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Quantum dot (QD) blinking is characterized by switching between an “on” state and an “off” state, and a
power-law distribution of on and off times with exponents from 1.0 to 2.0. The origin of blinking behavior in
QDs, however, has remained a mystery. Here we describe an energy-band model for QDs that captures the full
range of blinking behavior reported in the literature and provides new insight into features such as the gray state,
the power-law distribution of on and off times, and the power-law exponents.
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Semiconductor quantum dots (QDs) represent one of many
systems that exhibit intermittent fluorescence, or blinking,
characterized by switching between an “on” state and an “off”
state. The on and off times span a broad range, typically from
milliseconds to minutes, and exhibit power-law behavior (f =
Bτ−α) with exponents (α) between 1.0 and 2.0. In some cases,
switching may occur between an on state and a low-intensity
or “gray” state. The origin of the blinking behavior in QDs,
however, has “remained a mystery.”1

In 1997 Efros and Rosen2 proposed the most cited model for
QD blinking.3 In this four-state model based on semiconductor
physics, a QD (state 1) can absorb a photon generating an
electron-hole pair (state 2). Radiative band-to-band recombi-
nation results in emission of a photon (and return to state 1),
whereas absorption of a second photon, before recombination
of the electron-hole pair, leads to the creation of two electron-
hole pairs (state 3). There are two possible pathways from
this state: (1) radiative band-to-band recombination (return
to state 2), and (2) nonradiative Auger recombination with
simultaneous excitation of an electron to a trap state, resulting
in a valence band hole and a trapped electron (state 4). The
trapped electron is assumed to have very slow detrapping
kinetics resulting in the off state. Auger recombination is an
intra-QD energy transfer interaction in which the excess energy
from a band-to-band recombination event is transferred to a
spectator charge carrier rather than emitted as a photon.

While various modifications to the Efros-Rosen model
have been suggested, and other statistical models have been
proposed to explain the power-law behavior,1,4–6 the physics
of the blinking behavior remains unresolved.1,7,8 Here we
describe an energy-band model for QDs that captures the range
of blinking behavior reported in the literature and provides
insight into features such as the gray state, the power-law
distribution of on and off times, and the power-law exponents.

I. MODEL IMPLEMENTATION

A. Intensity-time curves

Figure 1 shows energy-band diagrams for the various states
in our model, along with the associated rate constants. Our
model is implemented using standard kinetic Monte Carlo
methods (KMC)9 and is based on the physics of QDs10–12

combined with descriptions for recombination and trapping

processes widely used in device physics (Table I). We denote
each state in the QD as (ij), where i is the total number of
electrons (holes) in the QD, and j is the number of trapped
charge carriers. Without losing any generality, we assume that
only electrons can be trapped. From examination of Fig. 1 it is
evident that p = i, n = i − j, and s− = j, where n is the number
of free electrons, p is the number of free holes, and s− is the
number of occupied trap states.

For each state (ij) there are several possible transitions to
adjacent states, and these transitions have corresponding rates
r1, r2,. . .rn. The time that a QD will remain in a certain state
is given by �t = –lnR/

∑
ri , where R is a random number

between 0 and 1. The probability that a QD will move to a
particular state is given by ri/

∑
ri . A QD with no electrons

or holes is designated as in the (00) state (n = 0, p = 0,
s− = 0). Absorption of a photon and the generation of an e-h
pair results in a transition to the (10) state (n = 1, p = 1,
s− = 0). From the (10) state, there are three possible
transitions, indicated by the arrows in Fig. 1: (1) radiative
recombination (kr ) returns the QD to the (00) state with the
emission of a photon, (2) trapping of the electron (kt ) results
in a transition to the (11) state (n = 0, p = 1, s− = 1), and (3)
absorption of another photon (g) results in a transition to the
(20) state (n = 2, p = 2, s− = 0).

The transition from the (10) state is determined from the
sum of all possible rates (rr + rt + g), as described above. For
the (10) state, the residence time is given by �t = –lnR/(rr +
rt + g). We then subdivide the range from 0 to 1 into three
parts, each with a length the same as the probability of each
transition. For example, the probability of the transition from
the (10) state to the (00) state is determined by rr/(rr + rt + g).
The transition is then selected by generating another random
number between 0 and 1. Since kr is typically much larger
than g and kt , there is a high probability that the QD will
relax from the (10) state to the (00) state. Oscillation between
the (00) and (10) states represents sequential absorption and
emission in the QD. Population of the (20) state gives rise
to the possibility of Auger recombination, which is usually
considered to be faster than radiative recombination. For all
transitions between (i0) states, the QD is considered to be in
the on state and no blinking is observed. Even though Auger
recombination (kA) may dominate in (i0) states with i � 2, we
consider these configurations as on states as they return to the
(00) state with high probability.
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FIG. 1. (Color) Energy-band diagrams illustrating the dynamics
of electron-hole pairs in blinking quantum dots. (a) Physical processes
in quantum dot blinking: g:generation rate, kr : recombination rate
constant, kA: rate constant for Auger recombination, kt : trapping rate
constant, kd : detrapping rate constant, knrt: rate constant for non-
radiative recombination. (b) Auger recombination in quantum dots.
Band-to-band recombination is coupled with excitation of a charge
carrier (in this case a hole) that quickly relaxes (on the order of
picoseconds) back to the band edge.

The population of states with trapped carriers (j � 1) results
in off states. For example, consider the (21) state (n = 1, p = 2,
s− = 1), for which there are six possible transitions: (1) return
to the (20) state by detrapping (kd ), (2) transition to the (10)
state by nonradiative recombination involving the trap state
(knrt), (3) transition to the (31) state by absorption of a photon
and generation of an e-h pair (g), (4) transition to the (11) state
by radiative recombination and generation of a photon (kr ),
(5) transition to the (11) state by Auger recombination (kA),
and (6) transition to the (22) state by trapping the conduction
band electron (kt ).

From Fig. 1 it is evident that if kA > kr (and kA > kt , kd ,
knrt) then the QD will remain in the off state since e-h pair
generation will most likely be followed by a return to the
same state through nonradiative Auger recombination (kA).
Detrapping (kd ) and nonradiative recombination via trap states
(knrt) both return the QD to the on state. Switching between the
on and off states that leads to blinking is controlled by kt , kd ,
and knrt which are generally much slower than g, kr , and kA.
The intensity-time curves are obtained by counting the number
of photons emitted in each bin (integration) time (In).

B. On-time fraction (Pon)

To characterize the blinking behavior for a given set of
rate constants, we first write the system of rate equations
corresponding to the processes indicated in Fig. 1. We denote
the probability of finding a QD in a given state by Pij . For
example, the (00) state can be accessed from the (10) state
by radiative recombination (kr ), or from the (11) state by
nonradiative recombination via trap states (knrt). In addition,
the (00) state can transition to the (10) state by generation of
an e-h pair (g) which would decrease the probability of finding
a QD in the (00) state. Thus, the time-dependent probability
for the (00) state is given by

dP00

dt
= krP10 + knrtP11 − gP00. (1)

As an example, the system of equations for a maximum of
2 e-h pairs is

dP00

dt
= krP10 + knrtP11 − gP00, (2)

dP10

dt
=gP00 + kdP11 + 1 · 2knrtP21+(2 · 2kr + 2 · 22kA)P20

− (kr + skt + g)P10, (3)

dP20

dt
=gP10 + kdP21 − (2 · 2kr + 2 · 22kA + 2skt )P20,

(4)

dP11

dt
= sktP10 + 2 · 2knrtP22 + (1 · 2kr + 1 · 22kA)P21

− (kd + knrt + g)P11, (5)

TABLE I. Summary of processes included in the model and the corresponding rate equations.

Process Rate equation

Radiative recombination rr = krnp kr : rate constant for radiative recombination
n: number of electrons

p: number of holes
Auger recombination rA = kAnp2 kA: rate constant for Auger recombination
Trapping rt = ktns0 kt : rate constant for trapping

s: total number of trap states (s = s0 + s−)
s0: number of empty trap states

s−: number of occupied trap states
Note: We arbitrarily choose s = s− + s0 = 10

Detrapping rd = kds
− kd : rate constant for detrapping

Nonradiative recombination rnrt = knrts
−p knrt: rate constant for nonradiative recombination

125317-2



BLINKING IN QUANTUM DOTS: THE ORIGIN . . . PHYSICAL REVIEW B 84, 125317 (2011)

dP21

dt
= 2sktP20 + gP11 + 2kdP22 − [kd + 2knrt + 2kr

+1 · 22kA + 1 · (s − 1)kt ]P21, (6)

dP22

dt
= 1 · (s − 1)ktP21 − (2 · 2knrt − 2kd )P22. (7)

The equations can be solved for different values of the rate
constants by recognizing that in steady state dPij /dt = 0 and
that �Pij = 1. The on-time fraction Pon is given by

Pon =
∑

Pi0. (8)

The off-time fraction Poff is given by

Poff =
∑
j�1

Pij . (9)

Experimentally, Pon is usually obtained by defining a
threshold (Ith) between the on and off intensities (Ion and Ioff).
This procedure may introduce artifacts; however, as long as
the on and off intensities are well separated then Pon is the
same for both methods.

C. Distributions of on and off times

Intensity distributions were obtained from intensity-time
curves. To obtain the on and off times, we first determined
the threshold intensity Ith from the intensity distribution.
Gaussians were fit to the on and off peaks and Ith was obtained
from the intersection point between the two peaks. The QD was
considered to be “on” when In � Ith, and “off” when In < Ith.
If In remains above or below Ith for i sequential time bins, then
τi,on/off = iτbin. The intensity-time curve is thus converted to
a sequence of on and off times. We then create a histogram
describing the number of occurrences Ni of each duration τ i

(1 � i � M). The shortest duration (τ1) is limited by the bin
time (τbin), while the longest duration (τM) is limited by the
total time (τtotal). Total number of occurrences of on or off
times is

N total =
∑

1�i�M

Ni. (10)

The distribution of on and off times, or formally, the
probability density fi , is given by

fi = Ni/N
total

[(τi+1 − τi) + (τi − τi−1)]/2
, (11)

where 2 � i � M–1. At the limits (i = 1 and i = M) we set
τ 0 = τ 1 and τM+1 = τM. The power-law exponents (αon/off)
or exponential times (τ 0,on/off) are determined from a least-
squares fit of the log(fi ,on/off) versus log(τ i ,on/off) curves.

D. Quantum yield

The on and off quantum yields were calculated by averaging
all the intensities above or below the threshold over time
divided by the number of photogenerated electron-hole pairs:

QYon =
∑

In>Ith
In∑

gn

, (12)

QYoff =
∑

In<Ith
In∑

gn

. (13)

Experimentally, evaluation of QYon and QYoff requires
careful analysis of the distribution of intensities from intensity-
time curves. If the intensities associated with the on and off
states are well separated then it is trivial to set an appropriate
threshold. However, if the distributions of on and off intensities
overlap, then distinguishing between on and off states is
more difficult. This can often be accomplished by fitting two
Gaussians to the distribution, one representing the on state and
one representing the off state.

E. Generation

The generation rate g (ms−1) in a spherical QD with
absorption coefficient α (cm−1) is given by

g = I0πd2

4hν

[
1 − 2

1 − (1 + αd) e−αd

(αd)2

]
, (14)

where I0 is the incident power density (W cm−2), hν is the
photon energy, and d is the QD diameter. We assume that the
absorption coefficient for a nanoparticle is the same as for a
bulk material.

Absorption can also be defined in terms of the absorption
cross section σ :

σ = πd2

4

[
1 − 2

1 − (1 + αd) e−αd

(αd)2

]
, (15)

such that g = I0σ/hν.
For a 5-nm-diam CdSe QD, taking an absorption coefficient

α = 105 cm−1 at λ = 400 nm (Ref. 13) and an incident power
density of 0.1–1000 W cm−2 (Refs. 14–16), the generation
rate g is typically in the range 1–104 ms−1.

The generation rate is linearly dependent on incident power
density, QD volume, and absorption coefficient.3 The bulk
absorption coefficient for most semiconductors of interest is in
the range from 105 to 106 cm−1. The QD diameter is typically
3–10 nm, corresponding to an order-of-magnitude range of
volume. Although the range of power density may be quite
large, experimentally, the power density is adjusted so that the
emission from the QD does not saturate the detector using an
exposure time of around 10 ms.

F. Trapping and detrapping

Radiative band-to-band recombination is expected to be fast
with a rate constant kr = 103–106 ms−1 (Table II).17–21 If there
are more than two free carriers in a QD, Auger recombination
[Fig. 1(b)] is expected to be dominant with a rate constant
kA = 105–108 ms−1 (Refs. 22–27).

It is evident from examination of an energy-band diagram
(Fig. 1) that trapping, detrapping, and Auger recombination
are essential to create configurations where blinking is
observed. In configurations where trap states are occupied
(j � 1), electron-hole pairs are eliminated primarily by Auger
recombination (kA > kr ) and the QD is predominantly in an
off state. Conversely, configurations where j = 0 can easily
reach the (10) state where radiative recombination dominates.
Thus configurations in the top row (j = 0) represent the on
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TABLE II. Typical values of parameters used in the model.

Parameter Typical values (ms−1)

kr 103–106

kA 105–108

g 1–103

Constant trapping and detrapping rates

kt 10−4–102

kd + knrt 10−3–10−2

Variable trapping and detrapping rates

kt 10−2–102

kd + knrt 10−5–10−1

rt,eff 10−5–10−1

rd,eff 10−5–10−1

state of a QD, and configurations below the top row (j � 1)
correspond to the off state.

The rate of trapping is given by rt = ktns0 where n is the
number of electrons in the QD and s0 is the number of empty
trap states. The detrapping rate is given by rd = kds

− where s−
is the number of occupied trap states. For all results reported
here, we arbitrarily choose 10 trap states (s = 10), although as
we show later, the steady-state number of trapped electrons is
typically < 3.

Blinking requires switching between an on state (i0) and an
off state (ij) where j � 1. The overall trapping and detrapping
rates for a single QD, taking into account all configurations,
can be described in terms of effective trapping and detrapping
rates:

rt,eff =
∑

rt,i0Pi0∑
Pi0

= skt

∑
Pi0∑

Pi0
, (16)

rd,eff =
∑

(rd,i1 + rnrt,i1)Pi1∑
j�1 Pij

= kd

∑
Pi1 + knrt

∑
iPi1∑

j�1 Pij

,

(17)

where Pij is the probability of state (ij). The blinking behavior
can then be described in terms of the on-time fraction Pon, as
a function of rt,eff and rd,eff :

Pon = rd,eff

rt,eff + rd,eff
, (18)

where Pon = 1 for a QD that is always on and Pon<

1 for blinking. To achieve the on and off times observed
experimentally, typically in the range from 1 ms to 100 s,
the effective trapping and detrapping rates should be on the
order of 10−5–100 ms−1.

II. RESULTS AND DISCUSSION

Intensity-time curves from the model are able to reproduce
the full range of behavior observed experimentally. Figure 2(a)
shows a typical nonblinking luminescence curve. For an
integration (bin) time of 10 ms, the distribution of on intensities
shows a peak at around 100 photons, corresponding to a
quantum yield of 1.0. Increasing rt,eff/rd,eff to 10−1 by
changing kt results in blinking with Pon = 0.91 [Fig. 2(b)].
The average on intensity (Ion) remains 100 photons per bin
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FIG. 2. Simulated intensity-time curves, and intensity distribu-
tions as a function of effective trapping-detrapping ratio rt,eff/rd,eff

with kd = 10−3 ms−1, knrt = 0 ms−1, s = 10, kr = 105 ms−1, kA = 107

ms−1, g = 10 ms−1. (a) rt,eff/rd,eff = 10−4 (kt = 10−4 ms−1), (b)
rt ,eff/rd,eff = 10−1 (kt = 10−1 ms−1), (c) rt,eff/rd,eff = 100 (kt = 100

ms−1), (d) rt,eff/rd,eff = 10 (kt = 10 ms−1). In all cases the integration
(bin) time was 10 ms, and (e) Dependence of Pon on the effective
trapping/detrapping ratio rt,eff /rd,eff showing that blinking occurs
over a range of rt,eff/rd,eff from 10−2 to 102.

(QYon = 1.0) with a maximum frequency of 91% of the value
for the corresponding nonblinking curve [Fig. 2(a)]. The off-
intensity distribution is much narrower than the on-intensity
distribution, and would only be observed experimentally if
the fluctuations are larger than the noise of the photodetector.
Increasing rt,eff/rd,eff to 100 decreases Pon to 0.5 [Fig. 2(c)],
and increasing rt,eff/rd,eff further to 101 decreases Pon to 0.09
[Fig. 2(d)]. These results show that the blinking behavior is
controlled by rt,eff/rd,eff .

Figure 2(e) shows that the blinking regime occurs over a
range of rt,eff/rd,eff from 10−2 to 102. To illustrate the relative
importance of the parameters in the model, we consider a
simple case involving the (00), (10), (11), (21) states. These
are the four states most frequently occupied at low generation
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rates. Taking into account the relevant rate constants, it is
straightforward to show that

rt,eff = sktg

g + kr

, (19)

rd,eff = (kd + knrt)(kr + 2kA)

g + kr + 2kA

. (20)

In most cases of experimental interest, kr > g and hence
rt,eff → sktg/kr . Similarly, it is also expected that kr + 2kA >

g, so that rd,eff → kd + knrt and hence Pon is independent of
kA (at constant s, kt , and kd + knrt). Deviations from these
approximations are observed at higher generation rates.

From Eq. (19) it is seen that increasing the generation rate
results in an increase in rt,eff and hence is expected to decrease
Pon. The generation rate is dependent on several parameters;
however, for a given system it is very difficult to vary the
generation rate over a wide range: the generation rate must be
high enough so that the signal on the detector allows the on
and off states to be clearly distinguished, but not too high to
result in saturation.

The trapping and detrapping processes are controlled
by kt and kd + knrt. kt and kd can be described by two
possible mechanisms.28 (1) Trapping and detrapping involve
delocalized electrons and states at the core-shell interface.
Energetically, the trap states are expected to be located in
the band gap so that trapping is downhill and detrapping is
thermally activated. (2) Trapping and detrapping occur by
tunneling between delocalized electrons in the core to states
in the shell or at the surface of the shell if it is sufficiently thin.
Nonradiative recombination via trap states knrt contributes to
blinking in the same way as kd even though they represent
different physical processes.22 The expressions for kt , kd , and
knrt are dependent on the mechanism but do not influence the
results reported here.

A. Binning time and total time

The binning time, which is usually set by the minimum
camera exposure time necessary to distinguish the QD from the
background (typically in the range from 200 μs to 100 ms, but
usually around 10 ms),15,29,30 plays a key role in determining
the blinking characteristics. If the effective trapping and
detrapping rates, rt,eff and rd,eff are faster than 1/τbin, then
switching is likely to occur in each frame and the QD will
appear always on with an average intensity Iav = ImaxPon,
where Imax = gτbin. Conversely, if rt,eff and rd,eff are slower
than 1/τtotal (where τtotal is typically up to 1000 s), then there
will be very few switching events in the intensity-time curves.
Thus for blinking to occur, rt,eff and rd,eff must be >1/τtotal and
<1/τbin. Practically, this corresponds to a range from ∼10 ms
to ∼100 s.

B. Gray state

Experimentally, intensity-time curves for QDs sometimes
show an off state that is above the background signal of the
detector, the so-called gray state.14,25,31 Figure 3(a) shows an
intensity-time curve where the parameters are the same as
for Fig. 2(c), except that kA is decreased from 107 ms−1 to
106 ms−1. The intensity distribution [Fig. 3(a)] shows the
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FIG. 3. Influence of important rate constants on the on and off
intensities. (a) Intensity-time curve (photons/10 ms) and intensity
distribution illustrating the gray state. The parameters are the same
as for Fig. 2(c) except that kA is decreased from 107 ms−1 to
106 ms−1. Other parameters are kr = 105 ms−1, g = 10 ms−1,
kt = 100 ms−1, kd = 10−3 ms−1, knrt = 0 ms−1, and s = 10 with
rt,eff/rd,eff = 1. (b) On and off intensities and their fluctuations
versus kA/kr (1–103) with kr = 105ms−1. Other parameters are
the same as (a). (c) Quantum yield for on and off states versus
generation rate g (1–103 ms−1) at different radiative recombination
rates (kr = 103–106 ms−1) with kA/kr = 10. Other parameters
are: s = 10, kd = 10−3 ms−1, knrt = 0 ms−1, kt chosen such that
rt,eff/rd,eff = 100 and Pon = 0.5. (d) Probability of the steady-state
number of electron-hole pairs versus generation rate (g = 1–103

ms−1), with other parameters the same as in (a).

emergence of a gray state where the off-state distribution is
shifted above zero.

The gray state is dependent primarily on kA, kr , and g.
Figure 3(b) shows the magnitude of on and off intensities, as
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well as the amplitude of their fluctuations, plotted versus kA/kr

(kr = 105 ms−1). For a bin time of 10 ms, the on intensity
is ∼100 photons/bin with fluctuations of ∼10 photons/bin,
independent of kA/kr . In the off state, the radiative and Auger
recombination pathways operate in parallel, and hence we have

QYoff = 1

1 + 2kA/kr

. (21)

Thus as kA → kr , QYoff increases and reaches a value
of 0.33 when kA = kr . Also note that when QYon = 1 then
QYoff = Ioff/Ion.

When kA/kr is large, Ioff/Ion → 0, and the off state in an
experiment would coincide with the background signal of the
detector. In contrast, as kA → kr , Ioff/Ion becomes significant
so that the off state can be resolved above the background
signal of the detector. In all cases, the on and off intensities
and their fluctuations are not significantly influenced by the
trapping and detrapping rate constants.

The influence of g and kr on the on and off quantum yields
for a typical gray state is shown in Fig. 3(c). The ratio kA/kr is
maintained constant and the trapping rate constant is tuned so
that the on-time fraction is always around 0.5 (see Fig. 2). As
previously described, kt , kd , and knrt only affect the on-time
fraction. As the generation rate increases, QYoff remains
approximately constant at around 0.05. In contrast, QYon

decreases above a characteristic value of g due to the presence
of multiple e-h pairs (see next paragraph) and the increasing
contribution of Auger recombination.24,26,32 When g → kr , the
probability of creating more than one e-h pair increases (see
Fig. 1), and hence the contribution from Auger recombination
results in a decrease in QYon. For example, for g = 103

ms−1, QYon decreases from 0.98 when kr = 105 ms−1,
to 0.5 when kr = 103 ms−1.

We next analyzed the number of electron-hole pairs
in a QD under steady-state conditions. Figure 3(d) shows
the probability of finding single or multiple e-h pairs for
different generation rates. For very low generation rates
(�1 ms−1), radiative recombination is dominant and the
probability of finding an e-h pair is low. As the generation
rate increases, the probability of finding multiple e-h pairs
increases progressively and QYon decreases [see Fig. 3(c)].
This effect was reported by Kraus et al.26 who showed that the
photoluminescence intensity did not increase proportionally
with increasing generation rate for CdSe/ZnS QDs.

C. Pulsed laser excitation

Experimentally, intensity-time curves are usually obtained
under continuous excitation where kr > g. However, in some
cases pulsed laser excitation is used to study blinking.15,16,26

In these experiments, the laser pulse is typically on the order
of picoseconds or less, much faster than other processes such
as radiative recombination and Auger recombination, and the
repetition time is typically on the order of microseconds.
In these experiments, multiple e-h pairs can be generated
in each pulse before any relaxation process can occur. The
generation of multiple e-h pairs in a single pulse (Np � 2)
results in the instantaneous population of states where Auger
recombination is significant. As long as kA > kr , all additional
electron-hole pairs in a pulse will recombine very quickly, and

the quantum yield in the on state is decreased; however, the
blinking behavior is unchanged. When kA ≈ kr , the additional
e-h pairs can undergo radiative recombination and hence the
on intensity will be higher than for continuous excitation with
the same repetition time, even though the quantum yield for
the pulsed experiment will be lower.

D. Distributions of on and off times

With fixed values of kt and kd , the distributions of on and
off times are exponential [f = Aexp(–τ/τ 0)]. For example,
Figure 4(b) shows an intensity-time curve and the distributions
of on and off times for kt = 100 ms−1 and kd = 10−3 ms−1

(knrt = 0). The distributions are exponential with τ 0,on =
1.14 ± 0.04 s and τ 0,off = 1.17 ± 0.08 s (Pon = 0.49 ± 0.01).

An exponential distribution of on and off times is expected
for constant trapping and detrapping rates33 as pointed out
by Efros and Rosen,2 and has been observed experimentally
for quantum jumps in atomic systems.34 In practice, the
distribution of on and off times obtained from analysis of
intensity-time curves for QDs usually exhibits power-law
behavior (f = Bτ−α), with exponents α typically between
1.0 and 2.0.29,30,35,36

Figure 4(c) shows the distribution of on and off times for a
linear distribution of kt and kd ,3 where kt varies from 10−2 to
102 ms−1 and kd varies from 10−5 to 10−1 ms−1 [see Fig. 4(a)].
For each trapping (detrapping) event the trapping (detrapping)
rate constant is selected randomly over the given range, where
all rate constants have equal probability. The distributions
show power-law behavior with αon = 1.86 ± 0.06 and αoff =
1.86 ± 0.03 (Pon = 0.52 ± 0.05).

The power-law exponent is dependent on the function that
describes the distribution of trapping and detrapping rate
constants. For example, a parabolic distribution [Fig. 4(d)]
of kt and kd (over the same range), results in power-law
distributions with αon = 1.37 ± 0.06 and αoff = 1.35 ± 0.06
(Pon = 0.42 ± 0.14). An exponential distribution [Fig. 4(e)]
of kt and kd results in power-law distributions with αon =
0.98 ± 0.06 and αoff = 1.02 ± 0.06 (Pon = 0.52 ± 0.15).

To describe the influence of variable trapping and detrap-
ping rate constants on the distribution of on and off times, it
is convenient to refer to the effective trapping and detrapping
rates (rt ,eff and rd,eff). The range of trapping and detrapping
rate constants gives rise to a range of rt,eff and rd,eff . Power-law
behavior is only observed when there is a distribution of
effective trapping and detrapping rates where τ t,eff (1/rt,eff)
and τ d,eff (1/rd,eff) span a range from τbin to ∼0.1τtotal. For a
typical bin time of 10 ms and a typical total time of 1000 s, this
corresponds to a range of about four orders of magnitude. The
influence of the distribution of trapping and detrapping rate
constants on the power-law exponent is simply related to the
distribution of trapping and detrapping events. For example,
a parabolic distribution has more events at longer times than
a linear distribution which results in more probability density
at longer times and hence a smaller slope. Thus the range of
power-law exponents observed experimentally can be obtained
simply by tuning the function that describes the range of
trapping and detrapping rate constants.

Physically, a distribution in values of kt and kd is easily
justified. For example, if trapping involves tunneling to trap
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FIG. 4. (Color) Simulated intensity-time curves, intensity distributions, and distributions of on and off times for QD excitation for constant
and variable trapping and detrapping rate constants (kt and kd ) with knrt = 0 ms−1, s = 10, kr = 105 ms−1, kA = 107 ms−1, and g = 10 ms−1.
(a) The range and distribution of trapping and detrapping rate constants. (b) Constant trapping and detrapping rate constants: kt = 100 ms−1,
kd = 10−3 ms−1. (c) Linear distribution of trapping and detrapping rate constants: kt = 10−2–102 ms−1, kd = 10−5–10−1 ms−1. (d) Parabolic
distribution of trapping and detrapping rate constants: kt = 10−2–102 ms−1, kd = 10−5–10−1 ms−1. (e) Exponential distribution of trapping
and detrapping rate constants: kt = 10−2–102 ms−1, kd = 10−5–10−1 ms−1. For details of the variable trapping and detrapping rates, see
Supplemental Material.3 The exponential constant τ0,on/off and power-law exponents αon/off were obtained from 10 simulations.

states in the shell, then a distribution of distances from the QD
core would be expected to give rise to a distribution in trapping
and detrapping rates. Similarly, a distribution in the energy of
traps at the core-shell interface would also be expected to give
a distribution of trapping and detrapping rates.
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