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Symmetry-adapted calculations of strain and polarization fields in (111)-oriented
zinc-blende quantum dots

S. Schulz,1 M. A. Caro,1,2 E. P. O’Reilly,1,2 and O. Marquardt1
1Photonics Theory Group, Tyndall National Institute, Lee Maltings, Cork, Ireland

2Department of Physics, University College Cork, Cork, Ireland
(Received 10 May 2011; revised manuscript received 21 July 2011; published 13 September 2011)

We present expressions for the elastic and first-order piezoelectric tensor in (111)-oriented III-V zinc-blende
semiconductors. Moreover, an equation for the second-order piezoelectric polarization vector in these systems
is derived. Together these expressions provide an efficient route to calculate built-in potentials and strain fields
in (111)-oriented zinc-blende nanostructures. Our detailed analysis provides insight into the key parameters that
modify strain and built-in fields in a (111)-oriented zinc-blende system compared to a conventional (001) structure.
We show that the calculated strain field in a (111)-oriented quantum dot displays the correct C3v symmetry of the
underlying crystal structure, even though we use a continuum-based approach and the quantum dot geometry is
higher in symmetry than C3v , e.g., C∞v . This behavior originates from an in-plane angle dependence of certain
elastic tensor components in the (111)-zinc-blende system. In addition, we compare the elastic and the first-order
piezoelectric tensor of the (111)-zinc-blende systems with the corresponding quantities in a wurtzite structure
and point out similarities and differences. This comparison provides, for example, insight into the sign of the
shear piezoelectric coefficient e15 in the wurtzite system, which is still under debate in the literature. Our analysis
indicates e15 < 0, in accordance with recent experimental and theoretical results.
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I. INTRODUCTION

Over the last few years semiconductor quantum dots
(QDs) have attracted considerable interest due to a variety
of reasons,1,2 including their potential in generating entangled
photon pairs,3,4 which are of high interest for use in novel
quantum logical devices.5–7 In general, conventional III-V
QDs grown along the [001] direction do not allow for such
entangled photons due to a nonzero fine-structure splitting
(FSS) originating from the symmetry of the underlying zinc-
blende (ZB) lattice and the related polarization potentials.8,9

Reducing this FSS using post-growth thermal and laser
annealing10,11 is so far beyond the capabilities of industrial-
scale production mechanisms of such QDs. Singh and Bester12

and Schliwa et al.13 therefore focused on ZB QDs grown
on (111)-oriented substrates14–17 and demonstrated that these
systems, in principle, exhibit the required symmetry to achieve
a zero FSS.13 Recently grown site-controlled (111)-oriented
InGaAs-QDs are most promising candidates to achieve a
zero FSS.17,18 They exhibit a flat, tetragonal shape with an
extremely small ratio between dot height h and base length
b (h/b ∼ 1/20).16,18,19 Certainly these QD systems can, for
example, be addressed in terms of the conventional continuum
elasticity theory and k · p models that are formulated to
provide a good description of systems oriented along the
[001] axis. However, due to the structural properties of the
considered (111)-oriented ZB QDs, a high cell discretization
is required to describe strain fields, built-in potentials, and
electronic and optical properties of these large nanostructure
systems accurately. When using a (001)-oriented cell, the QD
growth axis is placed along the diagonal of the box and the
size of the supercell has to be increased considerably to avoid
numerical artifacts arising from the boundary conditions. In
this case, the (001)-based description is less than ideal, both
because of computing resource demands and also for clarity
of interpretation.

In order to achieve higher efficiency of the calculations and
a deeper insight into the key parameters that determine the elas-
tic and polarization characteristics and finally the electronic
and optical properties of (111)-oriented ZB QDs, it can be
useful to work with a basis where the [111] direction is chosen
as one of the coordinate axes. We present here the results of
using such a basis, modifying the widely used expressions
and codes based on using the conventional (001)-oriented
continuum models by transforming to a (111)-oriented system.
Here we derive expressions for the stiffness tensor, the elastic
energy, and (first- and second-order) piezoelectric polarization
vectors in (111)-oriented ZB structures. In the framework
of continuum elasticity theory we calculate the strain and
piezoelectric fields in (111)-oriented InGaAs/GaAs QDs. We
show and discuss here that the calculated fields in these systems
exhibit a C3v symmetry even though neither the QD geometry
nor the surrounding cell exhibit this specific symmetry.

Our approach has the additional benefit to gain further
insights into some of the material parameters of c-plane
wurtzite (WZ) systems, due to structural similarities to the
(111)-oriented ZB systems. Even though the progress in
epitaxial growth over the last few years has improved the
quality of nitride-based heterostructures, some of the key
material parameters are still not well known. For example,
the sign of the shear piezoelectric coefficient e15, which does
not contribute to the built-in field in c-plane quantum wells
but is important for QDs20,21 and semipolar structures,22 is
surrounded by controversy. For example, Refs. 23–25 predict
a positive sign, while Refs. 26–28 find a negative sign of
e15. From our previous analysis29 of the built-in potential in
nonpolar nitride-based GaN/AlN QDs, we concluded that e15

has to be negative to give a built-in field reduction in nonpolar
GaN/AlN QDs compared to conventional c-plane systems, as
observed experimentally.30 Here, we show that by comparing
the first-order piezoelectric tensor in the (111)-ZB system to
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the tensor in the (0001)-WZ structure, this conclusion is further
supported. Beyond that, we use the ZB-WZ comparison to
point out both analogies and differences between these two
systems.

The outline of the paper is as follows. Section II provides
a detailed comparison of WZ and ZB structures, which
allows us to identify similarities and differences between
the two systems. In Sec. III we derive expressions for
the elastic tensor and the elastic energy in (111)-oriented
ZB systems. The findings are discussed with respect to
conventional (001)-ZB systems and (0001)-WZ structures.
The analysis is then extended to the study of strain fields
in InGaAs QDs. In Sec. IV we focus on the symmetry
adapted formulation of first- and second-order piezoelectric
polarization vectors in (111)-oriented ZB structures. The
resulting expressions are compared to WZ-like systems.
Moreover, the influence of the different contributions in the
polarization vector on the corresponding built-in potential in
(111)-oriented InGaAs QDs is presented and discussed in this
section. Finally we summarize and present our conclusions in
Sec. V.

II. COMPARISON OF WURTZITE AND
ZINC-BLENDE LATTICE

In this section, we focus our attention on the differences
and similarities of ZB and WZ crystal structures. As discussed
by Yeh et al.31 the subtle disparities in the structural properties
and the small differences in the internal energies lead to the
situation that several binary semiconductors can crystallize in
either form.

The Bravais lattice of the WZ system is hexagonal-closed-
packed (hcp), while the Bravais lattice of the ZB structure is
face-centered-cubic (fcc). The ZB structure consists of two
interpenetrating fcc lattices, each with one type of atom, offset
by one-quarter of the distance of a body diagonal, while
the WZ structure can be thought of as two interpenetrating
hcp lattices offset along the c axis by 5/8 of the cell
height (5c/8).

The differences of the two systems is best understood when
looking at the ZB structure along the [111] direction and at
the WZ system along the c axis ([0001] direction). This is
schematically shown in Figs. 1(a) and 1(b), respectively. Here,
we find that the ZB and WZ structures look very similar
and layers of atoms are arranged in regular hexagons. This
hexagonal symmetry of the atoms within each layer leads to
a C3v symmetry for both ZB as well as WZ systems. Even
though the atoms are identical within each layer, and the layers
alternate between anions and cations, the structures show a
different layer stacking sequence along the [111] direction.
The stacking sequence for WZ is ABABAB . . ., while for
ZB it is ABCABCABC . . .. These stacking sequences are
referred to as the dihedral conformation,31 which is said to
be staggered for ZB and eclipsed for WZ [cf. Figs. 1(c) and
1(d), respectively]. In both crystal structures, the bonding of
the nearest-neighbor atoms has a tetrahedral symmetry. The
nearest-neighbor environment is therefore identical in the two
structures. Nine of the twelve second nearest neighbors are also
in identical positions. The other three second nearest neighbors
are rotated by π/3 ZB with respect to their position in WZ.

Wurtzite Zinc-blende

(a) (b)

(c) (d)

(e) (f)

WuWW rtzite Zinc-blende

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (Color online) (a) Wurtzite and (b) zinc-blende crystal
structures. In the wurtzite structure the c axis is pointing along the
z direction while the z direction in the zinc-blende system shown
is parallel to the [111] direction. The “eclipsed” and “staggered”
dihedral conformations for wurtzite and zinc-blende are displayed in
(c) and (d), respectively. The top view of c-plane wurtzite and (111)-
oriented zinc-blende, indicating the layer to layer stacking along these
directions, is shown in (e) and (f), respectively.

The differences between ZB and WZ are therefore only minor
up to second nearest neighbors, and only become more marked
for third and more distant neighbors. Due to these structural
similarities, the transferability of parameters between the two
polytypes is expected to be valid.

To gain further useful insights in the similarities and
differences of WZ and ZB systems we focus in a second step
on the point groups of the two polytypes. The point group of
ZB semiconductors is Td and contains 24 elements.32 These
elements include the identity, eight rotations of 2π/3 (C3)
about [±1,±1,±1], and three rotations of π (C2) about the
three mutually perpendicular crystallographic axes. Moreover,
there are six improper rotations of ±π/2 (S4) and six
reflections which leave the crystal invariant.32

The point group of a WZ crystal is C6v .32 This group has 12
elements which leave the crystal invariant. These elements are
the identity, rotations of ±2π/3 (C3) around the c axis, three
reflections in the vertical planes that contain the c axis and the
reciprocal-lattice vectors, and six rotations, each followed by
a translation of [0,0,c/2].32 Note also that inversion is not a
symmetry operation.
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If we focus our attention now on the description of ZB and
WZ nanostructures, these symmetries will be further reduced.
In the case of conventional (001)-oriented III-V ZB semicon-
ductors (InAs/GaAs) the Td point group symmetry is reduced
to C2v in realistic QD geometries,33,34 since the rotoinversion
(S4) is no longer a symmetry operation which leaves the system
invariant. This reduction in symmetry gives rise to a significant
FSS in (001)-oriented InGaAs/GaAs QDs.9,12

In the case of (0001)-WZ QDs with realistic shapes
(hexagonal truncated pyramids,35 lens-shaped structures36) the
C6v point group symmetry is reduced to C3v , lacking the six
rotations that are followed by a translation of [0,0,c/2].34 As
discussed by Singh et al.,12 QD structures with perfect C3v

symmetry forbid a FSS.
When growing InGaAs/GaAs on (111)-oriented substrates,

following our discussion above, one is also left with the
same C3v symmetry, explaining the recently measured17,18 and
calculated12,13 vanishing FSS in these systems.

III. STRAIN FIELD IN QUANTUM DOT STRUCTURES

The aim of this section is to provide expressions for
the stiffness (elastic) tensor and the elastic energy in (111)-
oriented ZB systems, using a basis where the (111) direction
is chosen as one of the coordinate axes. In the framework of
a continuum-based approach, this then allows for an efficient
calculation of the strain field in such a system. Furthermore,
we will point out both the similarities and differences between
the strain field in a (111)-oriented ZB QD and an otherwise
identical c-plane WZ QD.

In semiconductor heterostructures, the lattice constant is
position dependent. The total elastic energy of the system is
given in a second-order continuum elasticity formulation by37

F = V

2

∑
i,j,k,l

Cijklεij εkl, (1)

where V is the total volume of the system, εij denotes the
different components of the strain tensor, while Cijkl are the
components of the stiffness tensor. The indices i,j,k,l run
over the spatial coordinates x, y, and z. Note that εij (r)
and Cijkl(r) are coordinate dependent for heterostructures.
The strain tensor components εij are commonly written
as38,39

εij (r) = εu
ij (r) + ε0

ij (r), (2)

where ε0
ij (r) is the local intrinsic strain and εu

ij (r) denotes local
strain arising from the displacement field u(r). The local strain
tensor components εu

ij (r) are defined by37

εu
ij (r) = 1

2

(
∂ui(r)

∂xj

+ ∂uj (r)

∂xi

)
. (3)

For a given structure, the elastic energy F , Eq. (1), is
minimized with respect to the displacement vector field u.38

Once the displacement field is known at each point, the position
dependent strain field can be obtained from Eq. (3).

This continuum-based approach to calculate the strain
field in a heterostructure does not capture the underlying
atomistic structure. As discussed in detail in Ref. 40, in the
framework of a continuum-based scheme the symmetry of a

pyramidal-shaped (001)-oriented InAs/GaAs QD is C4v , while
an atomistic calculation gives the correct C2v symmetry.33,40

Reference 40 illustrates this artificial reduction of the system’s
symmetry for this specific QD, where a continuum elasticity
model yields equal strains along the [110] and the [1̄10]
directions, that are found to be different when employing an
atomistic model, where the correct symmetry of the system
is reproduced. However, since our main focus is on (111)-
oriented ZB structures, we will show that in this case the
continuum ansatz is sufficient to capture the correct symmetry
of the system, namely the C3v symmetry.

To analyze differences and similarities in the elastic
properties of ZB and WZ systems we proceed in the following
way: In Secs. III A and III B we briefly revisit the elastic tensor
and the elastic energy of conventional (001)-ZB and (0001)-
WZ systems, respectively. Expression for these quantities in
(111)-oriented ZB systems are then derived and analyzed in
Sec. III C.

A. Stiffness tensor and elastic energy in (001)-oriented
zinc-blende structures

In (001)-oriented ZB structures one is left with only
three independent elastic constants, which are given in Voigt
notation as C1111 = C11, C1122 = C12, and C1212 = C44. The
stiffness tensor CZB

(001) takes the form41

CZB
(001) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

According to Eq. (1) the elastic energy F
(001)
ZB in a ZB structure

using the standard coordinate system then reads

F
(001)
ZB = V

2

[
C11

(
ε2

11 + ε2
22 + ε2

33

) + 2C12(ε11ε22 + ε11ε33

+ ε22ε33) + 4C44(ε2
12 + ε2

13 + ε2
23)

]
. (5)

The local intrinsic strain ε0
ij in a QD system is then given by

ε0
ij = δij

[
aB − a(r)

a(r)

]
. (6)

Here, aB is the lattice constant of the barrier material. The
position dependent lattice constant a(r) is the lattice constant
of the nanostructure material if r lies inside the nanostructure,
otherwise a(r) = aB .

B. Stiffness tensor and elastic energy in (0001)-oriented
wurtzite structures

In (0001)-oriented WZ structures, one is left with five
independent elastic constants, namely CWZ

1111 = CWZ
11 , CWZ

3333 =
CWZ

33 , CWZ
1122 = CWZ

12 , CWZ
1133 = CWZ

13 , and CWZ
1212 = CWZ

44 and the
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stiffness tensor takes the form:41

Cwz
(0001) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cwz
11 Cwz

12 Cwz
13 0 0 0

Cwz
12 Cwz

11 Cwz
13 0 0 0

Cwz
13 Cwz

13 Cwz
33 0 0 0

0 0 0 Cwz
44 0 0

0 0 0 0 Cwz
44 0

0 0 0 0 0 Cwz
66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

with CWZ
66 = 1

2 (Cwz
11 − Cwz

12 ) and where the z axis is chosen
along the [0001], c axis, direction. From Eq. (1), the elastic
energy F (0001)

wz in a WZ system is then given by

F (0001)
wz = V

2

[
Cwz

11

(
ε2

11 + ε2
22

) + Cwz
33 ε2

33 + 2Cwz
12 ε11ε22

+ 2Cwz
13 ε33(ε11 + ε22) + 4Cwz

44

(
ε2

13 + ε2
23

)
+ 2

(
Cwz

11 − Cwz
12

)
ε2

12

]
. (8)

For a WZ nanostructure embedded in a WZ matrix of a
different material with lattice constants aB and cB , the local
intrinsic strain ε0

ij is given by

ε0
ij = (δij − δi3δj3)

[
aB − a(r)

a(r)

]
+ δi3δj3

[
cB − c(r)

c(r)

]
.

(9)

The position dependent lattice constant a(r) [c(r)] is the lattice
constant of the nanostructure material if r lies inside the
nanostructure, otherwise a(r) = aB [c(r) = cB].

C. Stiffness tensor and elastic energy in (111)-oriented
zinc-blende structures

The stiffness tensor for an arbitrary basis vector orientation
can be obtained using a rotation matrix of the form

U =

⎛
⎜⎝

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ

⎞
⎟⎠. (10)

The rotation with the Euler angles, as shown in Fig. 2,
transforms vectors and tensors from (x,y,z) to (x ′,y ′,z′)
coordinates via the expressions45

P ′
i =

∑
α

UiαPα, (11)

ε′
ij =

∑
α,β

UiαUjβεαβ, (12)

C ′
ijkl =

∑
α,β,γ,δ

UiαUjβUkγ UlδCαβγ δ, (13)

where i,j,k,l,α,β,γ,δ = 1,2,3 ≡ x,y,z.
Here, to obtain the (111)-oriented ZB stiffness ten-

sor CZB
(111), we substitute cos θ = 1/

√
3, sin θ = √

2/3, and

z (001)

x

y

z

x

y

θ

θ
φ

φ

FIG. 2. (Color online) Configuration of the coordinate system
(x ′,y ′,z′) in (hkl)-oriented crystals. The growth axis z′ is normal to
the substrate surface (hkl). The coordinate system (x,y,z) denotes
the primary crystallographic axes. The Euler angles θ and φ are the
polar azimuthal angles of the direction z′ in terms of the (x,y,z)
coordinates.

cos φ = sin φ = 1/
√

2 into Eq. (10) and use Eq. (13) to rotate
CZB

(001) to the (111)-oriented coordinate system. This yields

CZB
(111) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′
11 C ′

12 C ′
13 0 C ′

15 0

C ′
12 C ′

11 C ′
13 0 −C ′

15 0

C ′
13 C ′

13 C ′
33 0 0 0

0 0 0 C ′
44 0 −C ′

15

C ′
15 −C ′

15 0 0 C ′
44 0

0 0 0 −C ′
15 0 C ′

66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

with

C ′
11 = 1

2
(C11 + C12) + C44,

C ′
33 = 3

2
C ′

11 − 1

2
C ′

12 − C ′
44,

C ′
44 = 1

3
(C11 − C12) + 1

3
C44,

C ′
12 = 1

6
(C11 + 5C12) − 1

3
C44, (15)

C ′
13 = −1

2
C ′

11 + 3

2
C ′

12 + C ′
44,

C ′
15 = 1√

2
C ′

11 − 1√
2
C ′

12 −
√

2C ′
44,

C ′
66 = 1

2
(C ′

11 − C ′
12).

Similarly to the (001)-ZB system we are left with three
independent elastic constants. These expressions are equiv-
alent to the results found by Martin46 and used in Ref. 47
to calculate elastic constants of cubic III-N semiconductors.
In order to study how the subtle differences, discussed in
Sec. II, of WZ and ZB structures affect the transferability
of parameters between those two systems, we focus in a first
step on the elastic constants. Here, we calculate the elastic
constants C ′

ij in the (111)-ZB system from the (001)-ZB ones,
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TABLE I. Elastic constants Cij for InN, GaN and AlN. The values for the elastic constants in (111)-oriented zinc-blende system [(111)-ZB]
are calculated according to Eqs. (15).

InN GaN AlN

(001)-ZB (111)-ZB (0001)-WZ (001)-ZB (111)-ZB (0001)-WZ (001)-ZB (111)-ZB (0001)-WZ

C11 (GPa) 185a 226 223,b 227c 297a 367 390,b 347c 314a 393 396,b 390c

C33 (GPa) 240 224,b 245c 388 398,b 396c 419 373,b 375c

C44 (GPa) 80a 53 48,b 52c 154a 108 105,b 99c 200a 105 116,b 127c

C66 (GPa) 67 54,b 55c 132 123,b 104c 131 130,b 129c

C12 (GPa) 107a 93 115,b 118c 126a 103 145,b 139c 157a 131 137,b 133c

C13 (GPa) 80 92,b 98c 80 106,b 105c 105 108,b 103c

C15 (GPa) 19 73 37

aReference 42.
bReference 43.
cReference 44.

Cij , using Eqs. (15). The values for the ZB elastic constants
Cij of cubic GaN, AlN, and InN are taken from Ref. 42.
The resulting elastic constants C ′

ij are compared to literature
values of WZ GaN, AlN, and InN in Table I. We find that
the agreement between the calculated (111)-ZB values and
the values taken from the literature for the WZ system is
surprisingly good for the diagonal components Cii in InN and
GaN. The agreement is still acceptable for the off-diagonal
terms C12 and C13 in these systems. The agreement is also very
good for four of the elastic constants in AlN, and acceptable
for the remaining two constants, C33 and C44. Therefore since
the overall agreement is good, this further suggests that the
(111)-ZB approximation for the WZ parameters is a reasonable
assumption. The major difference between the two systems
in terms of elastic constants is the contribution C ′

15, which
is missing in a (0001)-oriented WZ structure. We show in the
Appendix that this additional elastic tensor component exhibits
a threefold (C3v) symmetry. This C3v symmetry becomes
visible when calculating the strain tensor components εij in
a (111)-oriented ZB QD structure. Using Eq. (1), the elastic
energy F

(111)
ZB in the (111)-oriented ZB system is given by

F
(111)
ZB = V

2

[
C ′

11

(
ε2

11 + ε2
22

) + C ′
33ε

2
33 + 2C ′

12ε11ε22

+ 2C ′
13ε33(ε11 + ε22) + 4C ′

44

(
ε2

13 + ε2
23

)
+ 2(C ′

11 − C ′
12)ε2

12 + 4C ′
15ε13(ε11 − ε22)

− 8C ′
15ε12ε23

]
. (16)

The major difference in this expression compared to that
for the elastic energy of a WZ system, Eq. (8), arises from
the terms related to C ′

15. By minimizing the elastic energy
with respect to the displacement vector field u(r) and using
Eq. (3), we obtain the corresponding strain tensor components
εij . As a model system we have chosen here a lens-shaped
QD, which exhibits a C∞v symmetry. Hence the symmetry
of the strain field is determined by the symmetry properties
of the elastic tensor. In the case of a lens-shaped (001)-ZB
QD or (0001)-WZ QD the elastic constants Cij do not show
any angle dependence in the growth plane. Consequently, the
continuum-based strain field “sees” the QD shape only. If we
neglect the C ′

15 terms in the elastic energy F
(111)
ZB , Eq. (16),

of the (111)-oriented ZB system, we are left with the elastic
energy of a c-plane WZ system, Eq. (8). To study the influence
of the C ′

15 terms on the strain field, we have compared the
results of the WZ-like approximation with those obtained from
Eq. (16), taking C ′

15 terms into account. As a model system
we have chosen a lens-shaped In0.35Ga0.65As/GaAs QD with
a base length of 13 nm and a height of 3 nm. All calculations
were performed using the S/PHI/nX software library.48–50 The
relevant material parameters are summarized in Table II. The
calculated hydrostatic strain, Tr(ε), in the x−y plane, 0.5 nm
above the QD base, is shown in Fig. 3. The lower half of the
figure displays Tr(ε) in the WZ-like approximation (C ′

15 = 0)
while the upper half shows the results from the full calculation
(C ′

15 �= 0). As expected from our discussion above, the WZ-
like approximation leads to a strain field that exhibits a C∞v

symmetry, since the chosen QD geometry has this symmetry.
This has to be contrasted with the calculated hydrostatic strain
obtained from the complete (111)-ZB expression for the elastic
energy, Eq. (16), shown in the upper half of Fig. 3. Since
the elastic tensor CZB

(111) has an in-plane angle dependence,
Tr(ε) exhibits a C3v symmetry, even though we are using
a classic harmonic continuum-elasticity approach. Note that
Tr(ε) is shown in Fig. 3 for the same contour lines. It can

TABLE II. Material parameters for InAs and GaAs.

GaAs InAs

a (Å) 5.6503a 6.0553a

C11 (GPa) 118.8b 83.3b

C12 (GPa) 53.8b 45.3b

C44 (GPa) 59.4b 39.6b

εr 13.18c 14.6c

e14 (C/m2) −0.230d −0.115d

B114 (C/m2) −0.439d −0.531d

B124 (C/m2) −3.765d −4.076d

B156 (C/m2) −0.492d −0.120d

A1 (C/m2) −2.656 −2.894
A2 (C/m2) +2.217 +2.363

aReference 51.
bReference 52.
cReference 53.
dReference 54.
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FIG. 3. (Color online) Contour plots of the hydrostatic strain
[Tr(ε)] in (111)-oriented lens-shaped In0.35Ga0.65As/GaAs QDs. The
lens-shaped QD has a base length of b = 13 nm and height of h = 3
nm. The lower half shows Tr(ε) in the WZ-like approximation,
neglecting C ′

15 contributions in the elastic energy F
(111)
ZB , Eq. (16),

while the upper half displays Tr(ε) calculated from Eq. (16) including
C ′

15 contributions.

be seen that the WZ-like description gives almost the same
hydrostatic strain in and around the QD structure as the full
(C ′

15 �= 0) (111)-ZB description. Only in regions of small
strain, Tr(ε) < 1%, differences become more visible, but are
still relatively small. Hence for this archetypal dot shape we
find that there is little difference in the hydrostatic strain
behavior between the WZ-like and full ZB cases.

IV. POLARIZATION FIELDS IN SEMICONDUCTOR
NANOSTRUCTURES

Under applied stress, semiconductor materials with a lack of
inversion symmetry show an electric polarization dependent on
the applied stress.55 This strain-induced polarization, referred
to as the piezoelectric polarization, is described in general
by the first-order piezoelectric tensor eijk (linear regime)
plus possible higher-order terms, e.g., quadratic contributions
Bijklm, which are connected to the polarization vector Ppz via
the strain state of the system:56

Ppz,i =
∑
jk

eijkεjk + 1

2

∑
jklm

Bijklmεjkεlm + · · · . (17)

Converting from tensor representation to matrix notation, the
linear contribution in Eq. (17) takes the form

⎛
⎜⎝

Ppz,x

Ppz,y

Ppz,z

⎞
⎟⎠ =

⎛
⎜⎝

e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(18)

In contrast to the ZB system, the total polarization vector
Ptot in semiconductors with a WZ crystal structure arises from
two contributions: the strain-related piezoelectric contribution
Ppz discussed above and the spontaneous polarization Psp.57

The spontaneous polarization originates from the lack of
inversion symmetry along the c axis ([0001] direction) in a
WZ lattice.58 Because of the crystal symmetry, Psp is a constant
vector oriented along the c axis.

The charge density ρp arising from the polarization Ptot is
given by

ρp(r) = −∇ · Ptot. (19)

The corresponding electrostatic built-in potential φp is found,
in the absence of external charges, by solving the Maxwell
equation

∇ · D = 0, (20)

where the displacement vector D is given by

D = −ε0εs(r)∇φp + Ptot. (21)

The material dependent dielectric constant is denoted by εs(r)
and Ptot is the total polarization vector of the system under
consideration.

Please note that, in the present work, we focus our
discussion on a non-self-consistent calculation of strain and
piezoelectric potentials, i.e., we neglect the electric-field in-
fluence on the elastic energy in Eq. (1). This coupling between
piezoelectric potentials and strain was previously found to have
a strong influence on the strength of the piezoelectric potential
in GaN/AlN-quantum wells (QWs),59 but did not induce
significant modifications in In0.2Ga0.8N/GaN QWs60 and, in
particular, this self-consistent approach induces only minor,
quantitative modifications in ZB InxGa1−xAs systems,54 which
are the main subject of the present work. Moreover, as both
the elastic tensor and the piezoelectric potential reflect a C3v

symmetry, we do not expect the electromechanical coupling
to induce qualitative, i.e., symmetry-breaking modifications.
Furthermore, the aim of this work is to provide expres-
sions/equations that allow for an efficient calculation of strain
and built-in fields in (111)-oriented ZB heterostructures, rather
than describing these systems quantitatively in all details.
Therefore expanding our formulation of the elastic energy
and the piezoelectric potentials to a self-consistent model that
includes electromechanical coupling is beyond the scope of
the present work.

A. First- and second-order piezoelectric polarization in
(001)-zinc-blende structures

For (001)-oriented ZB crystals, the only nonvanishing
coefficients in the piezoelectric tensor eZB

(001), Eq. (18), are
e14 = e25 = e36. Therefore eZB

(001) reads

eZB
(001) =

⎛
⎜⎝

0 0 0 e14 0 0

0 0 0 0 e14 0

0 0 0 0 0 e14

⎞
⎟⎠, (22)

and the first-order piezoelectric polarization vector P(001),FO
pz is

given by

P(001),FO
pz = 2e14

⎛
⎜⎝

ε23

ε13

ε12

⎞
⎟⎠. (23)
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Measurements of piezoelectric fields in (111)-grown In-
GaAs/GaAs QWs61–63 indicated a nonlinear behavior of the
piezoelectric polarization with increasing In concentration
and therefore higher strains. Bester et al.54 introduced and
calculated second-order piezoelectric coefficients Biαβ (Voigt
notation), Eq. (17), to explain these effects. Łepkowski64

performed calculations (neglecting In segregation) on multiple
InGaAs QWs, and found when using the approach introduced
by Bester et al. a built-in field of 166 kV/cm. This value is
in good agreement with the measured value of 165 kV/cm,65

which, however, has been extracted from the measurements
using a linear theory. Therefore the drawn conclusion is
not necessarily conclusive. Migliorato et al.66 proposed a
different scheme to take nonlinearity effects into account. In
this scheme, the linear piezoelectric coefficient e14 is strain
dependent, leading to a good agreement with the experimental
data provided.66 Furthermore, Migliorato et al.66 showed
also that the second-order contributions introduced by Bester
et al.54 should give a piezoelectric field of 80 kV/cm and
not 166 kV/cm as obtained in Ref. 64. A similar discussion
of these issues is also given in the recent review article by
Lew Yan Voon and Willatzen.67 Given the disagreement on
the theoretical description of nonlinear effects in piezoelectric
fields, further theoretical and experimental work is required.
This issue is beyond the scope of the present work. Since
the approach of introducing second-order piezoelectric coeffi-
cients Biαβ has been widely used,12,13,64,68–72 the aim here is to
provide an expression for the second-order piezoelectric vector
in a (111)-oriented ZB system based on Eq. (17). Such an
expression facilitates then numerically efficient calculations.

In the case of a (001)-ZB system, the second-order
piezoelectric tensor Biαβ has 24 nonzero elements, which
can be reduced to three independent elements B114, B124, and
B156.56 In order to partially simplify the transformation to the
(111)-oriented ZB system, we write the second-order terms in
a modified form, involving hydrostatic and biaxial strain terms.
The modified polarization vector P(001),SO

pz due to second-order
piezoelectricity is obtained from Eq. (17) as

P(001),SO
pz = 2A1

⎛
⎜⎝

Tr(ε)ε23

Tr(ε)ε13

Tr(ε)ε12

⎞
⎟⎠ + 2A2

⎛
⎜⎝

εB,x ε23

εB,y ε13

εB,z ε12

⎞
⎟⎠

+ 4B156

⎛
⎜⎝

ε13ε12

ε23ε12

ε23ε13

⎞
⎟⎠, (24)

with A1 = 1
3B114 + 2

3B124 and A2 = 2
3B114 − 2

3B124. The
A1 term is related to the hydrostatic strain, Tr(ε) = ε11 +
ε22 + ε33, while the A2 contribution is linked to the biax-
ial strain components εB,x = ε11 − (1/2)(ε22 + ε33), εB,y =
ε22 − (1/2)(ε11 + ε33), and εB,z = ε33 − (1/2)(ε22 + ε11). The
contribution arising from B156 is given by products of
shear strain components. Surprisingly, when looking at the
coefficients A1 and A2, we find here that these coefficients are
almost identical in magnitude (cf. Table II) even though they
are related to very different strain states of the system. The
similar magnitude of the second-order piezoelectric response
to hydrostatic and biaxial strain is not obvious and merits
further investigation.

We note also that the biaxial strain terms εB,i , will, by
symmetry, be equal to zero along the central [111] axis,
while the hydrostatic strain, Tr(ε) will be large inside the
dot, and relatively small outside the dot. We can therefore
expect, if A1 and A2 are of comparable magnitude, that the A1

terms will make the greatest contribution to the corresponding
second-order piezoelectric potential along the central axis
of a symmetric dot. We shall see below that this is indeed
the case.

B. Piezoelectric and spontaneous polarization in
(0001)-wurtzite structures

In a system with a WZ crystal structure there are three
independent piezoelectric coefficients e15, e31, and e33 in the
first-order piezoelectric tensor eWZ

(0001), Eq. (18). To distinguish
the piezoelectric coefficients of the WZ system from the ZB
ones, we indicate the WZ system by a tilde, e.g., ẽ15, ẽ31, and
ẽ33. In the WZ system eWZ

(0001) is given by

eWZ
(0001) =

⎛
⎜⎝

0 0 0 0 ẽ15 0

0 0 0 ẽ15 0 0

ẽ31 ẽ31 ẽ33 0 0 0

⎞
⎟⎠. (25)

The first-order piezoelectric polarization vector PWZ,FO
pz is

given by

PWZ,FO
pz =

⎛
⎜⎝

2ẽ15ε13

2ẽ15ε23

ẽ31(ε11 + ε22) + ẽ33ε33

⎞
⎟⎠. (26)

The spontaneous polarization vector Psp is a constant vector
along the c axis (z direction), Psp = Pspez, where ez is the
unit vector along the z direction and Psp is a material specific
constant.

So far, second-order coefficients Biαβ for the piezoelectric
polarization in WZ semiconductors have not been reported
in the literature. Therefore the present analysis is restricted
to the contributions of the first-order piezoelectricity and the
spontaneous polarization.

C. First-order piezoelectric polarization in
(111)-zinc-blende structures

To derive expressions for the first-order piezoelectric
polarization vector P(111),FO

pz , we proceed in the following
way. Using the transformation matrix U from Eq. (10), the
components e′

ijk of the first-order piezoelectric tensor eZB
(111)

are obtained from the components eijk of the piezoelectric
tensor eZB

(001) via

e′
ijk =

∑
α,β,γ

UiαUjβUkγ eαβγ .

In Voigt notation, this transformation gives

eZB
(111) =

⎛
⎜⎝

e′
11 e′

12 0 0 e′
15 0

0 0 0 e′
15 0 e′

12

e′
31 e′

31 e′
33 0 0 0

⎞
⎟⎠, (27)
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FIG. 4. (Color online) Ratio of the GaN piezoelectric coefficients
(a) ẽ33/ẽ31 and (b) ẽ31/ẽ15. Our prediction, obtained from the (111)-ZB
system, is given by the (red) solid line.

with e′
11 = −

√
2
3e14, e′

12 =
√

2
3e14, e′

15 = e′
31 = − 1√

3
e14, and

e′
33 = 2√

3
e14. Bernardini et al.57 derived the same expressions

for e′
33 and e′

31. It was argued by the same authors that the direct
comparison of the (111)-ZB system and the (0001)-WZ system
is meaningful for two reasons: First, the possible deviations
from the ideal WZ structure do not influence significantly the
polarization derivatives (e.g., the piezoelectric coefficients),57

and second, Dal Corso et al.79 showed that in polytypical
systems the values of the piezoelectric constants in the two
competing structures agree within a few percent. Therefore
we use the results obtained from the (111)-ZB system to gain
insights into the piezoelectric coefficients of the WZ system.
Figure 4 shows the ratios ẽ33/ẽ31 and ẽ31/ẽ15 for different sets
of literature values for GaN, while Figs. 5 and 6 display these
ratios for parameters sets for InN and AlN, respectively.82

When looking at the ratio ẽ33/ẽ31 we find that the agreement
between the (111)-ZB approximation and the ratio calculated
from the WZ literature values is very good for GaN and InN
[cf. Figs. 4(a) and 5(a)]. This holds also for the ratio ẽ31/ẽ15, as
long as the literature value for ẽ15 is negative [cf. Figs. 4(b) and
5(b)]. The agreement for the AlN system is less good, but still
admissible for ẽ33/ẽ31 [cf. Fig. 6(a)]. The same is true for the
ratio ẽ31/ẽ15 if ẽ15 < 0, as shown in Fig. 6(b). The difference
between AlN and the other two systems is that AlN exhibits a
considerably larger crystal-field splitting than GaN and InN.43

Furthermore, the crystal-field splitting is negative in the AlN
system. To describe the crystal-field splittings accurately in
the WZ system, interactions up to third nearest neighbors have
to be taken into account, as discussed in detail in Ref. 83. The
approach chosen here for the comparison between (111)-ZB
and (0001)-WZ, however, assumes that these contributions are
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ẽ 3
1
/
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FIG. 5. (Color online) Ratio of the InN piezoelectric coefficients
(a) ẽ33/ẽ31 and (b) ẽ31/ẽ15. Our prediction, obtained from the (111)-ZB
system, is given by the (red) solid line.
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ẽ 3

1

Ref 26

Ref 80

Ref 57

Ref 76

Ref 81

Ref 58

Ref 77

Ref 24

Ref 43

Ref 22

Ref 44 −3

−2

−1

0

1

2
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FIG. 6. (Color online) Ratio of the AlN piezoelectric coefficients
(a) ẽ33/ẽ31 and (b) ẽ31/ẽ15. Our prediction, obtained from the (111)-
ZB system, is given by the (red) solid line. In Ref. 81 only the
piezoelectric strain/modulus component d33 was reported. We have
used d33 = −2d31 to determine d31 as suggested by the same authors.

negligible. Therefore this might explain why we find a better
agreement between the (111)-ZB predictions and the ratios
calculated from literature WZ values for GaN and InN than
for AlN.

After this discussion on the general structure of the piezo-
electric tensor we focus now on the related first-order built-in
potential, investigating the effects of the differences in the
strain and polarization vector components in a (111)-oriented
ZB structure compared to an equivalent wurtzite system.

Comparing eZB
(111), Eq. (27), with the piezoelectric tensor

eWZ
(0001), Eq. (25), we observe that the lower symmetry of the

(111)-ZB system (C3v symmetry), with respect to the WZ
crystal structure (C6v symmetry), leads to additional terms
in eZB

(111). Consequently, these contributions will also modify
the first-order polarization vector P(111),FO

pz . When calculating
P(111),FO

pz from

P (111),FO
pz,i =

∑
jk

e′
ijkε

′
jk, (28)

we obtain

P(111),FO
pz =

⎛
⎜⎝

2e′
15ε

′
13

2e′
15ε

′
23

e′
31(ε′

11 + ε′
22) + e′

33ε
′
33

⎞
⎟⎠ +

⎛
⎜⎝

e′
11(ε′

11 − ε′
22)

2e′
12ε

′
12

0

⎞
⎟⎠,

(29)

where ε′
ij denote the strain tensor components in the (111)-ZB

system.
We turn now to investigate the influence of the additional

terms in the elastic energy, Eq. (16), and the piezoelectric
tensor, Eq. (27), respectively, on the first-order built-in poten-
tial φFO

p in a (111)-oriented InGaAs/GaAs QD as compared
to an equivalent WZ-like structure. As model system we
choose again a lens-shaped In0.35Ga0.65As QD with a base
length of 13 nm and a height of 3 nm. To systematically
study the different contributions to φFO

p , we start in a first
step with a WZ-like approximation. To this end, we neglect
the additional terms e′

11 and e′
12 in the piezoelectric tensor

eZB
(111), Eq. (27), and the off-diagonal term C ′

15 in the stiffness
tensor CZB

(111), Eq. (14). In other words, we are left with a
polarization vector equivalent to the WZ polarization vector
PWZ,FO

pz given in Eq. (26) and the strain field arising from
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FIG. 7. (Color online) Comparison of the piezoelectric built-
in potentials (first order) φFO in a (111)-oriented lens-shaped
InGaAs/GaAs for different levels of approximation. (a) WZ-like
approximation (C ′

15 = 0, e′
11 = e′

12 = 0), (b) shows the result for
C ′

15 �= 0 but e′
11 = e′

12 = 0, (c) displays φFO for C ′
15 = 0 but e′

11 �= 0
and e′

12 �= 0, and (d) is the full calculation (C ′
15 �= 0, e′

11 �= 0,e′
12 �= 0).

The red (dark gray) and yellow (light gray) isosurfaces correspond to
+4 mV and −4 mV, respectively.

the elastic energy equivalent to F
(0001)
WZ in Eq. (8). Note that

even though we use here the WZ-like approximation, the
required elastic constants and piezoelectric coefficients are
calculated from the cubic InAs and GaAs ones via Eqs. (15)
and the expressions below Eq. (27). The built-in potential in
this WZ-like approximation is denoted by φ

eWZpWZ
p , and is

shown in Fig. 7(a). As expected, φ
eWZpWZ
p is equivalent to

the piezoelectric built-in potential in WZ nitride-based QDs
grown along the polar c axis.20,84 The major difference between
the built-in potential in the WZ-like approximation for the
(111)-ZB InGaAs/GaAs system and a real III-N WZ system
is that the potential drop along the growth direction is much
larger in a realistic nitride system. This is linked to the fact
that first the piezoelectric coefficients in the nitride system
are several times larger compared to the “conventional” III-V
systems and second that the total polarization also includes the
spontaneous polarization contribution in the WZ system.

In a second step we study the impact of the strain field on the
first-order built-in potential. Figure 7(b) shows the potential
φ

eZBpWZ
p , taking the full stiffness tensor CZB

(111), Eq. (14), and
therefore the strain field originating from the elastic energy
F

(111)
ZB , Eq. (16), into account. For the polarization vector we

still apply the WZ-like approximation, Eq. (26). The calculated
φ

eZBpWZ
p exhibits a C3v symmetry instead of the C∞v symmetry

as observed in the WZ-approximation [cf. Fig. 7(a)]. However,
the potential drop along the growth direction is unchanged by
the change in the strain-field symmetry, as can be inferred
from Fig. 8. Furthermore, one finds that even though the
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FIG. 8. (Color online) Electrostatic built-in potential φFO
p for

a line scan through the center of a (111)-oriented lens-shaped
InGaAs/GaAs QD along the [111] direction for different levels of
approximation. The WZ-like approximation (C ′

15 = 0, e′
11 = e′

12 = 0)
is denoted by φeWZpWZ

p , while φeZBpWZ
p shows the result for C ′

15 �= 0
but e′

11 = e′
12 = 0. The resulting built-in potential for C ′

15 = 0 but
e′

11 �= 0 and e′
12 �= 0 is given by φeWZpZB

p and the full calculation
(C ′

15 �= 0, e′
11 �= 0,e′

12 �= 0) by φeZBpZB
p .

strain field is obtained from the elastic energy F
(111)
ZB given

by Eq. (16), which leads to a C3v symmetry in φ
eZBpWZ
p , inside

the QD φ
eZBpWZ
p is still very similar to φ

eWZpWZ
p in the WZ-like

approximation. This is shown in Fig. 9(a) for a contour
plot of the built-in potential at the base of the lens-shaped
In0.35Ga0.65As QD. The lower half shows φ

eWZpWZ
p while the

upper half depicts φ
eZBpWZ
p based on the correct (111)-ZB

strain field. The main differences between the two results starts
to appear at the boundaries of the nanostructure. All in all, these
results indicate that the actual symmetry of the strain field, for
example C∞v instead of C3v , is only of secondary importance
for the shape and the magnitude of the built-in potential inside
the QD. Strain calculations for WZ nanostructures, based on
harmonic continuum elasticity, should therefore be sufficient to
gain insights in the behavior and the shape of the corresponding
built-in potentials, even though the correct C3v symmetry is
not taken into account. Furthermore, when calculating the
electronic structure of WZ nitride QDs, the single-particle
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FIG. 9. (Color online) Contour plot of the first-order built-in
potential φFO

p in the x-y plane, (111)-plane, at the base of lens-
shaped (111)-oriented InGaAs/GaAs QD for different levels of
approximation. The lower half in (a) shows φeWZpWZ

p while the upper
half displays φeZBpWZ

p . In (b) the lower half depicts φeWZpZB
p and the

upper half shows φeZBpZB
p . More details on φα

p are given in the caption
of Fig. 8.
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ground-state wave functions for electrons and holes are well
localized inside the nanostructure due to the large band offsets
in the nitride systems.43 Therefore the built-in field calculated
from a continuum-elasticity strain field, which neglects the
C3v symmetry of the underlying lattice, should have almost
the same impact on these states and therefore on the emission
wavelength as a built-in field based on a strain field showing the
correct C3v symmetry. We have recently used this assumption
(including isotropic elastic constants) to derive a surface-
integral approach to calculate the polarization potential.85

In a third step of investigating the potential, we analyze the
influence of the additional terms e′

11 and e′
12 in eZB

(111), Eq. (27),
on the first-order built-in potential compared to a WZ-like
system, Eq. (25). Figure 7(c) shows the built-in potential
φ

eWZpZB
p under the assumption of a WZ-like strain field, Eq. (8),

but this time applying the full (111)-ZB first-order polarization
vector P(111),FO

pz , Eq. (29). Comparing φ
eWZpZB
p with φ

eZBpWZ
p

[cf. Fig. 7(b)], the C3v symmetry in φ
eWZpZB
p is far more

pronounced; however, the potential profile along the central
axis through the center of the QD is unaffected by the change
in the polarization vector, as shown in Fig. 8.

In the final step of our analysis of the first-order built-in
potential, we employ the full first-order piezoelectric vector
P(111),FO

pz and the full elastic energy F
(111)
ZB to calculate φ

eZBpZB
p .

The calculated built-in potential φ
eZBpZB
p is shown in Fig. 7(d).

Again, when comparing φ
eWZpZB
p to φ

eZBpZB
p , the correct

description of the C3v symmetry of the strain field changes the
potential slightly near the interfaces of the nanostructure. The
line scan of the built-in potential along the growth direction
and through the QD center is now slightly modified by the
change in strain and piezoelectric constants, as shown in
Fig. 8: small changes in the potential can be seen above and
below the nanostructure. Similar changes are also visible when
plotting the behavior of φ

eZBpZB
p in the (111) plane (x-y plane)

compared to φ
eWZpZB
p , as depicted in Fig. 9(b).

D. Second-order piezoelectric polarization in
(111)-zinc-blende structures

To obtain the second-order piezoelectric polarization vector
P(111),SO

pz in the (111)-oriented system, we apply, according to
Eq. (11), the transformation

P
(111),SO
pz,i =

∑
α

UiαP (001),SO
pz,α , (30)

where P(001),SO
pz is the second-order piezoelectric polarization

vector in the (001) system defined in Eq. (24). Equation (30)
yields

P(111),SO
pz = 2A1Tr(ε′)

⎛
⎜⎜⎜⎝

√
2
3Kx√
2Ky√
1
3Kz

⎞
⎟⎟⎟⎠ + 2A2

⎛
⎜⎜⎜⎝

√
2
3 [C1(Kz − Kx) + C2Ky]√

2[C2C3 + C1Ky]√
1
3 [2C1Kx + 2C2Ky]

⎞
⎟⎟⎟⎠ + 4B156

⎛
⎜⎜⎜⎝

√
2
3

[
K2

y − C3Kx

]
√

2[−KyC4]√
1
3

[
C3(Kz − Kx) − K2

y

]

⎞
⎟⎟⎟⎠, (31)

with

Kx = 1

2
(ε′

22 − ε′
11) − 1√

2
ε′

13,

Ky = 1√
3
ε′

12 − 1√
6
ε′

23,

Kz = ε′
33 − 1

2
(ε′

22 + ε′
11),

C1 = 1

4
(ε′

22 − ε′
11) + 1√

2
ε′

13,

C2 =
√

3

2
ε′

23 +
√

3

2
ε′

12,

C3 = 1

3
(ε′

33 − ε′
11) − 1

3
√

2
ε′

13,

and

C4 = 1

6
ε′

11 − 1

2
ε′

22 + 1

3
ε′

33 +
√

2

3
ε′

13.

Figure 10(a) shows the corresponding second-order piezo-
electric built-in potential φ(111),SO

p in the (111)-oriented lens-

shaped In0.35Ga0.65As/GaAs QD, which we have used as a
model system so far. The total built-in potential φ(111),total

p

(φ(111),SO
p + φ(111),FO

p ) is displayed in Fig. 10(b). As expected
from our analysis of the first-order contribution φ(111),FO

p ,

Second-Order Total

(a) (b)

Second-Order ToTT tal

(a) (b)

FIG. 10. (Color online) Comparison of the second-order φSO
p

(a) and total built-in potential φtotal
p (b) (111)-oriented lens-shaped

InGaAs/GaAs QD. In (a) the red (dark) and yellow (light) isosurfaces
correspond to 2 mV and −2 mV, respectively, while in (b) red (dark
gray) and yellow (light gray) isosurfaces correspond to 4 mV and
−4 mV, respectively.
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FIG. 11. (Color online) Built-in potential of a lens-shaped (111)-
oriented ZB InGaAs/GaAs QD for a line scan through the center of the
QD along the [111] direction (z axis). (a) The different contributions
to the second-order built-in potential. φ

(111),SO
p,A1

(dashed dotted line)

denotes the contribution arising from the A1 related terms, φ
(111),SO
p,A2

(dotted line) originates from the A2 terms while stems φ
(111),SO
p,B156

(dashed) from B156 in Eq. (31). (b) The different contributions to
the total piezoelectric potential φ(111),total

p (dotted line). The first-order
contribution is denoted by φ(111),FO

p (dashed line) while φ(111),SO
p (solid

line) is the second-order term.

φ(111),SO
p exhibits also a C3v symmetry. However, and in

contrast to φ(111),FO
p , the second-order contribution does not

change sign outside the QD and is largest in magnitude at
the top and the bottom of the nanostructure. Furthermore, the
potential φ(111),SO

p shows a different orientation and a different
sign at the interfaces between QD and surrounding material
compared to φ(111),FO

p [cf. Fig. 7(d)].
To analyze the second-order built-in potential φ(111),SO

p in
more detail, we now consider separately the three different
terms in Eq. (31) related to A1 (φ(111),SO

p,A1
), A2 (φ(111),SO

p,A2
), and

B156 (φ(111),SO
p,B156

), respectively. Figure 11(a) shows a line scan
through the center of the QD along the [111] direction of the
potential due to each of the three terms. Based on the currently
available second-order piezoelectric constants A1, A2, and
B156, the A1-related contribution clearly dominates the second-
order built-in potential. The contribution arising from A2 is
only of secondary importance, while the B156 term is negligible
along the central QD axis. The full second-order piezoelectric
built-in potential φ(111),SO

p is shown in Fig. 11(b) together with
the first-order potential φ(111),FO

p and the total built-in potential

φ(111),total
p , for the same line scan as in Fig. 11(a). The difference

in sign between the first- and second-order built-in potential
contributions is clearly seen in Fig. 11(b). Similar to the (001)
system, as discussed, for example, in Ref. 69, the second-order
contribution φ(111),SO

p is mainly localized inside the QD, while
φ(111),FO

p spreads considerably into the surrounding barrier
material. This is related to the strain-field dependence of the
two contributions. The first-order polarization vector P(111),FO

pz ,
Eq. (29), is a function of shear strain components and sums
and differences of diagonal terms εii of the strain tensor.
In contrast, the second-order polarization vector P(111),SO

pz ,
Eq. (31), is mainly determined by products of diagonal and
shear strain components. Since the diagonal components εii

are largest inside the nanostructure and near the boundaries,
P(111),SO

pz has a significant contribution in this region only.
Therefore the total built-in potential φ(111),total

p outside the QD
is mainly determined by the first-order contribution φ(111),FO

p ,
as shown in Fig. 11. Inside the nanostructure, due to opposite
signs, first- and second-order terms tend to cancel each other.
This could then lead to a field-free QD, as, for example,
discussed in Refs. 56 and 69 for (001)-oriented lens-shaped
InGaAs/GaAs QDs. However, as shown by Schliwa et al.
for (001)-oriented ZB systems69 and recently also for (111)-
oriented structures,13 the balance between first- and second-
order contributions is very sensitive to the QD shape, size, and
composition.

Therefore the analysis of the experimental data on high-
quality site-controlled QDs in combination with theoretical
studies should be very promising to shed light on the descrip-
tion of nonlinear piezoelectric effects in ZB semiconductor
nanostructures.

V. CONCLUSION

In summary, we have derived expressions for the stiffness
tensor and the elastic energy in (111)-ZB systems along
with equations for first- and second-order piezoelectric po-
larization vectors in these structures. These equations allow
for an efficient calculation of strain and piezoelectric fields
in (111)-oriented ZB nanostructures, such as site-controlled
(111)-oriented InGaAs/GaAs QDs, which are most promising
candidates for entangled photon sources.

Moreover, the chosen approach offers the possibility to gain
access to the key parameters, which modify, for example, strain
and piezoelectric fields in (111)-oriented ZB heterostructures
compared to conventional (001) systems. Additionally, since
the two structures are very similar, the comparison of (111)-ZB
and (0001)-WZ structures is beneficial for both systems. On the
one hand, this comparison allows us to split the expressions
derived in the (111)-ZB system into a WZ-like component
and contributions which are related to the differences between
the two systems. These differences lead to extra terms in
different quantities of the (111)-oriented ZB system, which
are not present in a WZ system. More specifically, we find
here that the (111)-ZB elastic tensor contains an additional
off-diagonal elastic constant C ′

15, which has no analog in
the WZ tensor. This extra off-diagonal term shows an angle
dependence in the (111) plane and modifies therefore the
elastic energy in a (111)-ZB system compared to a WZ-like
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system. We have shown here that this in-plane angle de-
pendence of C ′

15 leads to modifications in the calculated
strain field when using a continuum-based approach, with
these changes being relatively small but relevant to symmetry
considerations in our prototypical (111)-oriented ZB dot.
In particular, our analysis of the strain field in a (111)-
oriented lens-shaped InGaAs/GaAs QD shows the correct C3v

symmetry when taking the C ′
15-related terms in the elastic

energy into account. In the WZ-like approximation (C ′
15 = 0),

the symmetry is C∞v , introduced by the lens-shaped QD
geometry.

Additionally, we have shown that the first-order piezo-
electric tensor in (111)-ZB systems contains contributions
that are not present in a c-plane WZ system. Similar to
the discussion of the strain field, these terms lead to a
C3v symmetry in the resultant first-order built-in potential,
instead of a C∞v symmetry in WZ approximation, with these
terms having a strong effect on the in-plane variation in
potential.

In addition to providing insight into the key factors
that modify strain and built-in fields in (111)-oriented ZB
heterostructures, our approach offers, furthermore, the op-
portunity to gain insights into material parameters for the
WZ AlN, InN, and GaN systems. For example, the sign
of the shear strain related piezoelectric constant e15 is
still under debate in WZ nitrides. From our analysis of
the first-order piezoelectric tensor in the (111)-ZB system
we obtain that the piezoelectric coefficients e31 and e15

should be equal and negative, and that the ratio e33/e31 =
−2. When comparing these ratios with ratios derived from
literature piezoelectric coefficients, we find a very good
agreement for GaN and InN and a good agreement for
AlN, as long as the literature value of e15 is negative.
From this we conclude that e15 should be negative in WZ
nitrides.
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APPENDIX

As detailed by Fedorov86 the minimum number of in-
variants that are required to describe the elastic tensor is
not necessarily achieved using the crystallographic axes as
a reference frame. For tetragonal and rhombohedral crystals
Blanchfield and Saunders87 discussed that when the reference
frame is appropriately chosen, the number of required elastic
constants can be reduced. Blanchfield and Saunders87 derived,
after a rotation by an angle φ around the z axis, the follow-
ing expressions for the components of the elastic stiffness
tensor:

C̄11 = C̄22 = C̃11 + C cos (4φ) + C16 sin (4φ),

C̄66 = C̃66 − C cos (4φ) − C16 sin (4φ),

C̄12 = C̃12 − C cos (4φ) − C16 sin (4φ),

C̄16 = −C̄26 = −C sin (4φ) + C16 cos (4φ),

C̄14 = −C̄24 = C14 cos (3φ) + C25 sin (3φ),

C̄56 = C14 cos (3φ) + C25 sin (3φ), (A1)

C̄25 = −C̄15 = −C14 sin (3φ) + C25 cos (3φ),

C̄46 = −C14 sin (3φ) + C25 cos (3φ),

C̄33 = C33,

C̄44 = C̄55 = C44,

C̄13 = C̄23 = C13,

C̄34 = C̄35 = C̄45 = C̄36 = 0,

with

C = 1
4 (C11 − C12 − 2C66), (A2)

C̃11 = C11 − C, (A3)

C̃66 = C66 + C, (A4)

and

C̃12 = C12 + C. (A5)

To obtain the elastic stiffness tensor of the (111)-oriented
ZB system given in Eq. (14), we have used a specific set of basis
vectors defining the rotation matrix U in Eq. (10). Following
our discussions above, we study now the angle dependence
of the elastic constants C̄ijkl using Eqs. (A1). When using
the elastic constants from Eq. (14), the coefficients given in
Eqs. (A2)–(A5) reduce to

C = 0,

C̃11 = C ′
11,

C̃66 = C ′
66,

C̃12 = C ′
12.

Therefore, with Eqs. (A1), the elastic constants C̄ijkl take the
form

C̄11 = C̄22 = C ′
11,

C̄66 = C ′
66,

C̄12 = C ′
12,

C̄16 = −C̄26 = 0,

C̄14 = −C̄24 = C̄56 = −C ′
15 sin (3φ),

C̄25 = −C̄15 = C̄46 = −C ′
15 cos (3φ),

C̄33 = C ′
33 ,

C̄44 = C̄55 = C ′
44,

C̄13 = C̄23 = C ′
13,

C̄34 = C̄35 = C̄45 = C̄36 = 0.
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This yields

C̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′
11 C ′

12 C ′
13 −C ′

15 sin(3φ) C ′
15 cos(3φ) 0

C ′
12 C ′

11 C ′
13 C ′

15 sin(3φ) −C ′
15 cos(3φ) 0

C ′
13 C ′

13 C ′
33 0 0 0

−C ′
15 sin(3φ) C ′

15 sin(3φ) 0 C ′
44 0 −C ′

15 cos(3φ)

C ′
15 cos(3φ) −C ′

15 cos(3φ) 0 0 C ′
44 −C ′

15 sin(3φ)

0 0 0 −C ′
15 cos(3φ) −C ′

15 sin(3φ) C ′
66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)

with C ′
66 = 1

2 (C ′
11 − C ′

12). From this we conclude the fol-
lowing: First, the specific form for the elastic stiffness
tensor CZB

(111) in a (111)-oriented ZB system depends on
the chosen set of basis vectors and therefore on the trans-
formation matrix U . Second, the additional terms in the

elastic tensor CZB
(111) compared to the WZ system Eq. (7),

show a threefold symmetry according to the discussion
above [cf. Eq. (A6)]. Consequently, the calculated strain
field shown in the upper half of Fig. 3 exhibits a C3v

symmetry.
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