise only when the
valley electrons with a higher confinement mass are strain-
shifted to a higher energy than the valley electrons with a
lower confinement mass.

Robust valley degeneracy can only occur if the strain ener-
gies and out-of-plane confinement masses are independently
equal. The strain energy must satisfy

	Eτ = 	Eτ , (34)

for all well widths, which simplifies via Eq. (19) to the x-basis
condition

q̂τ · ε · q̂τ = q̂τ · ε · q̂τ (35)

or equivalently in the a-basis,

q̂′τ · ε′ · q̂′τ = q̂′τ · ε′ · q̂′τ . (36)

When DM
1 = DM

2 = 0, this condition for degeneracy simply
reduces to

|q̂′τ · ĉ| = |q̂′τ · ĉ|, (37)

meaning that all valleys with the same polar angle from the
c axis are degenerate. For the more general case of arbitrary
DM

i , the full Eq. (36) has to be solved to determine valley
degeneracy. However, given the shear vector α in the plane of
the QW as defined in Eq. (32), a special case can be defined,
and two valleys τ and τ are degenerate if they simultaneously
satisfy Eq. (37) and

|q̂′τ · α̂| = |q̂′τ · α̂|, (38)

or equivalently, if the valleys are mirror symmetric about the
c-α plane.

The second condition for robust valley degeneracy is that
the out-of-plane inverse masses are equal,

w′τ
cc = w′τ

cc, (39)

thus guaranteeing equal confinement energies. As long as the
mass ellipsoid associated with each valley is oriented with its
longitudinal mass parallel to the unit vector q̂τ , as is usually
the case, then Eq. (39) is automatically satisfied under the same
condition as Eq. (37).

V. PIEZOELECTRIC EFFECTS ON THE QUANTUM-WELL
POTENTIAL

In crystals that are inversion asymmetric, like zinc blende
crystals, strain may also produce piezoelectric fields, modify-
ing the confinement potential V (c,k) and resulting in shifts of
the ground energies Eτ

0 for the various valleys as solutions to
the Schröedinger equation (10). The out-of-plane piezoelectric
field, which will not break robust valley degeneracy, will shift
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TABLE I. Strain ratios DM
i for different facet orientations, elastic constants Cij , deformation potentials ac and 
X

u , X-valley mass tensor
components ml and mt in units of me, and piezoelectric coefficient ex,4 for AlAs and GaAs.21,22,52–54

Material D001
0 D110

0 D111
0 D411

0 D411
2 C11, GPa C12, GPa C44, GPa ac, eV 
X

u , eV ml mt ex,4,C/m2

AlAs 0.854 0.616 0.550 0.775 0.176 125.0 53.4 54.2 2.54 6.11 1.1 0.20 −0.23
GaAs 0.934 0.580 0.489 0.820 0.250 122.1 56.6 60.0 −0.16 8.61 1.3 0.23 −0.16

the crossover-degeneracy condition to a different well width,
W0.

In our treatment, we will calculate the piezoelectric field
inside the QW and assume that any out-of-plane component
will be canceled with an external gate bias, restoring the
condition of the flat square well. The piezoelectric field inside
the QW and/or the barriers is proportional to the shear strain
in the crystal basis27

Ei = −1

εsε0
ei,j εj . (40)

Here, Ei lists the unprimed piezoelectric-field components
in the x-basis indexed by i = x,y,z, ε0 and εs are the
free-space and relative semiconductor dielectric constants, and
ei,j represents the piezoelectric tensor with j indices in Voigt
notation. We assume that Ei is zero in the unstrained substrate.
Recall that ε = (RM )−1(ε′)RM is the strain tensor derived from
Eq. (23) but expressed in the unprimed x-basis. For a zinc
blende crystal structure, even though the facet orientations
(110) and (111) have no shear strain in the growth a-basis,
they do have shear strain in the crystal x-basis. The (001) facet
orientation on the other hand does not have any shear strain.
The strain in Eq. (40) is represented in Voigt notation as for
Eq. (26) with j = 1,2, . . . 6. For zinc blende crystals, the only
nonzero piezoelectric coefficients are ex,4 = ey,5 = ez,6

27 and

we obtain

⎛⎜⎝Ex

Ey

Ez

⎞⎟⎠ = −1

εsε0

⎛⎝0 0 0 ex,4 0 0
0 0 0 0 ex,4 0
0 0 0 0 0 ex,4

⎞⎠
⎛⎜⎜⎜⎜⎜⎝

ε1

ε2

ε3

ε4

ε5

ε6

⎞⎟⎟⎟⎟⎟⎠ .

(41)

Table I lists the piezoelectric coefficients for GaAs and AlAs
and the coefficient for AlxGa1−xAs can be linearly interpolated
according to the x-Al content.27 The general shear strain
components in a QW are reproduced from Cadini and Stark24,55

and simultaneously derived using Eqs. (29), (23), (30), and
(31). It is useful to express the electric field in the primed
growth a-basis⎛⎜⎝E ′

a

E ′
b

E ′
c

⎞⎟⎠ = −2ex,4

εsε0
RM

⎛⎝εyz

εzx

εxy

⎞⎠ . (42)

The c component of the piezoelectric field E ′
c will affect

the electron subband energy by modifying the confinement
potential V (c,k) of Eq. (12) both in the strained well and in
the strained barrier:

V (c,k) =

⎧⎪⎨⎪⎩
qE ′

c,Wc, if |c| < W/2,

V0(k) + qE ′
c,WW/2 + qE ′

c,B(c − W/2), if c > W/2,

V0(k) − qE ′
c,WW/2 + qE ′

c,B(c + W/2), if c < − W/2,

(43)

where E ′
c,W and E ′

c,B are the out-of-plane c components of the
electric field in the well and barrier, respectively. As pointed
out by Adachi27 for (111) GaAs and AlAs, this piezoelectric
field points from the (111)B surface (As-terminated) to the
(111)A surface (Ga-terminated) when under positive c axis
strain.

The piezoelectric field in the QW and barrier material alters
both the quantum confinement energy and the wave function,
and in the limit of weak piezoelectric fields, the energy shift
can be estimated to be Eτ

pz = E ′
cW/2. For example, in strained

(111) AlAs on a GaAs substrate, the piezoelectric field is
E ′

c = 8.794 × 106 V/m, so for a QW width of W = 10 nm the
piezoelectric energy shift would be around Eτ

pz = 43.97 meV.
For the present treatment, we reiterate our assumption that

any nonzero out-of-plane component of piezoelectric field E ′
c

will be assumed to be canceled by an external gate voltage.

VI. VALLEY-SCATTERING UNIT CELL

In addition to calculating valley subband energies and
degeneracies, it is useful to visualize the valley orientations in
three dimensions in order to map relevant intervalley scattering
vectors. In this section, we lay down a general derivation of a
3D primitive unit cell, which we call the valley-scattering unit
cell (VSC), that aids in identifying in-plane and out-of-plane
intervalley scattering vectors. The proposed VSC is not a 3D
Brillouin zone, but a simple unit cell defined to have the
2D symmetry of the Miller index plane of the QW, while
preserving the total volume of the original 3D Brillouin zone.
This cell is to be also distinguished from the standard depiction
of a 2D Brillouin zone, which neglects the information about
the out-of-plane momentum, which is necessary for calculating
momentum-scattering matrix elements.
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To define such a unit cell, we first identify the 2D subset
of reciprocal Bravais lattice points that lie in the Miller index
plane of the QW. The original 3D Bravais lattice is composed
of parallel planes of this 2D sublattice, which are displaced
and separated by an interplanar wave vector 2π/d. We now
take the primitive unit cell of this 2D sublattice and extend it
in the perpendicular direction by an amount ±π/d, resulting
in a primitive unit cell with the same volume as the original
3D Brillouin zone. We call the resulting unit cell the VSC.
We define coordinates for each valley τ so that it lies within
the VSC.

QW structures induce characteristically anisotropic
scattering potentials, defined in the a-basis as Vs(a,b,c), that
can result in anisotropic intervalley scattering. Scatterers such
as a single monolayer step in the sidewall of a QW or a miscut
substrate with periodic sidewall steps are sharp on the order of
a single lattice period and could in principle induce large mo-
mentum intervalley scattering in the k space plane parallel to
the QW.

Recalling that the intervalley-scattering vector is Qττ , we
calculate the intervalley-scattering matrix element,

vττ = 〈ψτ (r)|Vs(a,b,c)|ψτ (r)〉 (44)

= 〈φ(r)uqτ (r)|Vs(a,b,c)eiQττ ·(a+b+c)|φ(r)uqτ (r)〉
=

∫
d3rφ∗(r)u∗

qτ (r)Vs(a,b,c)eiQττ
⊥ ·ceiQττ

‖ ·(a+b)

×φ(r)uqτ (r). (45)

To emphasize the importance of the out-of-plane intervalley
scattering vector, we write Qττ in the exponential as the sum of
an out-of-plane component Qττ

⊥ and the in-plane vector Qττ
‖ .

If we use the standard planar 2D Brillouin zone view, we lose
the representational importance of the out-of-plane scattering
component. Therefore, we choose to depict the VSC in all three
dimensions. Specific examples will be shown in the following
section, which demonstrate how all possible intervalley-
scattering events can be easily identified in such a cell.

VII. VALLEY DEGENERACY AND THE
VALLEY-SCATTERING UNIT CELL FOR AlAs QWs

We apply the above analysis to the AlAs multivalley system,
determining the valley vectors, mass tensors, and strain tensors
for the various growth directions, and then we calculate the
valley subband energies as a function of well width W for each
orientation. The three degenerate conduction-band electron
valleys are composed of six half valleys located at the X points
of the Brillouin zone edge, with valley vectors q100 = (2π/a)̂x,
q010 = (2π/a)̂y, and q001 = (2π/a)̂z for the Xx,Xy, and Xz

points, respectively. The superscripts express τ as momentum-
space directions after the notation of Van de Walle.22 The
AlAs electron valleys have anisotropic electron mass, with
heavy longitudinal mass ml = 1.1 me and light transverse
mass mt = 0.20 me, respectively.1,12,13 In the conventional
crystal x-basis, the mass tensor mτ is diagonal with mτ

ii = ml

for the mass component parallel to qτ and mτ
jj = mt for the

two transverse mass components, respectively.

Quantum confinement is created by sandwiching the AlAs
QWs between aluminum gallium arsenide (AlxGa1−xAs) lay-
ers, which have a high aluminium content x > 0.4. Properties
of the barrier alloy are determined by interpolating between
AlAs and GaAs, either linearly or with a bowing term where
applicable. We assume the reciprocal mass tensor in the
AlxGa1−xAs barrier layer to follow a linear interpolation for
use in Eqs. (10) and (11),56

w′τ
AlxGa(1−x)As = (x)w′τ

AlAs + (1 − x)w′τ
GaAs. (46)

For AlxGa1−xAs, Eτ
B is given by the relation52

Eτ
AlxGa1−xAs = xEτ

AlAs + (1 − x)Eτ
GaAs − bx(1 − x). (47)

For AlxGa1−xAs,52 the bowing term57 bτ is 0.055 eV for Eτ
GaAs

defined to be zero and Eτ
AlAs = 0.259 eV, where τ can be Xx ,

Xy , or Xz.
For all strain calculations, we assume AlAs to be strained

with respect to the GaAs substrate because in typical structures
the thickness of the intervening buffer AlxGa1−xAs layer is
below the critical strain relaxation thickness of 0.5 μm.58,59

Using Eq. (22), we can calculate the in-plane strain from the
lattice mismatch between the AlAs QW and the GaAs substrate

ε′
‖ = aGaAs − aAlAs

aAlAs
, (48)

where aGaAs = 0.564 177 nm (0.565 325 nm) is the lattice
constant of the GaAs substrate and aAlAs = 0.565 252 nm
(0.566 110 nm) is the lattice constant of the AlAs at 0 K
(300 K).52 The perpendicular strain component ε′

⊥ is calculated
using Eq. (23), where DM

0 is the biaxial Poisson ratio in the
respective growth direction. The strain energy is determined
from the absolute deformation potential for uniaxial strain at
the X point, 
X

u = 6.11 eV in AlAs.
In the following subsections, we compare and contrast

the calculated results for the (001)-, (110)-, (111)-, and
(411)-oriented QWs, as summarized in Fig. 2. In the left
panel of the figure, the transport basis vector ĉ is taken
along the growth direction. The differently colored ellipsoids
distinguish the triple- (purple), double- (red), and single-
(blue) degenerate valleys, each of these satisfy the robust
degeneracy condition given by Eqs. (37) or (38). For the
(001), (110), and (411) orientations, the strain energy breaks
the threefold valley degeneracy into twofold valleys and a
single valley. The growth direction governs which of these
valleys will have the lowest energy for a given range of
well widths. For the (111) orientation, symmetry dictates
threefold-degenerate Xx,y,z valleys for all well widths.

The right panel of Fig. 2 shows the results of the analytical
simulation of Eτ

0 , which gives the valley subband energies as a
function of the well width. The horizontal dashed lines indicate
the pure strain splitting energy 	Eτ , equivalent to the energy
splitting in the asymptotic wide-well limit. The analytical
results are confirmed by the semiconductor heterostructure
simulation software NEXTNANO.60,61 For the crossover QW
widths W0 indicated for the (001), (110), and (411) orienta-
tions, all valleys satisfy the degeneracy condition of Eq. (33)
simultaneously. The intervalley-scattering momentum vectors
Qττ for all the facets are listed in Table II.
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FIG. 2. (Color online) Depiction of the valley degeneracies for various QW orientations. Each row is labeled with its Miller index. Left
column: 3D representation of the X valleys showing both the CCC kx,ky,kz and the transport basis ka,kb,kc. In all diagrams, the double-degenerate
Xx,y valleys are red and the singly degenerate Xz valley is blue. For the (111)-oriented AlAs QW, the three degenerate Xx,y,z valleys are purple.
We note that the red and purple valleys exhibit robust valley-degeneracy condition whilst the intersection point of the red and blue traces in the
rightmost column identifies the crossover-degeneracy condition. The purple valleys satisfy the robust valley-degeneracy condition as well as
the crossover-degeneracy condition trivially for all well widths. Center column: 2D projection and 3D representation of the valley-scattering
unit cell described in the text. Right column: Valley-degenerate ground energy as a function of QW width for a QW barrier of Al0.45Ga0.55As
at T = 4 K. Dashed lines represent the calculated strain-energy shift of the respective electron valley relative to unstrained AlAs. The results
of the heterostructure simulation software NEXTNANO are depicted with scatter plots and verified with the analytical calculations shown as
continuous lines. The (111) and (411) calculations assume that the piezoelectric field has been canceled by a top gate to result in a flat QW.

A. (001) AlAs

For the (001)-oriented QW, the crystal axes are identical to
the growth axes, Fig. 2 (top row), thus the coordinate transfor-
mation matrix is the identity matrix R001 = I. The inverse mass
tensor follows trivially. The various mass parameters listed in
Table II are then used to calculate the respective energy terms
in Eq. (7). The biaxial Poisson ratio derived from Sec. III

is given by22 DM
0 = 2 c12

c11
, and the diagonal strain matrix has

D001
1 = D001

2 = 0. The strain tensor in the a-basis is

ε′ =
⎡⎣1 0 0

0 1 0
0 0 −0.854

⎤⎦ ε′
‖. (49)
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TABLE II. Reciprocal mass tensors w′τ for the various valleys in the transport basis for (001)-, (110)-, (111)-, and (411)-oriented AlAs
QWs. Intervalley-scattering vectors Qττ are listed, as are the 2D density-of-states (cyclotron) masses relative to the free-electron mass. The
2D density-of-states values nτ

2D are combined for robust-degenerate valleys.

M (001)

τ [100] [010] [001]

w τ = wτ

⎡
⎢⎣

0.91 0 0

0 5 0

0 0 5

⎤
⎥⎦

⎡
⎢⎣

5 0 0

0 0.91 0

0 0 5

⎤
⎥⎦

⎡
⎢⎣

5 0 0

0 5 0

0 0 0.91

⎤
⎥⎦

Q100,010

Q010,001

Q001,100

= ( 1 −1 0 ) 2π
a

= ( 0 1 0 ) 2π
a

= ( 1 0 0 ) 2π
a

mτ
2D [me] 0.469 0.200

nτ
2D [cm−2meV−1] 3.92 × 1011 8.36 × 1010

M (110)

τ [100] [010] [001]

w τ

⎡
⎢⎣

5 0 0

0 2.95 −2.05

0 −2.05 2.95

⎤
⎥⎦

⎡
⎢⎣

5 0 0

0 2.95 2.05

0 2.05 2.95

⎤
⎥⎦

⎡
⎢⎣

0.91 0 0

0 5 0

0 0 5

⎤
⎥⎦

Q100,010

Q010,001

Q001,100

= ( 0 −1.4142 0 ) 2π
a

= ( 1 0.7071 −0.7071) 2π
a

= (−1 0.7071 0.7071) 2π
a

mτ
2D [me] 0.260 0.469

nτ
2D [cm−2meV−1] 2.18 × 1011 1.96 × 1011

M (111)

τ [100] [010] [001]

w τ

⎡
⎢⎣

2.95 −1.18 −1.67

−1.18 4.32 −0.96

−1.67 −0.96 3.64

⎤
⎥⎦

⎡
⎢⎣

2.95 1.18 1.67

1.18 4.32 −0.96

1.67 −0.96 3.64

⎤
⎥⎦

⎡
⎢⎣

5 0 0

0 2.27 1.93

0 1.93 3.64

⎤
⎥⎦

Q100,010

Q010,001

Q001,100

= (1.2247 −2.1213 0) 2π
a

= (2.4494 0 0) 2π
a

= (1.2247 −0.7071 0) 2π
a

mτ
2D [me] 0.296

nτ
2D [cm−2meV−1] 3.72 × 1011

M (411)

τ [100] [010] [001]

w τ

⎡
⎢⎣

5 0 0

0 4.55 1.29

0 1.29 1.36

⎤
⎥⎦

⎡
⎢⎣

2.95 −1.93 −0.68

−1.93 3.18 −0.64

−0.68 −0.64 4.77

⎤
⎥⎦

⎡
⎢⎣

2.95 1.93 0.68

1.93 3.18 −0.64

0.68 −0.64 4.77

⎤
⎥⎦

Q100,010

Q010,001

Q001,100

= (−0.7071 0.6667 0.2357) 2π
a

= (−1.4141 0 0 ) 2π
a

= ( 0.7071 −0.6667 −0.2357) 2π
a

mτ
2D [me] 0.210 0.420

nτ
2D [cm−2meV−1] 8.77 × 1010 3.52 × 1011

The results of the Sec. III analysis for (001)-oriented QWs
including 2D density-of-states and cyclotron mass for each
valley are provided in Table II.

The center panel of Fig. 2 (001) depicts the VSC and its
2D projection. The 2D sublattice of coplanar reciprocal lattice
points is square symmetric, with the Xz valleys lying at the
corners of the unit cell and the Xx,y valleys at the edges. The
resulting VSC illustrates that all valleys can be connected by
purely in-plane scattering events, which is not obvious from
the usual depiction of (001) valleys. This can be verified in
Table II where the c component of the scattering vector Qττ

⊥ is
zero for all intervalley-scattering vectors.

As seen in Fig. 2 (001, right), strain alone, as indicated
by the horizontal dashed lines, contributes an energy shift
of 	E100,010 = −11.62 meV for the doubly-degenerate Xx,y

valleys while raising the singly degenerate strained Xz valley
by 	E001 = +9.93 meV, a net difference of 	 = 21.55 meV.
The ordering of the degeneracy changes at the crossover well
width W 001

0 = 5.4 nm.
Because (001) biaxial strain induces no shear component in

the crystal basis, there are no piezoelectric fields for this facet.

B. (110) AlAs

For the (110)-oriented QW in Fig. 2 (110, left), we apply
the rules of axis identification described in Sec. III. Unit
vector â lies along the lowest Miller index [001] direction,
making the Xz valley in-plane and b̂ along [110] completes the

right-handed coordinate system. The coordinate transforma-
tion matrix R110 is

R110 =

⎡⎢⎣ 0 0 1
1√
2

−1√
2

0
1√
2

1√
2

0

⎤⎥⎦ . (50)

The biaxial Poisson ratio derived in Sec. III is given by22

DM
0 = c11+3c12−2c44

c11+c12+2c44
, and the diagonal strain matrix has D110

1 =
D110

2 = 0.
The center panel of Fig. 2 (110) depicts the VSC and its

2D projection. The strain tensor is diagonal in the a-basis and
given by

ε′ =

⎡⎢⎣1 0 0

0 1 0

0 0 −0.616

⎤⎥⎦ ε′
‖. (51)

The results of Sec. III analysis for (110)-oriented QWs
including 2D density-of-states and cyclotron masses for each
valley are provided in Table II.

The 2D sublattice that defines the VSC has a centered-
rectangular symmetry. The Xz valley lies in this plane and
the Xx,y valleys lie outside of the central plane. In the VSC,
it is clear that whereas the Xx,y valleys can scatter amongst
each other with purely in-plane scattering, the Xz valley is
isolated and requires an out-of-plane component for intervalley

125319-9



S. PRABHU-GAUNKAR et al. PHYSICAL REVIEW B 84, 125319 (2011)

scattering. Table II reflects this result since only the Q100,010

scattering vector has a zero c component.
As seen in Fig. 2 (110, right), the singly degenerate Xz val-

ley has the lowest strain energy E001 = −12.94 meV whereas
the doubly degenerate strained Xx,y valleys have an energy of
E100,010 = −3.55 meV due to the smaller compressive strain.
A smaller strain differential of 	 = 10.77 meV is observed
between the valleys in this orientation as compared to the
(001) orientation. We observe the valley-degeneracy crossover
at W 110

0 = 5.3 nm.
A purely in-plane piezoelectric field arises in (110) QWs

due to the nonzero shear component of the strain tensor in the
x-basis. When Eq. (23) is transformed to the x-basis, the shear
components take the form55

εxy = −C11 − 2C12

C11 + C12 + 2C44
ε′
||, εyz = εzx = 0, (52)

leading to an electric field in the QW plane parallel to the [100]
a direction:

E ′
a = −2ex,4

εsε0
εxy. (53)

This electric field E ′
a = 7.942 × 106 V/m plays no role in

quantum confinement so that the flat QW assumption remains
valid, and the field is screened in plane by the electrons in the
QW within a Thomas-Fermi screening length of the sample
edges at ±a.

C. (111) AlAs

For the (111)-oriented QW, â is chosen along the lowest
Miller index [110] direction perpendicular to the growth axis
ĉ, and none of the valleys lie within the plane. Unit vector
b̂ is chosen along the [112] direction to complete the right-
handed coordinate system.20 The coordinate transformation
matrix R111 is

R111 =

⎡⎢⎢⎣
1√
2

−1√
2

0
1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

⎤⎥⎥⎦ . (54)

The biaxial Poisson ratio derived in Sec. III is given by22

DM
0 = 2 c11+2c12−2c44

c11+2c12+4c44
, and the strain matrix is diagonal with

D111
1 = D111

2 = 0. The strain tensor in the a-basis is

ε′ =
⎡⎣1 0 0

0 1 0
0 0 −0.55

⎤⎦ ε′
‖. (55)

The results of the Sec. III analysis for (111)-oriented QWs
including 2D density-of-states and cyclotron mass for each

valley are provided in Table II. The (111) QW valleys remain
threefold degenerate due to equal contributions of the strain
and confinement energies for all electron valleys as seen in
Fig. 2 (111) left.

The center panel of Fig. 2 (111) depicts the VSC and its
2D projection. The planar sublattice is hexagonal, with six
half-valleys located at the center of the hexagonal facets.

The resulting VSC shows that the valleys are all connected
with coplanar scattering vectors, as seen in Table II from
the zero c component of all Qττ . Figure 2 (111, right)
shows that all the valleys in this triply degenerate system are
equally strained to 	E100,010,001 = −7.0 meV and the robust
degeneracy condition given by Eq. (33) is trivially satisfied for
all well widths.

A purely out-of-plane piezoelectric field arises in (111)
QWs due to the nonzero shear component of the strain tensor
in the x-basis. When Eq. (23) is transformed to the x-basis, the
shear components take the form24,27

εxy = εyz = εzx = −C11 − 2C12

C11 + 2C12 + 4C44
ε′
||, (56)

leading to an electric field perpendicular to the QW plane
parallel to the c growth axis:

E ′
c = −2ex,4

√
3

εsε0
εxy. (57)

We will assume that this electric field E ′
c = 8.794 × 106 V/m

will be canceled by a gate voltage, so that the flat QW
assumption remains valid.

D. (411) AlAs

To demonstrate the utility of the formalism described in
this paper, we now extend our analysis to the less conventional
(411) AlAs QW, which has nonetheless shown important
results in the literature.6,62 Applying the same rules of axis
identification, â is chosen along the [011] direction, which is
the lowest Miller index along the plane of the QW. Unit vector
b̂ is chosen along the [122] direction to complete the right-
handed coordinate system. The coordinate transformation
matrix R411 is

R411 =

⎡⎢⎣ 0 1√
2

−1√
2

−1
3

2
3

2
3

4√
18

1√
18

1√
18

⎤⎥⎦ . (58)

Using the derivation for the strain ratios from Sec. III, for
the (411)-oriented QWs, we obtain D411

0 = 0.775 and D411
2 =

0.176. The explicit relations for the biaxial Poisson ratios for
AlAs (411)-QWs are

D411
0 = 6(c11 + 2c12)(4c11 − 4c12 + 19c44)

8c2
11 − (16c12 − c44)(c12 + 2c44) + c11(8c12 + 145c44)

− 1,

D411
2 = −15

√
2(c11 + 2c12)(c11 − c12 − 2c44)

8c11
2 − (16c12 − c44)(c12 + 2c44) + c11(8c12 + 145c44)

. (59)
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The results of Sec. III analysis for (411) including 2D
density-of-states and cyclotron mass for each valley are
provided in Table II. For this high-index facet, the strain tensor
is nondiagonal in the a-basis and given by

ε′ =
⎡⎣1 0 0

0 1 0.176
0 0.176 −0.775

⎤⎦ ε′
‖. (60)

The biaxial strain in the structure grown along [411] gives
rise to nondiagonal components in the strain tensor. The effect
of shear is depicted in Fig. 3 by the shear vector α [see
Eq. (32)], which lies in the plane of the QW and is parallel to
the b direction. The degeneracy condition takes into account
the shear component D411

1 and is given by Eq. (38).
Figure 2 (411, center) depicts the VSC and its 2D projection.

The 2D planar sublattice in Fig. 2 (411, center) has centered
rectangular symmetry.

From Fig. 2 (411, right), we obtain a crossover width
W 411

0 = 5.0 nm, and the valley occupation as a function
of well width follows an analogous discussion as for the
(110) case. However, we observe that the Xx valley is
singly degenerate and the Xy,z valleys are doubly degen-
erate. The strain component of the Xx valley energy is
	E100 = 6.82 meV, and that of the Xy,z valleys, which
satisfy the robust valley-degeneracy condition, is 	E010 =
−12.29 meV. A strain differential of 	 = 19.11 meV is ob-
tained. The two degenerate valleys have coplanar momentum
scattering as seen in the vector Q010,001, which has zero
c component.

A piezoelectric field with both in-plane and out-of-plane
components arises in (411) QWs due to the nonzero shear
component of the strain tensor in the x-basis. When Eq. (23)
is transformed to the x-basis, the shear components take the
form24

εxy = εzx = −(C11 + 2C12)(17C11 − 17C12 + 2C44)

8C2
11 − (16C12 − C44)(C12 + 2C44) + C11(8C12 + 145C44)

ε||,

εyz = −(C11 + 2C12)(8C11 − 8C12 − 7C44)

8C2
11 − (16C12 − C44)(C12 + 2C44) + C11(8C12 + 145C44)

ε||, (61)

leading to an electric field with components both in the QW
ab plane as well as parallel to the c growth axis:

E ′ = −2ex,4

εsε0

⎛⎜⎝− 1√
2
εxy + 1√

2
εzx

+ 4
3εxy − 1

3εyz

2√
18

εxy + 4√
18

εyz

⎞⎟⎠ . (62)

We will assume that the out-of-plane piezoelectric-field
component E ′

c = 1.783 × 106V/m will be canceled by a gate
voltage so that the square-QW assumption remains valid. The
piezoelectric-field component E ′

a is zero, and the in-plane com-
ponent E ′

b = 3.761 × 106 V/m will be screened at the sample
edges by the electrons in the QW.

FIG. 3. (Color online) Illustration of shear strain for the (411)-
oriented QWs due to the nonzero strain-to-shear ratio D411

1 . Pa-
rameters 	a, 	b, and 	c represent strain displacements along the
respective vectors of the transport a-basis, and α represents the shear
vector in the plane of the QW, which for the (411)-oriented QWs is
parallel to the b axis.

VIII. THE VALLEY-SCATTERING UNIT CELL AND
ANISOTROPIC INTERVALLEY SCATTERING

FOR AlAs QWs

This section first discusses the differences between the VSC
and standard depiction of the 2D Brillouin zone, and then
determines the inter to intravalley scattering ratio for valleys
near crossover degeneracy. In the VSC description for the case
of (111)AlAs, Fig. 4 shows the (111) AlAs VSC as well as
the 2D Bravais lattice of these cells. For comparison with this
hexagonal unit cell, the standard 2D Brillouin zone is plotted as
a smaller grey hexagon within this lattice.21 The hexagons A,
B, and C are intended to illustrate the relative positions of three

FIG. 4. (Color online) 3D representation of the valley-scattering
cell for (111)AlAs as well as 2D lattice of such cells. In AlAs, the
valleys are located at the q = (2π/a)(̂x,̂y,̂z). The standard depiction
of 2D Brillouin zone (small shaded hexagon)21 projects together
three identical but laterally and vertically displaced planar hexagonal
lattices, translated according to the representative hexagonal cells
A, B, and C. The area of standard 2D Brillouin zone is one third
that of the valley-scattering cell since its height is three times that
of the valley-scattering cell. Arrows illustrate the planar intervalley-
scattering vectors Qττ for (111)AlAs.
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identical planar hexagonal lattices, displaced from each other.
When these three layers are stacked in sequence ABCABC- out
of the plane we recover the full 3D reciprocal lattice. Whereas
the standard 2D Brillouin zone is defined from the overlay
of all three layers, we define the VSC from the 2D Brillouin
zone of a single layer only. The area of the hexagonal VSC for
(111) is thus three times larger than that of the traditional
hexagonal unit cell. The coplanar intervalley momentum
scattering vectors are shown with arrows in the VSC.

The VSC is helpful in depicting intervalley-scattering
events, so we will discuss the two main sources of single-
particle scattering for AlAs QWs, namely interface-roughness
and alloy-disorder scattering in the barrier. We find below
that near valley degeneracy, interface-roughness scattering
does not result in any significant intervalley scattering, and
in the presence of alloy scattering in the barrier walls,
the scattering rate for crossover intervalley scattering is
significantly repressed relative to robust intervalley scattering,
and this suppression factor is calculated.

We assume low enough temperatures such that acoustic
and optical phonons can be neglected. Elastic intervalley
scattering can only occur if the valley-splitting energy is less
than the Fermi energy at low temperatures |Eτ − Eτ | < EF,
or the thermal energy at high temperatures |Eτ − Eτ | <

kBT . Two independent processes can, in principle, result in
elastic intervalley scattering: interface-roughness scattering
and alloy-disorder scattering due to wave-function penetration
into the barrier alloy.

Interface roughness leads to local changes in the well
width 	(r) at an in-plane position r = (a,b), and the resulting
fluctuation in the quantization energy causes a scattering
potential.63 The roughness is characterized by the rms average
displacement of the interface 	 and the roughness correlation
length along the interface plane �, and is expressed as the
Gaussian autocorrelation function64

〈	(r)	(r ′)〉 = 	2exp

(
−|r − r ′|2

�2

)
, (63)

where 〈· · · 〉 means an ensemble average. The Fourier trans-
form of the roughness autocorrelation at the intervalley-
scattering vector Qττ is

〈|	Qττ |2〉 = π (	2�2)exp

[
− (�Qττ )2

4

]
. (64)

Following Quang et al.,65,66 the scattering potential URS for
the QW with a square potential and a well width W is given by〈∣∣Uττ

RS

∣∣2〉 = A

(
h̄2w′τ

W,cc

2W 3

)
〈|	Qττ |2〉, (65)

where w′τ
W,cc is the inverse confinement mass in the well

perpendicular to the interface and A is a unitless normalization
constant. Under optimal epitaxial conditions of slip-step
growth, the AlAs roughness disorder potential will have
correlation lengths of tens of lattice periods � = Na. Since the
intervalley-scattering vector Qττ is of the order of a Brillouin
zone boundary π/a and the intravalley-scattering vector is of
order zero, the ratio of intervalley scattering to intravalley scat-
tering is of order exp(−N2), which even for a conservative esti-
mate of N = 5 lattice periods of autocorrelation already yields

a suppression of more than 10 orders of magnitude for interval-
ley scattering. Thus intervalley surface-roughness scattering is
significantly suppressed with respect to intravalley scattering.

Alloy scattering is the other possible mechanism for
elastic intervalley scattering. The standard model for alloy
disorder scattering65,67 with variable alloy composition x(z) is
described by the autocorrelation function〈∣∣Uττ

AD

∣∣2〉 = a3
0V

2
0

8

∫ ∞

W
2

ψ2
τ (c)x(c)[1 − x(c)]ψ2

τ (c)dc, (66)

where a0 is the in-plane lattice constant and V0 is the spatial
average of the fluctuating alloy potential over the alloy unit
cell. In AlAs QWs, only tails of the wave function have an
alloy content in the AlxGa1−xAs barrier. One notes that the
wave functions of electrons in valleys with a light confinement
mass penetrate to a greater extent in the barrier and will have
a significantly larger alloy-scattering potential as compared
to the heavy confinement mass. Assuming valley degeneracy
for all valleys and plane-wave solution for the electron wave
function in the QW barrier, the scattering matrix element can
be written as〈∣∣Uττ

AD

∣∣2〉 = a3
0V

2
0

8

∫ ∞

W
2

A2
τ e

−2κτ cx(c)[1 − x(c)]A2
τ e

−2κτ cdc,

(67)

where Aτ = |ψτ (W/2)| and Aτ = |ψτ (W/2)| are the bound-
ary values of the wave function at the barrier, obtained by
solving for boundary conditions of the square wave potential.

We get a quantitative estimate of the ratio of the alloy
scattering γ× between crossover-degenerate valleys labeled
τ1 and τ3 compared to the scattering γ‖ between robust-
degenerate valleys labeled τ1 and τ2 in the AlxGa1−xAs barrier
by calculating〈∣∣Uτ1τ3

AD

∣∣2〉〈∣∣Uτ1τ2
AD

∣∣2〉 = γ×
γ‖

=
∫ ∞

W
2

A2
τ1
e−2κτ1 cx(c)[1 − x(c)]A2

τ3
e−2κτ3 cdc∫ ∞

W
2

A2
τ1
e−2κτ1 cx(c)[1 − x(c)]A2

τ2
e−2κτ2 cdc

,

(68)

where c is the direction of integration out of plane. For the case
of (001)-, (110)-, and (411)-oriented AlAs QWs, γ×

γ‖
= 0.0012,

0.0691, and 0.0235, respectively. The valley with the larger
confinement mass penetrates less into the barrier region and
results in a smaller scattering integral ratio. The VSC makes it
easy to visually identify this anisotropic scattering possibility
along the various orientations.

Electron-electron intervalley scattering is outside the scope
of this article and will be treated elsewhere. It is expected to
be small since the Fermi wave vector kF is much smaller than
the intervalley-scattering vector68 Qττ .

IX. VALLEY DEGENERACY IN MISCUT SAMPLES

In this final section, we show how the analysis of
Sec. III can be applied to miscut samples to determine the
projected masses, ground-state energies, and strain energies.
Miscut samples are prevalent in the literature, for example,
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(111) GaAs/AlAs growth has been shown to have superior
morphology with a miscut angle from 0.5◦ to 4◦ and, in
general, intentional miscuts improve growth quality due to
slip-step growth.69–72 In Si, recently investigated hydrogen-
terminated (111) Si miscut surfaces have shown very high
mobility73 and the wafer miscut is expected to break the valley
degeneracy.43,74

Miscut samples are characterized by two angles. One angle
φ designates the azimuthal angle in the ab plane relative to
the a axis toward which the plane is tilted, often expressed as
an in-plane Miller index tilt direction T . The other angle θ

designates the polar tilt angle relative to the surface normal ĉ.
Experimentally, the angles can be deduced from atomic-force
microscope images of surface monolayer steps, where φ is
oriented perpendicular to the steps, and θ = atan(a/2L) is
deduced from knowing the monolayer thickness a/2 and the
average width of the monolayer steps L. We define a new
coordinate transformation RM

θ,φ for the miscut samples by
introducing the azimuthal and polar rotations Rφ and Rθ ,
respectively:

RT = Rφ =

⎡⎢⎣cosφ −sinφ 0

sinφ cosφ 0

0 0 1

⎤⎥⎦ , (69)

Rθ =

⎡⎢⎣ cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

⎤⎥⎦ . (70)

We obtain a new coordinate transformation matrix RM
θ,φ

for calculating the transport parameters and the strain tensor
analysis of miscut samples

RM
θ,φ = (RφRθR−1

φ )RM. (71)

Note that a VSC cannot be defined for miscut samples, but
only for those with a pure Miller index.

We outline here the procedure for determining valley
subband energies under miscut. First, the transformation
matrix RM

θ,φ from Eq. (71) determines the inverse mass tensor
of each valley with Eq. (9), and the out-of-plane inverse mass
tensor component can be used in Eq. (10) to determine the
ground confinement energies of each valley. The in-plane
inverse mass tensor is then calculated with Eq. (14) and
used in Eq. (15) to obtain the kinetic energy. The stress
tensor can be determined by applying RM

θ,φ in Eq. (29),
and the strain ratios DM

i can be determined by minimizing
the elastic energy with Eqs. (28)–(30). Finally, the strain-
energy shift can be deduced from Eq. (19) and added to the
ground quantum confinement and kinetic energies to arrive
at the final valley energies. Any piezoelectric fields can be
determined by transforming the strain tensor to the unprimed
frame ε and inserting the appropriate shear components into
Eq. (42).

X. CONCLUSION

In conclusion, we review the advantages and limitations of
the formalism we have developed for valley subband energy
calculations. We first derived how the valley index is a valid
pseudospin index in a multivalley system. A key element of our

model is the definition of two relevant bases: the conventional
crystal x and the transport a-basis. We use this notation to find
the projected in-plane and out-of-plane effective masses, the
electron subband energy and degeneracy, piezoelectric fields,
and the scattering vectors.

There are five competing energy scales in multivalley QWs
namely in-plane kinetic energy, confinement energy, strain
energy, piezoelectric energy, and Fermi energy, all of which
influence valley occupancy. Strain in the QW breaks valley
degeneracy and results in an energy differential, 	Eτ of
0–20 meV between nondegenerate valleys. The strain energy is
independent of the QW width unlike the quantum confinement
energy, which increases as the QW width decreases and is
inversely proportional to the confinement mass; typical con-
finement energies Eτ

0 are of the order of 20 meV for a narrow
QW about 5-nm wide and 5 meV for a 20-nm-wide QW.
We defined a robust valley-degeneracy condition to identify
valleys that are degenerate independent of well width, and a
crossover-degeneracy condition where valleys are degenerate
only for a particular crossover well width W0. We showed that
piezoelectric fields in the QW and barrier materials can arise in
certain facets such as (111) and (411), and cause piezoelectric
energy shifts Eτ

pz as large as 50 meV for a (111) QW about
10-nm wide, and that such a piezoelectric field can be canceled
by an external gate voltage. The smallest energy scale in these
QWs is the Fermi energy, which is a few meV depending on the
degeneracy for electron densities around n2D ∼ 3 × 1011cm−2

and assuming an effective mass mτ
2D ∼ 0.3me. With such a

small Fermi energy, valley occupation is strongly defined by
the interplay of the various other energy scales in the problem.
We once again emphasize that it is due to the similarity
of all the energy scales that none of them can be ignored
and must be treated carefully to calculate valley subband
energy.

Valley degenerate systems have an extra scattering channel
not present in single-valley systems, namely, intervalley
scattering. We identified the main intervalley scattering mech-
anisms as the interface-roughness and alloy-disorder scattering
due to wave-function penetration into the barrier and calculated
the suppression factor at the crossover well width W0 for
intervalley scattering between different sets of valleys. We also
defined a valley-scattering primitive unit cell to easily identify
scattering events between the robust-degenerate and crossover-
degenerate electron valleys. We drew the VSC for the special
case of AlAs grown along four different orientations, the
high-symmetry facets (001), (110), and (111), as well as a
low-symmetry facet (411) to demonstrate the utility of our
model. Furthermore, we explained the relevance of the VSC
description for visual identification of anisotropic intervalley
scattering in AlAs QWs.

In the final section, we demonstrated the power of our for-
malism to determine valley degeneracy for arbitrary substrate
orientation, without being restricted to Miller-indexed planes
as is prevalent in the literature. We consider the example of
a miscut sample and define the additional notation required
to address angle deviation from conventional growth axes.
We then detail the procedure to calculate all the ground-
energy parameters as well as the strain-tensor analysis for
miscut samples. It is worth repeating that the formalism
developed here is sufficient to calculate valley degeneracy for
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any substrate orientation, and need not be aligned with any
Miller-index facet.

There are some important limitations of our formalism.
Firstly, we assume layer thicknesses are all within the strain-
relaxation limit such that there are no strain-induced defects
below or within the QW. These would relax the lattice
constant relative to the substrate, thus one would have to first
determine the adjusted lattice constant at the QW layer and
then apply the formalism developed here to deduce valley
degeneracy. Secondly, we assume nearly empty QWs and do
not calculate the Schrödinger equation self-consistently with
the Poisson equation. However, our formalism for calculating
the various valley subband energies can be applied to standard
self-consistent solvers to obtain the proper Hartree solution.
Lastly, whereas the formalism takes into account the change
in the confinement potential due to piezoelectric fields, it does
not address larger structural considerations such as modulation
doping layers, surface pinning potentials, electrostatic charges,
and piezoelectric fields in the barrier, all of which would
have to be calculated together to determine the confinement
well potential and Fermi energy. We note, however, that the
piezoelectric equations provided here can be used to determine
the piezoelectric fields in the strained barriers.
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APPENDIX: ANALYTICAL EQUATIONS OF THE STRAIN
TENSOR AND THE STRAIN RATIOS FOR ARBITRARY

SUBSTRATE ORIENTATIONS

In Sec. III, we derive the strain ratios DM
i by minimizing

the free energy of the strained layer. This section presents
a generalized treatment to express these strain ratios for an
arbitrary substrate orientation with cubic symmetry, given its
coordinate transformation matrix RM , the elastic constants

cijkl in the CCC x-basis, and the in-plane strain ε′
|| in the

transport a-basis.
We first obtain the fourth-order rotated elastic stiffness

tensor c′
mnop in the a-basis by rotating the fourth-rank elastic

stiffness tensor cijkl from the CCC basis x = (x,y,z) to the
transport basis a = (a,b,c),

c′
mnop =

∑
ijkl

RM
miR

M
nj RM

okRM
plcijkl, (A1)

where RM is the coordinate transformation matrix defined
in Eq. (8). The rotated fourth-rank tensor c′

mnop in the CCC
x-basis should then be mapped to C ′

ij using the Voigt notation.
The strain tensor components ε′

ij in the transport a-basis are
given by

ε′
aa = ε′

bb = ε′
‖ = asubstrate − alayer

alayer
, (A2)

ε′
ab = ε′

ba = 0, (A3)

ε′
ac = ε′

ca = λμ − ηω

λκ − η2
ε′
‖ = DM

1 ε′,‖ (A4)

ε′
bc = ε′

cb = ω − ηDM
1

λ
ε′
‖ = DM

2 ε′
‖, (A5)

ε′
cc = ε′

⊥ = α − 2C ′
34D

M
2 − 2C ′

35D
M
1

C ′
33

ε′
‖ = −DM

0 ε′
‖, (A6)

where the denominators in Eqs. (A4), (A5) and (A7) are always
nonzero, the coefficients α, β, and γ are first order, and the
coefficients λ, κ , η, ω, and μ are second order in the elastic
stiffness tensor components C ′

ij :

α = −(C ′
13 + C ′

23), (A7)

β = −(C ′
14 + C ′

24), (A8)

γ = −(C ′
15 + C ′

25), (A9)

λ = 2C ′
33C

′
44, (A10)

κ = 2C ′
33C

′
55, (A11)

η = 2(C ′
33C

′
45 − C ′

34C
′
35), (A12)

ω = C ′
33β − C ′

34α, (A13)

μ = C ′
33γ − C ′

35α. (A14)
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