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Density of states of relativistic and nonrelativistic two-dimensional electron gases in a uniform
magnetic and Aharonov-Bohm fields
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We study the electronic properties of two-dimensional electron gas (2DEG) with quadratic dispersion and with
relativistic dispersion as in graphene in the inhomogeneous magnetic field consisting of the Aharonov-Bohm
flux and a constant background field. The total and local density of states (LDOS) are obtained on the base of the
analytic solutions of the Schrödinger and Dirac equations in the inhomogeneous magnetic field. It is shown that
as it was in the situation with a pure Aharonov-Bohm flux, in the case of graphene there is an excess of LDOS
near the vortex, while in 2DEG the LDOS is depleted. This results in excess of the induced by the vortex DOS
in graphene and in its depletion in 2DEG.
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I. INTRODUCTION

The continuous linear energy dispersion E(k) = ±h̄vF |k|
of the Dirac quasiparticle excitations when the homoge-
neous magnetic field B is applied perpendicular to its two-
dimensional (2D) plane transforms into the discrete Landau
levels (LLs)

En = ±ε0

√
2n, n = 0,1,2, . . . , (1)

observed in graphene. Here, k is the momentum measured
from K± points, ε0 =

√
h̄v2

F eB/c is the relativistic Landau
scale with vF being the Fermi velocity. The spectrum (1)
is characteristic of Dirac fermions and the breakthrough in
experimental studies of graphene is caused not only by its
fabrication,1 but also by the demonstration of its unique elec-
tronic properties2,3 that follow from the unusual spectrum (1).

The hallmark of this spectrum is the zero-energy field-
independent lowest LL whose existence does not in fact
depend on the homogeneity of the field.4 In general, the
inhomogeneous magnetic perturbation can be presented as a
sum of a constant (averaged over the system) field and a field
localized in some regions of the 2D system. A limiting case
of the perturbation can be presented by the Aharonov-Bohm
field, which is created by an infinitely long and infinitesimally
thin solenoid.

The purpose of the present paper is to study the electronic
excitations in graphene in a field consisting of the Aharonov-
Bohm flux and a constant background magnetic field. As in the
first publication,5 where we studied the Aharonov-Bohm flux
only, our main goal is the investigation of the local density of
states (LDOS). We find that the demonstrated in Ref. 5 rather
peculiar behavior of LDOS in Dirac theory with Aharonov-
Bohm field persists in the presence of the constant background
field. We expect that this behavior can be observed in scanning
tunneling spectroscopy measurements for graphene penetrated
by vortices from a type-II superconductor on top of it. We
also compare the obtained expressions with the corresponding
results for two-dimensional electron gas (2DEG) with a
quadratic dispersion, where the singular behavior of the LDOS
is absent.

In practice, such a magnetic field configuration may be
obtained when a type-II superconductor is placed on top
of graphene. In the previous publication, we considered an
idealized picture when the vortex is single and there is
no impact from other Abrikosov vortices. Now the con-
stant background field is supposed to mimic the impact
of the other vortices penetrating graphene. It is worth to
stress that devices like this, with a superconducting film
grown on top of a semiconducting heterojunction (such as
GaAs/AlGaAs) hosting a 2DEG, have in fact been fabricated
twenty years ago,6,7 so it should be possible to fabricate the
graphene-based devices. While normally the 2DEG is buried
deep in a semiconducting heterostructure which makes the
LDOS measurements problematic,8 the graphene surface is
open to the LDOS measurements. While initially the STS
measurements were done on graphene flakes on graphite,9

recently these measurements were carried out on exfoliated
graphene samples deposited on a chlorinated SiO2 thermal
oxide tuning the density through the Si backgate.10 So far all
these measurements were done in a homogeneous magnetic
field and showed a single sequence of pronounced LL peaks
corresponding to massless Dirac fermions expected of pristine
graphene.

In a wider context, the inhomogeneous vortex-like field
configurations arise due the topological defects in graphene
that result in the pseudomagnetic field vortices, see, e.g.,
Refs. 11–13. Interestingly, even the nonsingular pseudomag-
netic field configuration created by a curved bump on flat
graphene14 results in the oscillations of the LDOS similar to the
long-distance behavior of LDOS induced by the Abrikosov’s
vortex.5 As proven experimentally, a strong localized pseudo-
magnetic field can be induced in graphene by a strain and the
corresponding LLs are observed in the STS measurements.15

Thus we hope that the combination of the vortex + constant
background field considered in the present paper should be
useful not only for the studies that involve a real magnetic
field, but also for the problems that involve the superposition
of magnetic and pseudomagnetic fields.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonians and discuss the configuration of the
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magnetic field and the regularization of the Aharonov-Bohm
potential used in this work. Section III is devoted to the
nonrelativistic case, and the relativistic case is discussed in
detail in Sec. IV. The structure of both sections is the same:
we consider the solutions of the corresponding Schrödinger
or Dirac equation, which allow to write down a general
representation for the LDOS in Secs. III A and IV A. Then,
a more simple analysis of the DOS is made in Secs. III B
and IV B, while the behavior of the LDOS is studied in
Secs. III C and IV C. In Sec. V, our final results are summa-
rized. The method of the calculation of the LDOS is explained
in Appendix A, where as an example we firstly calculate the
LDOS in a constant magnetic field for the nonrelativistic case.
Since the problem with Aharonov-Bohm vortex has to be
treated in the symmetric gauge, the calculation of the LDOS
in Appendix A involves the sum over the azimuthal quantum
number, which is calculated in Appendix B. The full DOS is
calculated in Appendix C. The LDOS, both in nonrelativistic
and relativistic cases, is expressed in terms of the function
calculated in Appendix D. The Dirac equation in the magnetic
field consisting of the Aharonov-Bohm flux and a constant
background field is solved in Appendix E.

II. MODELS AND MAIN NOTATIONS

As in Ref. 5, we consider both nonrelativistic and relativistic
Hamiltonians. The 2D nonrelativistic (Schrödinger) Hamilto-
nian has the standard form

HS = − h̄2

2M

(
D2

1 + D2
2

)
, (2)

where Dj = ∇j + ie/h̄cAj , j = 1,2, with the vector potential
A, Planck’s constant h̄, and the velocity of light c, describes a
spinless particle with a mass M and charge −e < 0.

The Dirac quasiparticle in graphene is described by the
Hamiltonian

HD = −ih̄vF β(γ1D1 + γ2D2) + �β, (3)

where the matrices β and βγj are defined in terms of the Pauli
matrices as

β = σ3, βγj = (σ1,ζσ2). (4)

Here, ζ = ±1 labels two unitary inequivalent representations
of 2 × 2 gamma matrices in 2 + 1 dimension, so that one
considers a pair of Dirac equations corresponding to two
inequivalent K± points of graphene’s Brillouin zone. The spin
degree of freedom is not included neither in Eq. (2) nor in
Eq. (3). In Eq. (3), vF is the Fermi velocity and � is the Dirac
mass (or gap). An overview of its physical origin is given in
Ref. 5 (see also a review in Ref. 16). Here, we only point
out that the presence of a finite � allows one to distinguish
unambiguously positive and negative energy solutions.

There are numerous studies of the Dirac fermions in the
field of a singular Aharonov-Bohm vortex (see, e.g., Refs. 17–
19) and, in particular, of this vortex and a uniform magnetic
field20,21 devoted to the mathematical aspects of the problem
such as self-adjoint extension of the Dirac operator. As in the
previous article, to avoid the mathematical difficulties related
to a singular nature of the Aharonov-Bohm potential at the

origin, we consider a regularized potential22,23 that depends
on the dimensional parameter R:

A(r) = Aϕ(r)eϕ, Aϕ(r) = Br

2
+ 	0η

2πr
θ (r − R), (5)

where r = (r,ϕ,z), 	0η is the flux of the vortex expressed
via magnetic flux quantum of the electron 	0 = hc/e with
η ∈ [0,1[. The value η = 1/2 corresponds to the Abrikosov’s
vortex flux. The corresponding magnetic field

B(r) = ∇ × A =
[
B + η	0

2πR
δ(r − R)

]
ez. (6)

The radius R of the flux tube determines the region r > R

where the regularized potential coincides with the potential of
the problem with Aharonov-Bohm potential, while for r < R

it describes a particle moving in a constant magnetic field. The
solution of the problem is found by matching the solutions
obtained in these regions. The limit R → 0 can be taken at
the end and allows to avoid the formal complications. As was
shown in Ref. 23, the final answer does not depend on the
specific form of the regularizing potential provided that the
profile of the magnetic field is nonsingular at the origin.

We also mention recent works24,25 where the induced
by the Aharonov-Bohm field charge density and current
were studied for the massless Dirac fermions. In the first
paper,24 an infinitesimally thin solenoid was considered. The
regularization by a magnetic flux tube of a small radius R

as in the present work is considered in the second paper.25

It is shown that in the limit R → 0 the induced current is
a periodic function of the magnetic flux irrespectively of the
magnetic field distribution inside the flux tube and whether the
region inside the flux tube is forbidden or not for penetration
by electrons. Also the value of the self-adjoint extension
parameter is fixed by the regularization. The properties of
the quasibound states in 2DEG with parabolic dispersion as
well as Dirac electrons with linear dispersion in the presence
of a circular step magnetic field profile were recently studied
in Ref. 26.

III. NONRELATIVISTIC CASE

In this section, we consider the solutions of the Schrödinger
equation

HSψ(r) = Eψ(r) (7)

in polar coordinates r = (r,ϕ) and using them we obtain the
full and local DOS. These results are important not only for
comparison with the relativistic case, but also because the
relativistic result is constructed using the nonrelativistic one.

A. Solution of the Schrödinger equation and general
representation for the local density of states and

its limiting η = 0 case

Technically, to obtain the solutions of Eq. (7) in the
regularized potential (5), one should solve this equation in two
regions: r < R and r > R. Since in the first domain, r < R,
the potential is nonsingular, only a regular in the limit r → 0
solution of the radial differential equation is admissible. In the
second domain, r > R, the solution contains both regular and
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singular in the limit r → 0 terms. The values of the relative
weights of them can be found by matching radial components
and their derivatives at r = R. Finally, it turns out that in the
limit R → 0 only the regular solution survives and the wave
function takes the form

ψn,m(r,ϕ) = An,meimϕy|m+η|/2e−y/2L|m+η|
n (y), (8)

which also follows from the Schrödinger equation with a
singular vortex. Here, the dimensionless variable y ≡ r2/(2l2)
is expressed via the magnetic length l = (h̄c/eB)1/2, Lα

n(y)
is the generalized Laguerre polynomial and the normalization
constant An,m is given by

A2
n,m = n!

2πl2�(n + |m + η| + 1)
. (9)

The corresponding to the wave function (8) eigenenergy is
equal to

En,m = h̄ωc

2
(2n + 1 + |m + η| + m + η), (10)

where the cyclotron frequency ωc = eB/Mc, the radial
quantum number n = 0,1, . . ., and the azimuthal quantum
number m = −∞, . . . , − 1,0,1, . . . ,∞. In what follows, it
is convenient to express all energies of the nonrelativistic
problem in terms of the energy E0 ≡ h̄ωc/2.

Having the wave function, one can calculate the LDOS
using the representation

N (r,E,B) =
∑
n,m

|ψn,m(r)|2δ(E − En,m). (11)

In contrast to the previous article,5 the presence of a constant
magnetic field makes all energy spectra discrete, which
demands some regularization of the δ function in Eq. (11).
For this purpose, we introduce a widening of the LLs to a
Lorentzian shape:

δ(E − En,m) → 1

π
Im

1

En,m − E − i�
, (12)

where � is the LL width. Such a simple broadening of LLs
with a constant � was found to be a rather good approximation
valid in not very strong magnetic fields.27

To illustrate the method of calculation in Appendix A, we
derive the LDOS for the simplest case (η = 0) of the constant
magnetic field without vortex

NS
0 (E,B) = −NS

0

π
Imψ

(
1

2
− E + i�

h̄ωc

)
. (13)

Here, NS
0 = M/(2πh̄2) is a free DOS of 2DEG per spin and

unit area and we omitted the r dependence of the LDOS
because it is absent in the homogeneous field. One can readily
obtain Eq. (13) in a much simplier way28 starting from the
usual Landau spectrum

En = h̄ωc

(
n + 1

2

)
, (14)

which follows from the spectrum (10) for η = 0, when
one relabels n + (|m| + m)/2 → n. Here, the relabeled n

corresponds to the LL index rather than the radial quantum
number. Nevertheless, in Appendix A we proceeded from
Eq. (10) to illustrate how to deal with a spectrum that is also
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FIG. 1. (Color online) The normalized full LDOS NS
η (r,E,B)/NS

0

as a function of E in the units of h̄ωc. (a) η = 0 (no vortex and LDOS is
r independent) and η = 1/2 for r = l. (b) Both lines are for η = 1/2,
r = 0.5l, and r = 5l. In all cases, the width is � = 0.05h̄ωc.

dependent on the azimuthal quantum number m. As seen in
Fig. 1(a) on the dashed (red) curve, Eq. (13) describes the usual
quantum magnetic oscillations of the DOS.

One can extract them analytically using the reflection
formula (A11). Integrating the DOS over the energy with
the thermal factor ln[1 + exp(μ−E

T
)], one can obtain the

thermodynamic potential, whose derivative with respect to
the magnetic field gives magnetization. The corresponding
oscillations of the magnetization are known as the de Haas-van
Alphen effect.27

In a similar fashion, we obtain in Appendix A the expression
for the LDOS perturbation, �NS

η (r,E,B) = NS
η (r,E,B) −

NS
0 (r,E) induced by the vortex

�NS
η (r,E,B)

= − M

(πh̄)2

sin πη

π
Im

[ ∫ ∞

0
dβe−(δ+β)e−βz e−y coth(δ+β)

1 − e−2(δ+β)

×
∫ ∞

−∞
dωe−y cosh ω/ sinh(δ+β) e−η(δ+β+ω)

1 + e−(δ+β+ω)

]
. (15)

Here, NS
η (r,E,B) is the LDOS in the presence of the constant

field and vortex and NS
0 (r,E,B) is the LDOS in the constant

magnetic field without vortex (the argument r is present to
distinguish the LDOS from the DOS). This expression has
to be calculated for z > 0 with the analytic continuation
z → −(E + i�)/E0 done at the end of the calculation. The
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representation (15) for the LDOS is our starting point for the
analysis of the LDOS and DOS. Next, in Sec. III B, we begin
with a simpler case of the DOS and return to the LDOS in
Sec. III C.

B. The density of states

While in the constant magnetic field the LDOS is position
independent and is related to the full DOS by the 2D volume
(area) of the system factor V2D, this is not so in the presence
of the vortex when the LDOS is position dependent. Then the
full DOS per spin projection is obtained from the LDOS (11)
by integrating over the space coordinates

Nη(E,B) =
∫ 2π

0
dϕ

∫ ∞

0
rdrNη(r,E,B). (16)

The details of the derivation of the DOS difference,
�NS

η (E,B) = NS
η (E,B) − NS

0 (E,B) with NS
0 (E) being the

full DOS in the presence of the constant field without vortex,
are given in Appendix C. We obtain

�NS
η (E,B)

= 1

πh̄ωc

Im

{(
1

2
+ E + i�

h̄ωc

− η

)

×
[
ψ

(
1

2
− E + i�

h̄ωc

)
− ψ

(
1

2
− E + i�

h̄ωc

+ η

)]}
.

(17)

Since the digamma function ψ(z) has simple poles for z =
0, − 1, − 2, . . ., it is easy to see, in the clean limit � → 0,
that the DOS difference (17) reduces to a set of δ peaks
corresponding to the LLs:

�NS
η (E,B) = −

∞∑
n=0

(n + 1 − η)δ

[
E − h̄ωc

(
n + 1

2

)]

+
∞∑

n=0

(n + 1)δ

[
E − h̄ωc

(
n + 1

2
+ η

)]
.

(18)

The physical meaning of (18) is that29 on each LL En =
h̄ωc(n + 1/2), n + 1 − η states disappear and n + 1 appear
at the energy En = h̄ωc(n + 1/2 + η).

The limit of zero field, B → 0, can be obtained from
Eq. (17) using the asymptotic expansion

ψ(z) = ln z − 1

2 z
− 1

12 z2
+ O

(
1

z4

)
. (19)

Then in the limit � → 0, we reproduce the Aharonov-Bohm
depletion of the DOS5,29,30 at the bottom of the spectrum

�NS
η (E,B = 0) = NS

η (E,B = 0) − V2DNS
0

= − 1
2η(1 − η)δ(E) (20)

caused by an isolated vortex. Integrating Eqs. (20) and (18)
(with an appropriate regularization), one can check that the
total deficit of the states induced by the vortex

�NS
η ≡

∫ ∞

−∞
dE�NS

η (E,B) = −1

2
η(1 − η) (21)

does not depend on the strength B of the nonsingular
background field.

C. The local density of states

The regularization parameter δ in Eq. (15) is important for
the calculation of the DOS made in Appendix B, the integrand
of Eq. (15) remains regular even in the limit δ → 0. Therefore
we can take this limit and rewrite Eq. (15) as follows:

�NS
η (r,E,B) = − M

(πh̄)2

sin πη

2π
Im

[
I

(
y,z→−E + i�

E0
,η

)]
,

(22)

where

I (y,z,η) =
∫ ∞

0
dβe−βz e−y coth β

sinh β

×
∫ ∞

−∞
dωe−y cosh ω/ sinh β e−η(ω+β)

1 + e−(ω+β)
,

(23)

and the variable y describes the spatial dependence. Although
the integrals in Eq. (23) can be evaluated numerically, this
computation becomes troublesome when the analytic contin-
uation from z > 0 to the complex values z → −(E + i�)/E0

is done before the numerical integration. Thus our purpose is
to derive such a representation for I (y,z,η) that it can be easily
computed after the analytic continuation is done. The function
I (y,z,η) is found in the Appendix D and is given by

I (y,z,η) = �

(
z + 1

2

)
�

(
z + 2η − 1

2

)
F(1−z−η)/2,(1−η)/2(y)

+�

(
z − 1

2

)
�

(
z + 2η − 1

2

)
F(2−z−η)/2,η/2(y),

(24)

where the function Fλ,μ(y) is given by Eq. (D18).
The results of the numerical computation of the LDOS on

the basis of Eqs. (22) and (24) are shown in Figs. 1 and 2. We
emphasize that in Fig. 1, we plot the full LDOS NS

η (r,E,B)
as a function of energy E for fixed values of r , and in Fig. 2,
the same quantity is presented as a function of the distance r

from the vortex center for fixed values of E. Since Eq. (22)
describes the perturbation of the LDOS �NS

η (r,E,B) by the
vortex, to obtain the value of the full LDOS NS

η (r,E,B), we
add to �NS

η its η = 0 value, which is given by Eq. (13).
We note that in contrast to Ref. 5, when plotting these

figures, we did not take into account the presence of the
finite carried density in 2DEG by shifting the energy origin.
This makes more straightforward a comparison with the
Dirac case, where low carried densities are indeed accessible
experimentally.

Although the model we consider is suitable for all values of
the distance from the center of the vortex r , there are obvious
physical limitations on the possible value of r if the vortex
penetrating graphene is coming from a type-II superconductor.
First of all, r cannot be smaller than the vortex core, which is
at least on the order of magnitude larger than the distance scale
r0 of the order of the lattice constant. We remind that in the
previous paper,5 the distance r was measured in the units of r0,
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FIG. 2. (Color online) The normalized full LDOS
NS

1/2(r,E,B)/NS
0 as a function of the distance r measured in

the units of the magnetic length l for four values of E/h̄ωc = 0.5,1.5
(usual LLs) and E/h̄ωc = 1,2 (vortex-like levels). The width is
� = 0.05h̄ωc.

because for B = 0 there is no such natural scale as a magnetic
length. Secondly, we replace the magnetic field created by the
other vortices by a constant background magnetic field. This
approximation may be appropriate if one considers a vicinity
of the selected vortex, which implies that r has to be less
than the intervortex distance lv . This distance is proportional
to the magnetic length,31 lv = c

√
πl ≈ 1.77l, where c ≈ 1

is the geometric factor dependent on the Abrikosov’s lattice
structure. Thus although one can investigate the regime r 	 l

theoretically, in practice it is not accessible.
In Fig. 1(a) we compare the already discussed after Eq. (13)

case of the constant magnetic field with the case when
the Abrikosov vortex is also present (η = 1/2) for r = l.
We observe that while for η = 0 [the dashed (red) curve
is, obviously, r-independent] only the peaks at half-integers
E/h̄ωc are present, for η = 1/2 the weight of these peaks is
reduced and a set of the new peaks at the integers E/h̄ωc on the
solid (blue) curve is developed. This behavior can be foreseen
from the expression for the full DOS difference (18) [or
Eq. (17)] discussed in Sec. III C. The case with the Abrikosov
vortex is further explored in Fig. 1(b), where we plot the energy
dependence of the LDOS for r = 0.5l [the solid (blue) curve]
and r = 5l [the dashed (red) curve]. Comparing the results
for r/ l = 0.5, 1.0, and 5.0, we find that as the distance r

decreases, the integer E/h̄ωc peaks are getting stronger, while
for r = 5.0l they practically disappear. This behavior allows
to attribute the corresponding energy levels to the vortex. On
the other hand, the half-integer E/h̄ωc peaks corresponding
to the usual LLs (14) formed in a constant magnetic field are
getting weaker as the distance r decreases. We stress that even
for an arbitrary vortex flux η, the latter levels will not change
the positions, while the levels related to the vortex will shift
their energies.

Analyzing Eq. (24), which was used to plot Fig. 1, we
observe that the positions of all peaks are controlled by the
gamma functions �(z), which contain simple poles for z =
0, − 1, − 2, . . .. However, the intensity of the peaks depends
on the rather complicated modulating function Fλ,μ(y). For
example, we verified that despite that the gamma function
�[(z − 1)/2] in the second term of Eq. (24) contains the pole

at the negative energy E = −h̄ωc/2, the final LDOS does not
contain this pole. To gain more insight on the behavior of the
LDOS, we have investigated its behavior in the limits r → 0
and r → ∞. Taking into account the y → 0 limit of ImI given
by Eq. (D23), we obtain that the value �NS

η (r = 0,E,B) is
equal to the negative LDOS (13) in the constant magnetic
field. This implies that the full LDOS in the center of the
vortex is completely depleted,

NS
η (r = 0,E,B) = 0. (25)

Formally, this property reflects a simple fact that all solu-
tions (8) of the Schrödinger equation are vanishing at the
origin, ψn,m(r = 0,ϕ) = 0. This vortex-induced depletion of
the LDOS in the nonrelativistic 2DEG was already seen in
Ref. 5 and now we conclude that it should also occur in the
presence of the background magnetic field. This is exactly what
we observe in Fig. 2, where all four curves begin from zero.
Two of these curves, viz. the solid (blue) and the dash-dotted
(black) are for the usual LLs with E/h̄ωc = 0.5 and 1.5, and
the other two [dashed (red) and dotted (violet)] are for the
vortex levels with E/h̄ωc = 1 and 2. For small r < l, all
curves increase linearly as expected from the analytic results
described in Appendix C if we take there η = 1/2. Since for the
large y the function Fλμ decays exponentially [see Eq. (D26)],
the LDOS difference �NS

η (r,E,B) ∼ e−r2/2l2
for r → ∞.

Accordingly, the large r behavior of the full LDOS depends on
the contribution of the position independent LDOS (13). Thus
the large r limit of all curves in Fig. 2 is determined by the
corresponding value of the LDOS in the dashed (red) curve in
Fig. 1(a).

IV. RELATIVISTIC CASE

In Sec. IV A, we consider the solutions of the Dirac equation

HD�(r,ζ ) = E�(r,ζ ), (26)

where the wave function is now a spinor

�(r,ζ ) =
[

ψ1(r,ζ )
ψ2(r,ζ )

]
, (27)

and the index ζ labels two inequivalent K± points. Notice that
in Appendix E, the definition (E1) for ψ2 explicitly includes
the factor i. Using these solutions in Sec. IV B, we obtain the
full and the local DOSs that is considered in Sec. IV C.

A. Solutions of the Dirac equation and general representation
for the local density of states and its limiting η = 0 case

The Dirac equation (26) with the regularized potential (5)
is solved in Appendix E. A general strategy is the same as
described in Sec. III A, but the main difference is in the
matching conditions. While the radial components of the
spinor �(r) have to be continuous:

ψ1(R + 0,ζ ) = ψ1(R − 0,ζ ),
(28)

ψ2(R + 0,ζ ) = ψ2(R − 0,ζ ),
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their derivatives in contrast to the nonrelativistic case have a
discontinuity:

ψ ′
1(R + 0,ζ ) − ψ ′

1(R − 0,ζ ) = ζη

R
ψ1(R,ζ ),

(29)
ψ ′

2(R + 0,ζ ) − ψ ′
2(R − 0,ζ ) = −ζη

R
ψ2(R,ζ ).

The discontinuity of the conditions (29) follows from Eq. (E2)
with the discontinuous potential (5). Another way to apprehend
this discontinuity is to obtain a singular ar r = R pseudo-
Zeeman term squaring the Dirac equation (see Ref. 5 for an
overview).

After the limit R → 0 is taken, we obtain the following
solutions:

�(±)
n,m(r,1) = 1

2l
√

πEn,m

[√
En,m ± � ei(m−1)ϕJ n

m+η−1(y)

±i
√
En,m ∓ � eimϕJ n

m+η(y)

]

(30)

for m > 0,

�
(±)
n,0 (r,1) = 1

2l
√

πEn,0

[√
En,0 ± �e−iϕJ n

1−η(y)

∓i
√
En,0 ∓ �Jn+1

−η (y)

]

(31)

for m = 0, and

�(±)
n,m(r,1) = 1

2l
√

πEn,m

[√
En,m ± �ei(m−1)ϕJ n

|m+η−1|(y)

∓i
√
En,m ∓ �eimϕJ n+1

|m+η|(y)

]

(32)

for m < 0. Here, the upper and lower signs ± correspond to
the positive and negative energy solutions, E (±) = ±En,m with
the absolute value of the energy

En,m =
√

�2 + ε2
0λn,m,

(33)
λn,m = 2n + |m + η − 1| + m + η + 1

for n � 0, the function J n
ν (y) is defined by Eq. (E14) with y as

in the nonrelativistic case, and the relativistic Landau scale ε0

is defined after Eq. (1). The zero-mode solution with E = −�

is a holelike

�
(−)
0,m(r,1) = 1√

2πl

[
0

eimϕ J 0
|m|−η(y)

]
, m � 0. (34)

Let us now compare the solutions of the Schrödinger and Dirac
equations with the zero azimuthal number, m = 0. One can see
from Eq. (8) that ψn,0(r,1) ∼ rη because32

Lα
n(0) =

(
n + α

n

)
= �(α + n + 1)

�(α + 1)n!
. (35)

On the other hand, from Eqs. (31) and (34) for m = 0, we
observe that while the upper components are regular at r = 0,
the lower components diverge as ψ2n,0(r,1) ∼ r−η. Comparing
these results with the behavior of the wave function in the
Aharonov-Bohm field,5 we observe that the presence of the
background magnetic field does not change the asymptotics of
the m = 0 solutions for r → 0. Also as expected,5 the zero-
mode solution (34) for ζ = 1 and chosen direction of the field
is holelike, E = −�.

The solutions for the case ζ = −1 are the following:

�(±)
n,m(r, − 1) = 1

2l
√

πEn,m

[
∓√

En,m ± �eimϕJ n
m+η(y)

i
√
En,m ∓ � ei(m−1)ϕJ n

m+η−1(y)

]

(36)

for m > 0,

�
(±)
n,0 (r, − 1) = 1

2l
√

πEn,0

[
±√

En,0 ± �Jn+1
−η (y)

i
√
En,0 ∓ �e−iϕJ n

1−η(y)

]

(37)

for m = 0, and

�(±)
n,m(r, − 1) = 1

2l
√

πEn,m

[
±√

En,m ± � eimϕJ n+1
|m+η|(y)

i
√
En,m ∓ � ei(m−1)ϕJ n

|m+η−1|(y)

]

(38)

for m < 0. Again the signs ± correspond to the solutions
E (±) = ±En,m with n � 0 and the energy En,m given by
Eq. (33). Now the zero-mode solution

�0,m(r, − 1) = 1√
2πl

[
eimϕ J 0

|m|−η(y)
0

]
, m � 0, (39)

is electron-like, E = �. Also the lower components of the
m = 0 solutions (37) and (39) are regular at r = 0, and the
upper components diverge as ψ1n,0(r, − 1) ∼ r−η.

Since the solutions of the Dirac equation are characterized
not only by the quantum numbers, but also by the sublattice
label A and B, energy ±, and the valley index ζ = ±1, instead
of directly writing an analog of Eq. (11), it is more convenient
to construct the Green’s function expressing the LDOS via
the combinations of its matrix elements. The eigenfunction
expansion for the retarded Green’s function reads

GD
η (r,r′,E + i0; ζ ) =

∞∑
n=0

∞∑
m=−∞

[
�(+)

n,m(r,ζ )�(+)†
n,m (r′,ζ )

E − En,m + i0

+ �(−)
n,m(r,ζ )�(−)†

n,m (r′)
E + En,m + i0

]
. (40)

The LDOS for A and B sublattices is expressed in terms of the
Green’s function (40) as follows:

ND(A)
η (r,E) = − 1

π
Im[Gη11(r,r,E + i�; ζ = 1)

+Gη11(r,r,E + i�; ζ = −1)],

ND(B)
η (r,E) = − 1

π
Im[Gη22(r,r,E + i�; ζ = 1)

+Gη22(r,r,E + i�; ζ = −1)], (41)

where similarly to the nonrelativistic case, the LL width � is
introduced. Substituting the solutions of the Dirac equation
in the Green’s function (40) and using the definition (41), we
obtain

ND(A,B)
η (r,E,B) = −ND

0
1

π
Im

{
E + i� ± �

ε0

× G

[
y,z → − (E + i�)2 − �2

ε2
0

,η

]}
,

(42)
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where the upper (lower) sign corresponds to A (B) sublattice,
the relativistic Landau scale ε0 is defined below Eq. (1), and
the normalization constant ND

0 = ε0/(2πh̄2v2
F ) corresponds

to the value of the free (η = B = � = 0) DOS for the Dirac
quasiparticles per spin and one sublattice (or valley) taken
at the energy E = ε0 when the energy gap � = 0. Writing
Eq. (42), we introduced the function

G(y,z,η) =
3∑

i=1

gi(y,z,η), (43)

which consists of the three terms

g1(y,z,η) = −
∞∑

n=0

∞∑
m=−∞

[
J n

|m+η−1|(y)
]2

z + λn,m

,

g2(y,z,η) = −
∞∑

n=0

∞∑
m=−∞

[
J n

|m+η|(y)
]2

z + λ′
n,m

, (44)

g3(y,z,η) =
∞∑

n=0

{ [
J n

η (y)
]2

z + 2(n + η)
−

[
J n

−η(y)
]2

z + 2n

}

with λn,m defined in Eq. (33) and

λ′
n,m = 2n + |m + η| + m + η. (45)

Note that the function g3 contains the singular terms that
originate from m = 0 solutions of the Dirac equations.

The g1,2 contributions are calculated in the same way as
was derived Eq. (15) in Appendix A, viz., exponentiating the
denominators [see Eq. (A2)] and introducing the regularizing
factor δ > 0, and then using the sum (A4), we obtain

g1(y,z,η) = −
∫ ∞

0
dβe−βz e−2(δ+β)

1 − e−2(δ+β)
e−y coth(δ+β)

×
∞∑

m=−∞
e−(δ+β)(m+η)I|m+η|

[
y

sinh(δ + β)

]
,

(46)

where we also shifted the dummy index m → m + 1. As we
saw in the nonrelativistic case, the presence of δ is necessary
for the calculation of the DOS, although it can be omitted in
the expressions for the LDOS. The remaining sum over m can
be found using Eq. (B7) from Appendix B:

�g1(y,z,η) ≡ g1(y,z,η) − g1(y,z,0)

= sin πη

π

∫ ∞

0
dβe−βz e−2(δ+β)

1 − e−2(δ+β)
e−y coth(δ+β)

×
∫ ∞

−∞
dωe−y cosh ω/ sinh(δ+β) e−η(ω+δ+β)

1 + e−(ω+δ+β)
,

(47)

where we introduced the function �g1, which describes the
perturbation by the vortex. Similarly, for �g2 we have

�g2(y,z,η) ≡ g2(y,z,η) − g2(y,z,0)

= sin πη

π

∫ ∞

0
dβe−βz 1

1 − e−2(δ+β)
e−y coth(δ+β)

×
∫ ∞

−∞
dωe−y cosh ω/ sinh(δ+β) e−η(ω+δ+β)

1 + e−(ω+δ+β)
.

(48)

The case of g3 is even simpler, because there is no summation
over m. Using the sum (A4), we obtain an analog of Eq. (46).
It contains the difference of two modified Bessel functions,
which can be expressed via the MacDonald function32

Kν(x) = π

2 sin πν
[I−ν(x) − Iν(x)]. (49)

Finally, we arrive at the result

g3(y,z,η) = −2 sin πη

π

∫ ∞

0
dβe−βz e−(δ+β)η

1 − e−2(δ+β)
e−y coth(δ+β)

×Kη

[
y

sinh(δ + β)

]
. (50)

Notice that since g3(y,z,η = 0) = 0, there is no need to
introduce a function �g3. Having the functions �g1,2 and g3,
we can directly calculate the LDOS perturbation by the vortex,
�ND(A,B)

η (r,E,B) = ND(A,B)
η (r,E,B) − N

D(A,B)
0 (r,E,B).

The subsequent consideration is made in parallel to the
nonrelativistic case. We consider first the LDOS in the constant
magnetic field (η = 0) when due to the translational invariance
it coincides with the DOS per unit area. The LDOS can be
derived in a similar to Eq. (13) way, but a special care has
to be taken because in contrast to the nonrelativistic case, the
cutoff parameter δ enters the final result

N
D(A,B)
0 (E,B) = −ND

0

π
Im

{
E + i� ± �

ε0

×
[

ln(2δ) + γ + ψ

(
z

2

)
+ 1

z

]}
, (51)

where we kept only the divergent in the limit δ → 0 terms It
is more convenient to rewrite Eq. (51) in the form derived in
Ref. 28, where instead of the cutoff δ the bandwidth W cutoff
is used

N
D(A,B)
0 (E,B) = ND

0

π

[
�

ε0
ln

W 2

2ε2
0

− Im

(
E + i� ± �

ε0

×
{
ψ

[
�2 − (E + i�)2

2ε2
0

]

+ ε2
0

�2 − (E + i�)2

})]
. (52)

The advantage of the representation (52) is that its B → 0 limit
takes the usual form.28 The quantum magnetic oscillations of
the LDOS, ND

0 (E,B) = N
D(A)
0 (E,B) = N

D(B)
0 (E,B) for � =

0 are shown in Fig. 3(a) on a dashed (red) curve. Only the
positive-energy region is shown, where the positions of the
peaks,En/ε0 = √

2n, are in accord with the Dirac spectrum (1).
The nonequidistant LLs along with the peak at E = 0 related
to the energy independent lowest LL are characteristic of the
Dirac fermions. The reflection formula (A11) allows one to
extract these oscillations analytically.28

The representation (42) for the LDOS, where the func-
tion (43) consists of the three terms (47), (48), and (50), which
describe the LDOS perturbation, is our starting point for the
analysis of the LDOS and DOS in the relativistic case. In the
next Sec. IV B, we begin with the DOS and in Sec. IV C return
to the LDOS.

125306-7



A. O. SLOBODENIUK, S. G. SHARAPOV, AND V. M. LOKTEV PHYSICAL REVIEW B 84, 125306 (2011)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
E ∋

0

E ∋

0

1

2

3

4

5

6

7

NΗ
D r,E,B N0

D
(a)

(b)

0

1 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

N1 2
D r,E,B N0

D

r l 4

r l 0.5

FIG. 3. (Color online) The normalized full LDOS
ND

η (r,E,B)/ND
0 (ε0) as a function of energy E in the units of

the relativistic Landau scale ε0. The LDOS is an even function of E,
so only the positive-energy region is shown. (a) η = 0 (no vortex and
LDOS is r independent) and η = 1/2 for r = l. (b) Both lines are for
η = 1/2, r = 0.5l, and r = 4l. In all cases, the width is � = 0.05ε0,
W/ε0 = 3.35, and � = 0.

B. The density of states

The full DOS per spin projection is given by the spatial
integral (16). Accordingly, the full DOS perturbation by the
vortex �ND(A,B)

η (E,B) = ND(A,B)
η (E,B) − N

D(A,B)
0 (E,B) for

A and B sublattices, takes the form

�ND(A,B)
η (E,B)

= −ND
0 2l2Im

{
E + i� ± �

ε0

∫ ∞

0
dy[�g1(y,z,η)

+�g2(y,z,η) + g3(y,z,η)]

}
. (53)

The subsequent calculation on the basis of Eq. (53) is similar
to the nonrelativistic case considered in Appendix C, and gives
[compare Eqs. (C6) and (17)]

�ND(A,B)
η (E,B) = −Im

(
E + i� ± �

2πε2
0

{
2η

(
1 + 1

z

)

+(z + 2η)

[
ψ

(
z

2

)
− ψ

(
z + 2η

2

)]})
,

(54)

where z → −[(E + i�)2 − �2]/ε2
0 . In the clean limit � → 0,

the DOS difference reduces to

�ND(A,B)
η (E,B)

= ηδ(E ± �) + 2(E ± �)sgnE

[ ∞∑
n=1

nδ
[
E2 − �2

−2(n + η)ε2
0

] −
∞∑

n=1

(n − η)δ
(
E2 − �2 − 2nε2

0

)]
,

(55)

where except of the first, proportional to η, zero-mode term,
each δ function corresponds to both positive and negative
energy peaks. A comparison of this result with Eq. (18) for
the nonrelativistic problem sheds the light on the difference
between these cases. We observed from Eq. (18) that all
peaks associated with the usual LLs are depleted, while the
peaks related to the vortex are developed. At first sight,
Eq. (55) follows the same pattern, viz., the LL peaks with
E (±)

n = ±
√
�2 + 2ε2

0n with n = 1,2, . . . are depleted and
the vortexlike levels E (±)

n = ±
√
�2 + 2ε2

0 (n + η) with n =
1,2,3, . . . are developed. However, the first term ηδ(E ± �)
related to the zero-mode solutions of the Dirac equation is
present for any magnetic field configuration and the addition
of the vortex only adds η to the weight of the corresponding
peak. This property is an illustration of the topological origin
of the lowest LL.34

The B → 0 limit can again be obtained using the asymp-
totic expansion (19), which for the expression in the square
brackets of Eq. (54) gives

2η

(
1 + 1

z

)
+ (z + 2η)

[
ψ

(
z

2

)
− ψ

(
z + 2η

2

)]

= −2η2

z
+ O

(
1

z2

)
. (56)

Substituting Eq. (56) in Eq. (54) and making the analytic
continuation z → −[(E + i�)2 − �2]/ε2

0 in the clean limit
� → 0, we obtain

�ND(A,B)
η (E,B = 0) = ND(A,B)

η (E,B = 0) − V2DN
D(A,B)
0

= η2δ(E ∓ �). (57)

This result is in agreement with Refs. 5 and 35, where
the DOS ρD

η (E,ζ ) for a separate K± point, but summed
contributions for A and B sublattices, was considered. Its per-
turbation �ρD

η (E,ζ ) = ρD
η (E,ζ ) − V2DρD

0 (E) with respect to
the free DOS per spin and one valley, ρD

0 (E) = |E|θ (E2/�2 −
1)/(2πh̄2v2

F ), is equal to

�ρD
η (E,ζ ) = − 1

2η(1 − η)[δ(E − �) + δ(E + �)]

+ ηδ(E + ζ�), η > 0. (58)

Integrating Eq. (57), one can find the total excess of the
states induced by the vortex

�ND
η ≡

∫ ∞

−∞
dE

[
�ND(A)

η (E,B) + �ND(B)
η (E,B)

] = 2η2.

(59)

125306-8



DENSITY OF STATES OF RELATIVISTIC AND . . . PHYSICAL REVIEW B 84, 125306 (2011)

As in the nonrelativistic case (21), it turns out that the
integral (59) does not depend on the strength B of the
background field. This can be checked by integrating the
sum (55) and using an appropriate regularization. Completing
our discussion of the DOS, we note that the value �ND

η has
to be distinguished from the induced by the magnetic flux
fractional fermion number,36 which in terms of the DOS (58)
can be written as follows:

Nη = −1

2

∫ ∞

−∞
dEsgnE�ρD

η (E,ζ ) = ζη

2
. (60)

C. The local density of states

The contributions �g1,2 to the relativistic LDOS given by
Eqs. (47) and (48) can be written in terms of the function
I (y,z,η) defined by Eq. (23), which was used in Sec. III C to
express the nonrelativistic LDOS

�g1(y,z,η) = sin πη

2π
I (y,z + 1,η), (61)

and

�g2(y,z,η) = sin πη

2π
I (y,z − 1,η). (62)

Thus the only remaining term we have to find is g3 given by
Eq. (50). Changing the variable x = e−β , we obtain

g3(y,z,η) = −2 sin πη

π

∫ 1

0
dx

xz+η−1

1 − x2
e−y(1+x2)/(1−x2)

×Kη

(
2xy

1 − x2

)
, (63)

Now using the integral (2.16.10.5) from Ref. 33 {one can also
change the variable to t via e−β = [t/(1 + t)]1/2 and use the
integral (D9)}, we can write∫ y

0
dx

xα−1

x2 − y2
exp

(
−b

y2 + x2

y2 − x2

)
Kν

(
2cx

y2 − x2

)

= −yα−1

4c
�

(
α − ν

2

)
�

(
α + ν

2

)

×W(1−α)/2,ν/2[b +
√

b2 − (c/y)2]

×W(1−α)/2,ν/2[b −
√

b2 − (c/y)2]. (64)

Thus we can express g3 in terms of the Whittaker function
Wλμ(z) as follows:

g3(y,z,η) = sin πη

2π
ID(y,z,η) (65)

with the function

ID(y,z,η) = − 1

y
�

(
z

2

)
�

(
z + 2η

2

)
W 2

(1−z−η)/2,η/2(y). (66)

Thus the final expression for the relativistic LDOS perturbation
by the vortex takes the form

�ND(A,B)
η (r,E,B) = −ND

0
1

π
Im

{
E + i� ± �

ε0

×�G

[
y,z → − (E + i�)2 − �2

ε2
0

,η

]}
,

(67)

where the function

�G(y,z,η) = sin πη

2π
[I (y,z + 1,η) + I (y,z − 1,η)

+ ID(y,z,η)] (68)

is expressed via the defined above functions (24) and (66).
To complete the analytic treatment, we consider the

behavior of the LDOS in the most interesting case of the small
r , when we expect that the difference between the relativistic
and nonrelativistic cases should be the most transparent. The
observation (25) that in the nonrelativistic case the full LDOS
in the center of the vortex vanishes turns out to be useful
for better understanding of the relativistic case. Indeed, let’s
consider the first two terms of Eq. (43) with g1,2 that contribute
to the full LDOS (42). Since the numerators of g1,2 in Eq. (44)
vanish at y = 0, the only term that governs the behavior of the
full LDOS in the r → 0 limit is the function ID(y,z,η), which
due to its origin from the m = 0 solutions is expected to be
divergent.

The same result can be verified using the final expres-
sions (67) and (68) for �ND(A,B)

η (r = 0,E,B). For y = 0, the
first two terms of Eq. (68) with the function I , which originate
from �g1,2 [see Eqs. (61) and (62)] can be combined together;

sin πη

2π
Im[I (y = 0,z + 1,η) + I (y = 0,z − 1,η)]

= −Im

[
ψ

(
z

2

)
+ 1

z

]
, (69)

where we used the value ImI (y = 0,z,η) established in
Eq. (D23) and then transformed the first digamma function
using Eq. (D22). Thus we find that in the limit � → 0, the
contribution of these �g1,2 terms to the LDOS difference
�ND(A,B)

η (r = 0,E,B) given by Eq. (67) is equal to the
negative LDOS (51) in the constant magnetic field.

Let us now analyze the behavior of the function ID(y,z,η)
in the r → 0 limit. Using the expansion of the Whittaker
function (D19) in the limit y → 0, we obtain

ID(y,z,η) = −�(z/2)�2(η)

�(η + z/2)
y−η + O(y0), y → 0. (70)

Thus the full LDOS is divergent at the origin as

ND(A,B)
η (r,E,B) ∼ r−2ηIm

{
E + i� ± �

ε0
�

[
�2 − (E + i�)2

2ε2
0

]

×�−1

[
�2 − (E + i�)2

2ε2
0

+ η

]}
. (71)

For η = 1/2, the divergence is ∼r−1 as was in the absence of
the background field.5 As we discuss below, the presence of
this field makes the divergence of the LDOS strongly energy
dependent.

The results of the numerical computations of the full
LDOS on the basis of Eqs. (67) and (68) are shown in
Figs. 3, 4, and 5. Since Eq. (67) describes the perturbation
of the LDOS �ND

η (r,E,B) by the vortex, to obtain the value
of the full LDOS ND

η (r,E,B), we add to �NS
η its η = 0 given

by Eq. (52).
In Fig. 3(a), we compare the already discussed after Eq. (52)

case of the LDOS for a constant magnetic field with the case
when the vortex is also present (η = 1/2) for r = l. Since

125306-9



A. O. SLOBODENIUK, S. G. SHARAPOV, AND V. M. LOKTEV PHYSICAL REVIEW B 84, 125306 (2011)

3 2 1 0 1 2 3
E ∋

0

2

4

6

8
N1 2

A,B D r,E,B N0
D

N1 2
B D

N1 2
A D

FIG. 4. (Color online) The normalized full LDOS
N

D(A,B)
1/2 (r,E,B)/ND

0 (ε0) as a function of energy E in the units
of the relativistic Landau scale ε0 for r = l. The gap is � = ε0, the
width is � = 0.05ε0 and W/ε0 = 3.35.

we consider the situation when � = 0, there is no difference
between sublattices, ND

0 (E,B) = N
D(A)
0 (E,B) = N

D(B)
0 (E,B)

and the LDOS is an even function of energy, so the positive-
energy region is plotted. We observe that compared to η = 0
[the dashed (red) curve] for η = 1/2 [solid (blue) curve] a
set of the new peaks at En/ε0 = √

2n + 1 with n = 1,2, . . . is
developed and the lowest LL peak (n = 0) is enhanced. This
behavior can be foreseen from the expression for the full DOS
difference Eq. (55) [or Eq. (54)] discussed in Sec. IV B. The
case with the Abrikosov vortex is further explored in Fig. 3(b),
where we plot the energy dependence of the LDOS for r = 0.5l

[the solid (blue) curve] and r = 4l [the dashed (red) curve].
Comparing the results for r/ l = 0.5, 1.0, and 4.0, we find that
as the distance r decreases, the peaks at En/ε0 = √

2n + 1 with
n = 1,2,3 . . . related to the vortex are getting stronger. When r

further decreases, the peaks related to LLs grow faster than the
vortexlike peaks. This behavior indeed allows to attribute the
corresponding energy levels to the vortex. On the other hand,
the peaks En/ε0 = √

2n with n = 1,2, . . . corresponding to the
usual LLs (1) are getting weaker as the distance r decreases.
We remind that even for an arbitrary vortex flux η the latter
levels will not change the positions, while the levels related to
the vortex will shift their energies. Figure 3 also illustrates a
special character of the lowest LL that is present even in an

0 1 2 3 4
r l

2
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12
N1 2

D r,E,B N0
D

E 0 5

E 0 2

E 0 3

E ∋

∋

∋

∋

0 2

FIG. 5. (Color online) The normalized full LDOS
ND

1/2(r,E,B)/ND
0 (ε0) as a function of distance r measured in

the units of the magnetic length l from the vortex for four values of
E/ε0 = √

2,2 (usual LLs) and E/ε0 = √
3,

√
5 (vortex-like levels).

The width is � = 0.05ε0, W/ε0 = 3.35, and � = 0.

inhomogeneous magnetic field (see also recent simulations in
Ref. 37), and therefore is getting stronger as r decreases.

In Fig. 4, we consider the energy dependence of the
LDOS N

D(A,B)
1/2 (r,E,B) when there is a gap � = ε0 in the

spectrum. The distance from the vortex center is r = l. The
gap introduces asymmetry between the LDOS on A and B

sublattices and also makes the LDOS asymmetric with respect
to E = 0, so we have to plot both negative- and positive-energy
regions. Indeed, we observe that the zero LL peak at E = �

is present only in N
D(A)
1/2 (r,E,B), while the peak at E = −�

shows up only in N
D(B)
1/2 (r,E,B). The vortexlike levels also

become asymmetric with respect to E = 0. All this illustrates
that the STS on graphene on a substrate that can induce
inequivalence of sublattices in graphene should reveal these
features.

From Eq. (71) we expect that the presence of the back-
ground magnetic field makes r−1 divergence at r → 0 of
the LDOS strongly energy dependent: it is emphasized by
the poles of the first � function when the energy E is close
to the energies of the usual LLs, E (±)

n = ±
√
�2 + 2ε2

0n with
n = 0,1,2, . . ., and oppositely, because the second �function
is in the denominator, when E is equal to the energies of
the vortexlike levels, E (±)

n = ±
√
�2 + 2ε2

0 (n + η) with n =
1,2, . . ., the divergence is suppressed.

This is exactly what we observe in Fig. 5, where we
show the dependence of the LDOS on the distance r for
fixed values of the energy (� = 0). Indeed, the solid (blue)
and dash-dotted (black) curves, which correspond to energies
E/ε0 = √

2,2 of the usual LLs have divergent behavior at the
origin. Obviously, this divergence is also present for E = 0 and
the corresponding curve will be above the higher energy curves
E/ε0 = √

2 and E/ε0 = 2. On the other hand, the dashed (red)
and dotted (violet) curves, which correspond to the energies
E/ε0 = √

3 and
√

5 of the vortexlike levels tend to go to a
constant value at r = 0. Strictly speaking, r−1 divergence is
suppressed only when the function �−1(η + z/2) in Eq. (71) is
zero, but for small values of the level width �, the divergence
seems to be completely suppressed for the chosen values of
the energy. For r 	 l, the behavior of the LDOS resembles the
nonrelativistic case. Since in this limit the LDOS difference
�NS

η (r,E,B) ∼ e−r2/2l2
, the large-r behavior of the full DOS

is determined by the contribution of the position independent
LDOS (52). Thus the large-r limit of all curves in Fig. 5 is
determined by the corresponding value of the LDOS in the
dashed (red) curve in Fig. 3(a).

V. CONCLUSIONS

The main motivation of this work was to address the
question as to whether one can distinguish graphene from
2DEG by measuring the LDOS near the Abrikosov vortex
penetrating them. In the first publication,5 we investigated
the simplest formulation of the problem with a single vortex.
In the 2DEG, the solutions of the Schrödinger equation in
the presence of the Aharonov-Bohm field are regular and
the LDOS near the vortex is depleted. On the other hand,
a specific feature of the Dirac fermions in the field of the
Aharonov-Bohm flux, namely, the presence of the divergent
as r−η at the origin m = 0 solution of the Dirac equation,
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results in the r−2η divergence of the LDOS in the vicinity of
the vortex. Therefore the LDOS enhancement near the vortex
can really distinguish graphene from 2DEG.

This positive answer obtained in the previous paper5 is
now extended for the case of a more complicated magnetic
field configuration consisting of the Aharonov-Bohm flux
and a constant background field, as one can see just from a
comparison of Figs. 2 and 5. It turns out that the character of
the divergence in the Dirac case remains the same, but it is
now strongly modulated by the energy-dependent factor. The
divergence is present when the energy is equal to the energies
of the usual LLs (1), including the lowest zero-energy LL.

The significant difference between the relativistic and
nonrelativistic cases can be understood by comparing the
squared Dirac equation with the Schrödinger equation. While
the Schrödinger equation contains only an effective centrifugal
potential, which originates from the angular part of the
Hamiltonian, an equation for one of the components of the
Dirac spinor always contains an attractive pseudo-Zeeman
term. We call it the pseudo-Zeeman term because it is related
to the sublattice rather than to the spin degree of freedom.
Since for the zero azimuthal number m the centrifugal part
of the potential is the smallest, the attraction term results in
the divergence of the LDOS near the vortex. Our main results,
which allow to conclude that this picture remains valid in
the constant background field, can be summarized as follows.
(i) We obtained analytic expression for the LDOS perturbation
by the Aharonov-Bohm flux in the presence of a constant
background magnetic field in the nonrelativistic, see Eqs. (22)
and (24), and relativistic, see Eqs. (67) and (68), cases. The
nonrelativistic answer is written in terms of the function (24),
which is expressed as a combination of the Whittaker functions
in Eq. (D18). The relativistic answer (68) is expressed in
terms of the same function (24) and a function (66) that
describes the contribution of the m = 0 solutions of the
Dirac equation. (ii) We show that in the vicinity of the
vortex (r � 0.2l) the relativistic LDOS is governed by the
function (66), so that in the limit r → 0 the LDOS is given
by Eq. (71). (iii) We obtained compact analytic expressions
for the DOS perturbation by the Aharonov-Bohm flux. For
the nonrelativistic case, this is Eq. (17), which in the clean
limit reduces to the known29 result given by Eq. (18). For the
relativistic case, the corresponding expressions for the DOS
are Eqs. (54) and (55).

We hope that the obtained results will be useful both
for the experimental STS studies of graphene and for the
theoretical studies of the interaction effects in an inhomo-
geneous magnetic field similar to the recent work.37 Among
possible extensions of the considered problem we mention
the necessity to take into account a finite size of the vortex
core, but this certainly demands more numerical work, while
in the present paper the main goal was to obtain some analytic
results.
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APPENDIX A: THE CALCULATION OF THE LDOS IN THE
NONRELATIVISTIC CASE

Setting η = 0 in Eq. (8), one obtains the solution of the
Schrödinger equation for B = const without vortex. Substi-
tuting this solution in the LDOS defintion (11) and taking into
account the widening of the LLs (12), we represent the LDOS
as a double sum

NS
0 (r,E,B) = 1

π
Im

∞∑
n=0

∞∑
m=−∞

A2
n,my|m|e−y

[
L|m|

n (y)
]2

× 1

En,m + E0z
, (A1)

where in the second line, we introduced the dimensionless
variable z = −(E + i�)/E0 with the characteristic energy E0

defined below Eq. (10). To calculate the sum in Eq. (A1), it is
convenient to represent its last factor as an exponent

e−δ(2n+|m|+m+1)

En,m + E0z
= 1

E0

∫ ∞

0
dβe−(β+δ)(2n+|m|+m+1)e−βz.

(A2)

Here, we also introduced the regularizing exponential factor
with δ > 0, which makes the sum convergent and will be set
to 0 at the end. Then the LDOS acquires the form

NS
0 (r,E,B) = M

π2h̄2 Im

{∫ ∞

0
dβe−(δ+β)e−βz

×
∞∑

m=−∞
y|m|e−ye−(β+δ)(|m|+m)

×
∞∑

n=0

n!e−2(β+δ)n

�(n + |m| + 1)

[
L|m|

n (y)
]2

}
. (A3)

We operate with the representation (A3) in the following
way. First, we consider its analytic continuation for z > 0 and
perform the calculation. Then to obtain the LDOS, we return
to the imaginary values z → −(E + i�)/E0 and evaluate the
imaginary part. Using Eq. (10.12.20) from Ref. 32,

∞∑
n=0

n!

�(n + α + 1)
Lα

n(x)Lα
n(y)zn

= (1 − z)−1 exp

(
−z

x + y

1 − z

)
(xyz)−

α
2

×Iα

(
2
√

xyz

1 − z

)
, |z| < 1, (A4)
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where Iα is the modified Bessel function, we find the sum over
n in Eq. (A3)

NS
0 (r,E,B) = M

π2h̄2 Im

{∫ ∞

0
dβe−(δ+β)e−βz e−y coth(δ+β)

1 − e−2(δ+β)

×
∞∑

m=−∞
e−(δ+β)mI|m|

[
y

sinh(δ + β)

]}
. (A5)

The remaining summation over m in Eq. (A5) can be done by
using the property of the modified Bessel function Im(x) =
I−m(x) and that its generating function is32

∞∑
m=−∞

zmIm(x) = exp

[
x

2
(z + 1/z)

]
. (A6)

We obtain

NS
0 (E,B) = M

(πh̄)2
Im

[∫ ∞

0
dβ

e−(δ+β)e−βz

1 − e−2(δ+β)

]
. (A7)

Notice that from the last expression one can explicitly observe
that it does not depend on y, i.e., in a constant magnetic field
the LDOS is position independent. Introducing a new variable
x = 2(δ + β), we can rewrite the last expression as follows:

NS
0 (E,B) = − M

2(πh̄)2
Im

[
eδz

∫ ∞

2δ

dx
e−x − e−x(z+1)/2

1 − e−x

−eδz

∫ ∞

2δ

dx
e−x

1 − e−x

]
. (A8)

In the limit δ → 0, the second term of Eq. (A8) remains real
irrespectively the value of z, while the first term gives the
integral representation of the digamma function:38

ψ(z) = −γ +
∫ ∞

0
dt

e−t − e−tz

1 − e−t
, Re(z) > 0, (A9)

where γ is the Euler-Mascheroni constant. Thus we obtain

NS
0 (E,B) = − M

2(πh̄)2
Im

[
ψ

(
z + 1

2

)]
, (A10)

so that the final expression for the LDOS after the an-
alytic continuation z → −2(E + i�)/(h̄ωc) takes the form
of Eq. (13). The oscillatory behavior of the LDOS can be
explicitly extracted from Eq. (A10) [or Eq. (13)] using the
relationship

ψ(−z) = ψ(z) + 1

z
+ π cot(πz). (A11)

Now we generalize these results for the case when the vortex
is present. Repeating the steps that led us from Eq. (A1) to
Eq. (A5), we obtain

NS
0 (r,E,B) = M

π2h̄2 Im

{∫ ∞

0
dβe−(δ+β)e−βz e−y coth(δ+β)

1 − e−2(δ+β)

×
∞∑

m=−∞
e−(δ+β)(m+η)I|m+η|

[
y

sinh(δ + β)

] }
.

(A12)

The sum over m in Eq. (A12) is calculated in Appendix B.
Using Eq. (B7), we obtain

∞∑
m=−∞

e−(δ+β)(m+η)I|m+η|

[
y

sinh(δ + β)

]

= ey coth(δ+β) − sin πη

π

×
∫ ∞

−∞
dωe−y cosh ω/ sinh(δ+β) e−η(δ+β+ω)

1 + e−(δ+β+ω)
. (A13)

The first term on the right-hand side of the last equation
corresponds to the LDOS without the vortex, which was
considered above, so that we can concentrate on the second
term. Substituting it in Eq. (A12), we arrive at Eq. (15) for
�NS

η (r,E,B).

APPENDIX B: THE CALCULATION OF THE SUM OVER
THE AZIMUTHAL QUANTUM NUMBER

The sum over the azimuthal quantum number

�(η) =
∞∑

m=−∞
e−β(m+η)I|m+η|(x) (B1)

can be found using the method described in Ref. 39. Using the
integral representation of the modified Bessel function40

Iν(z) = 1

2πi

∫
C

ez cosh ω−νωdω, (B2)

where C is a complex path beginning at −iπ + ∞ and ending
at iπ + ∞, we obtain

�(η) = 1

2πi

∫
C

dωex cosh ω

×
[ ∞∑

m=0

e−(β+ω)(m+η) +
∞∑

m=1

e−(ω−β)(m−η)

]
.

(B3)

Choosing the contour C to lie in such a way that the condition
Reω > β is satisfied, the series can be made convergent, so
that

�(η) = 1

2πi

∫
C

dωex cosh ω

[
e−(β+ω)η

1 − e−(β+ω)
+ e(ω−β)η

e(ω−β) − 1

]
.

(B4)

Now changing the variable ω → −ω in the second integral,
we can write

�(η) = 1

2πi

[∫
C

+
∫

C ′

]
dωex cosh ω e−(β+ω)η

1 − e−(β+ω)
, (B5)

where C ′ is the contour symmetric to the contour C with
respect to the origin of coordinates. Joining the contours C

and C ′ leads to an ω integral of the form∫
C

dω +
∫

C ′
dω =

∫ ∞+iπ

−∞+iπ

dω +
∫ −∞−iπ

∞−iπ

dω +
∮

C ′′
dω,

(B6)

where C ′′ is a rectangle with a length larger than 2β and width
2πi, centered in the origin, traversed anticlockwise. Inside the
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contour C ′′, the integrand has only one pole at ω0 = −β, so
that this integral does not depend on η and corresponds to
�(0). Therefore we arrive at the final representation for the
sum (B1):

�(η) = − sin πη

π

∫ ∞

−∞
dωe−x cosh ω e−(β+ω)η

1 + e−(β+ω)
+ �(0),

(B7)

where

�(0) = ex cosh β. (B8)

Finally, note that one can reproduce the value �(0) from
Eq. (B8) using Eq. (A6), which for z = e−β , reduces to the
sum (B1) with η = 0.

APPENDIX C: THE CALCULATION OF THE DENSITY OF
STATES IN THE NONRELATIVISTIC CASE

Substituting Eq. (15) in the definition (16) and integrating
over the spatial coordinates, we obtain

�NS
η (E,B) = − sin πη

Ml2

2(πh̄)2
Im

[∫ ∞

0
dβ

∫ ∞

−∞
dυ

× e−βz

cosh(υ/2) cosh(β + δ − υ/2)

e−ηυ

1 + e−υ

]
,

(C1)

where we introduced the new variable υ = ω + β + δ. This
double integral can be rewritten using the new variables t =
e−2β, x = eυ as follows:

�NS
η (E,B) = − sin πη

Ml2e−δ

(πh̄)2
Im

[ ∫ 1

0
dtt (z−1)/2

×
∫ ∞

0

dxx1−η

(1 + x)2(1 + te−2δx)

]
, (C2)

where the second integral can be calculated using the residue
theory ∫ ∞

0

dxx1−η

(1 + x)2(1 + te−2δx)

= π

sin πη

1 − η + ηe−2δt − e−2ηδtη

(1 − e−2δt)2
. (C3)

Then the remaining integral is expressed via the hypergeomet-
ric function∫ 1

0
dtt (z−1)/2 1 − η + ηe−2δt − e−2ηδtη

(1 − e−2δt)2

= 1 − e−2δη

1 − e−2δ
− (z + 2η − 1)

[
1

1 + z

× 2F1

(
1,

1 + z

2
;

3 + z

2
; e−2δ

)
− e−2δη

1 + z + 2η

× 2F1

(
1,

1 + z

2
+ η;

3 + z

2
+ η; e−2δ

)]
. (C4)

Now we use the series representation of hypergeometric
functions in Eq. (C4):

e−2δη

z + 2η + 1
2F1

(
1,

1 + z

2
+ η,

3 + z

2
+ η,e−2δ

)

=
∞∑

n=0

e−2δ(n+η)

z + 1 + 2η + 2n

= eδ(z+1)
∞∑

n=0

∫ ∞

δ

dxe−x(2n+2η+z+1)

= eδ(z+1)
∫ ∞

δ

dx
e−x(z+1+2η)

1 − e−2x
, (C5)

where the first one in Eq. (C4) is recovered for η = 0.
We observe that the presence of finite δ > 0 makes the
hypergeometric series well defined, but at the end of the
calculation the limit δ → 0 can already be taken. Then
taking into account the integral representation of the digamma
function (A9) [similarly to Eq. (A8)] one can express the
DOS (C2) in the following simple form:

�NS
η (E,B) = Ml2

2πh̄2 Im

{
(z + 2η − 1)

×
[
ψ

(
z + 1

2
+ η

)
− ψ

(
z + 1

2

)]}
, (C6)

which after the analytic continuation z → −2(E + i�)/(h̄ωc)
takes the final form (17).

APPENDIX D: CALCULATION OF THE FUNCTION
I( y,z,η)

As in Ref. 5, we observe that it is simpler to calculate
integrals with the derivative dI (y,z,η)/dy representing the
function I (y,z,η) in the form:

I (y,z,η) = −
∫ ∞

y

dI (Q,z,η)

dQ
, (D1)

where we used that I (∞,z,η) = 0. The derivative
dI (Q,z,η)/dQ contains two terms;

dI (Q,z,η)

dQ
= dI1(Q,z,η)

dQ
+ dI2(Q,z,η)

dQ
, (D2)

where

dI1

dQ
= −1

2

∫ ∞

0
dβe−β(z+η) e

−Q coth β

sinh2 β

×
∫ ∞

−∞
dωe−Q cosh ω/ sinh βe−(η−1)ω,

dI2

dQ
= −1

2

∫ ∞

0
dβe−β(z+η−1) e

−Q coth β

sinh2 β

×
∫ ∞

−∞
dωe−Q cosh ω/ sinh βe−ηω. (D3)

Using the integral representation of the MacDonald function
Kν(x) (see Ref. 32)

Kν(x) = 1

2

∫ ∞

−∞
e−x cosh ω−νωdω, (D4)
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we obtain

dI1

dQ
= −

∫ ∞

0
dβe−β(z+η) e

−Q coth β

sinh2 β
K1−η(Q/ sinh β) (D5)

and

dI2

dQ
= −

∫ ∞

0
dβe−β(z+η−1) e

−Q coth β

sinh2 β
Kη(Q/ sinh β). (D6)

Now introducing a new variable t via e−2β = t/(1 + t), we get

dI1

dQ
= −2e−Q

∫ ∞

0
dtt (z+η)/2(1 + t)−(z+η)/2e−2Qt

×K1−η[2Q
√

t(1 + t)] (D7)

and

dI2

dQ
= −2e−Q

∫ ∞

0
dtt (z+η−1)/2(1 + t)−(z+η−1)/2e−2Qt

×Kη[2Q
√

t(1 + t)]. (D8)

To integrate over t in Eqs. (D7) and (D8), we use the integral
(2.16.10.2) from Ref. 33:∫ ∞

0
dx

xρ−1

(x + z)ρ
e−pxKν(c

√
x2 + xz)

= 1

cz
�

(
ρ + ν

2

)
�

(
ρ − ν

2

)
epz/2

×W1/2−ρ,ν/2 (z+/2) W1/2−ρ,ν/2 (z−/2) ,

z± = z(p ±
√

p2 − c2),
(D9)

Re(p + c) > 0, |arg z| < π, 2Re(ρ) > |Re(ν)|,
where Wλ,μ(z) is the Whittaker function. To adapt Eq. (D9)
to the form of Eqs. (D7) and (D8), we have to set z = 1,
differentiate the result over p, and then take the limit p → c.
This gives∫ ∞

0
dx

xρ

(x + 1)ρ
e−cxKν[c

√
x(x + 1)]

= − 1

2
�

(
ρ + ν

2

)
�

(
ρ − ν

2

)
ec/2G1/2−ρ,ν/2

(
c

2

)
,

(D10)

where the function Gλ,μ(Q) is defined as follows:

Gλ,μ(Q) = 1

2Q
W 2

λ,μ(Q) + 1

Q
Wλ,μ(Q)W ′

λ,μ(Q)

+W ′′
λ,μ(Q)Wλ,μ(Q) − W ′2

λ,μ(Q). (D11)

Accordingly, we obtain that

dI1

dQ
= �

(
z + 1

2

)
�

(
z + 2η − 1

2

)
G(1−z−η)/2,(1−η)/2(Q)

(D12)

and

dI2

dQ
= �

(
z − 1

2

)
�

(
z + 2η − 1

2

)
G(2−z−η)/2,η/2(Q).

(D13)

Now using the differential equation

W ′′
λ,μ(z) +

(
−1

4
+ λ

z
+ 1/4 − μ2

z2

)
Wλ,μ(z) = 0 (D14)

and the recursion formula

z
d

dz
Wλ,μ(z) =

(
λ − z

2

)
Wλ,μ(z)

−
[
μ2 −

(
λ − 1

2

)2]
Wλ−1,μ(z) (D15)

for the Whittaker function,40 one can transform Gλ,μ(Q) to
the form

Gλ,μ(Q) = μ2 + (λ − 1/2)2

Q2
W 2

λ,μ(Q)

− [μ2 − (λ − 1/2)2]2

Q2
W 2

λ−1,μ(Q)

− μ2 − (λ − 1/2)2

Q
Wλ,μ(Q)Wλ−1,μ(Q)

− 2λ − 1

2Q
W 2

λ,μ(Q) − (λ − 1/2)

[
W 2

λ,μ(Q)

Q

]′
.

(D16)

To obtain the function Fλ,μ(y) = − ∫ ∞
y

dQGλ,μ(Q), we em-
ploy the relationships:∫

dQ

Q
Wλ,μ(Q)Wρ,μ(Q)

= 1

ρ − λ
[W ′

λ,μ(Q)Wρ,μ(Q) − W ′
ρ,μ(Q)Wλ,μ(Q)],∫

dQ

Q
Wλ,μ(Q)Wλ,μ(Q)

= W ′
λ,μ(Q)∂λWλ,μ(Q) − ∂λW

′
λ,μ(Q)Wλ,μ(Q),∫

dQ

Q2
Wλ,ν(Q)Wλ,ν(Q)

= 1

2ν
[∂νW

′
λ,ν(Q)Wλ,ν(Q) − W ′

λ,ν(Q)∂νWλ,ν(Q)],

(D17)

which follow from the differential equation (D14) for the
Whittaker function. Then using the recursion formula (D15),
we arrive at the following result:

Fλ,μ(y) = μ2 + (λ − 1/2)2

2μy
[Wλ+1,μ(y)∂μWλ,μ(y)

−Wλ,μ(y)∂μWλ+1,μ(y)]

− [μ2 − (λ − 1/2)2]2

2μy
[Wλ,μ(y)∂μWλ−1,μ(y)

−Wλ−1,μ(y)∂μWλ,μ(y)]

+ μ2 − (λ − 1/2)2

y

[
W 2

λ,μ(y) − Wλ−1,μ(y)Wλ,μ(y)

−Wλ−1,μ(y)Wλ+1,μ(y)
]

− 2λ − 1

2y

[
2W 2

λ,μ(y) − Wλ+1,μ(y)∂λWλ,μ(y)

+Wλ,μ(y)∂λWλ+1,μ(y)
]
. (D18)
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The integral of each term in Eq. (D2) is expressed via Fλ,μ(y)
with the prefactors given by Eqs. (D12) and (D13), so that we
arrive at the final expression (24) for the function I (y,z,η),
which was defined in Eq. (D1).

To complete our analysis, we consider the asymptotic of
the ImI (y,z → −(E + i�)/E0,η) in the limits y → 0 and
y → ∞. To do this we use the following representations of
the Whittaker function:

Wλ,μ(y) ≈ y1/2−μ �(2μ)

�(1/2 + μ − λ)
+ O(y3/2−μ)

+y1/2+μ �(−2μ)

�(1/2 − μ − λ)
+ O(y3/2+μ), y → 0,

(D19)

and

Wλ,μ(y) ≈ e−y/2yλ [1 + O(1/y)] , y → ∞. (D20)

Substituting Eq. (19) in Eq. (24) and omitting all real terms,
which will not contribute to ImI , we obtain

ImI (y → 0,z,η)

≈ − π

sin πη
Im

[
ψ

(
z − 3

2

)
+ 4(z − 2)

(z − 1)(z − 3)

]
.

(D21)

Now using the property of the digamma function

ψ(z) = ψ(z + 1) − 1

z
, (D22)

we arrive at the result

ImI (y = 0,z,η) = − π

sin πη
Imψ

(
1 + z

2

)
. (D23)

One can reproduce the same result directly from Eq. (23).
Indeed, setting y = 0 in Eq. (23), we have

I (y = 0,z,η) =
∫ ∞

0
dβ

e−βz

sinh β

∫ ∞

−∞
dω

e−ηω

1 + e−ω
. (D24)

Now the integral over ω is elementary and after replacing
2β → β, we obtain

I (y = 0,z,η) = π

sin πη

∫ ∞

0
dβ

e−β(z+1)/2

1 − e−β
. (D25)

Recognizing in this integral the imaginary part of the digamma
function (A9), we again arrive at Eq. (D23). The next order
corrections to ImI (y → 0,z,η) can be obtained by expanding
the function dI/dQ at Q = 0, integrating the result over Q,
and using the y = 0 result (D23). For y → 0, the expansion
contains terms ∼ y1−η and yη with prefactors that make the
resulting approximate expression for the LDOS divergent at
η = 0,1.

Substituting the asymptotic (D20) in Eq. (24), we obtain
that for y → ∞

Fλ,μ(y) ∼ e−yy2λ−3
[

1
4 + λ(λ − 1) − μ2

]
. (D26)

APPENDIX E: SOLUTION OF THE DIRAC EQUATION

A positive energy solution of the time-dependent Dirac
equation has a form �(t,r) = exp(−iEt/h̄)�(r), where the
components of a two-component spinor

�(r,ζ ) =
[

ψ1(r,ζ )
iψ2(r,ζ )

]
(E1)

satisfy the following equations [compare with Appendix A of
Ref. 5]:

(E − �)ψ1(r,ζ )

−h̄vF e−iζϕ

(
∂

∂r
− iζ

r

∂

∂ϕ
+ eζAϕ

h̄c

)
ψ2(r,ζ ) = 0,

h̄vF eiζϕ

(
∂

∂r
+ iζ

r

∂

∂ϕ
− eζAϕ

h̄c

)
ψ1(r,ζ )

+ (E + �)ψ2(r,ζ ) = 0. (E2)

The vector potential Aϕ(r) in Eq. (E2) is given by Eq. (5).
From now on, we consider the specific case ζ = 1 (omitting
the label ζ in the wave functions) and seek for a solution of
Eq. (E2) in the following form:

ψ1(r) = ei(m−1)ϕψ1(r), ψ2(r) = eimϕψ2(r). (E3)

Then the radial components of the spinor ψ1(r) and ψ2(r)
satisfy the following system of equations:

ψ1(r) = h̄vF

E − �

[
d

dr
+ m + ηθ (r − R)

r
+ r

2l2

]
ψ2(r),

ψ2(r) = − h̄vF

E + �

[
d

dr
− m + ηθ (r − R) − 1

r
− r

2l2

]
ψ1(r).

(E4)

Introducing the dimensionless variable y = r2/(2l2) and
denoting the ρ ≡ R2/(2l2), we rewrite the system (E4) for
y ∈ [0,ρ]:

ψ1(y) = h̄vF

√
2

(E − �)l
√

y

(
d

dy
+ m

2y
+ 1

2

)
ψ2(y),

ψ2(y) = − h̄vF

√
2

(E + �)l
√

y

(
d

dy
− m − 1

y
− 1

2

)
ψ1(y).

(E5)

Since there is no Aharonov-Bohm field for y < ρ, the problem
in this domain is identical to that of the Appendix D in Ref. 41.
For y ∈ [ρ,∞[, the system (E4) acquires the form

ψ1(y) = h̄vF

√
2

(E − �)l
√

y

(
d

dy
+ m + η

2y
+ 1

2

)
ψ2(y),

(E6a)

ψ2(y) = − h̄vF

√
2

(E + �)l
√

y

(
d

dy
− m + η − 1

2y
− 1

2

)
ψ1(y).

(E6b)

The matching conditions (28) and (29) take the form

ψ1(ρ − 0) = ψ1(ρ + 0),
(E7)

ψ ′
1(ρ + 0) − ψ ′

1(ρ − 0) = η

2ρ
ψ1(ρ),
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and
ψ2(ρ − 0) = ψ2(ρ + 0),

(E8)
ψ ′

2(ρ + 0) − ψ ′
2(ρ − 0) = − η

2ρ
ψ2(ρ),

where the derivative is taken over y. One can obtain from the
system (E5) that for y ∈ [0,ρ] the spinor components satisfy
the following second-order differential equations:[

d2

dy2
+ 1

y

d

dy
− 1

4
− (m − 1)2

4y2
+ λ − m

2y

]
ψ1(y) = 0,

(E9a)[
d2

dy2
+ 1

y

d

dy
− 1

4
− m2

4y2
+ λ − m + 1

2y

]
ψ2(y) = 0,

(E9b)

where we introduced λ = (E2 − �2)l2/(h̄vF )2. The second-
order differential equations for the domain y ∈ [ρ,∞[ corre-
sponding to the system (E6) can be obtained from Eq. (E9) by
replacing m → m + η:[

d2

dy2
+ 1

y

d

dy
− 1

4
− (m + η − 1)2

4y2
+λ − m − η

2y

]
ψ1(y) = 0,

(E10a)[
d2

dy2
+ 1

y

d

dy
−1

4
− (m + η)2

4y2
+λ − m − η + 1

2y

]
ψ2(y) = 0.

(E10b)

The equations can be reduced to the equations for the degener-
ate hypergeometric function [see Eq. (6.3.1) of Ref. 38] and the
solutions of Eqs. (E9a) and (E10a) are given, respectively, by

ψ1(y) = Cmy|m−1|/2e−y/2	

( |m − 1| + m + 1 − λ

2
,1

+ |m − 1|; y
)

, r < R (E11a)

ψ1(y) = Amy|m+η−1|/2e−y/2	

(
a+ − λ

2
,1 + |m + η − 1|; y

)
+Bmy−|m+η−1|/2e−y/2

×	

(
a− − λ

2
,1 − |m + η − 1|; y

)
, r > R,

(E11b)

where a± ≡ m + η + 1 ± |m + η − 1|, Am, Bm, and Cm

are constants, and 	(a,c; z) is the confluent hypergeometric
function. The solution (E11a) contains only one term due to
the condition of square integrability and the absence of the
Aharonov-Bohm field for r < R. Writing the solution (E11b)
we used that for noninteger c the solution of Eq. (E10a) can be
expressed via 	(a,c; z) and z1−c	(a − c + 1,2 − c; z). The
coefficients Am, Bm, and Cm to be found from the matching
conditions (E7). The consideration of the limit R → 0
(ρ → 0) greatly simplifies the calculation because one can
expand the solutions to the linear in ρ terms. Then one finds that

ψ1(y) = Amy|m+η−1|/2e−y/2	

( |m + η − 1| + m + η + 1 − λ

2
,1 + |m + η − 1|; y

)
. (E12)

Since 	(a,c; z) behaves as ey at large y unless a = −n with
n = 0,1,2, . . ., in order to have the square integrable solutions,
the value λ should be equal to the eigenvalue λm,n defined by
Eq. (33). In this case, 	 function is reduced to the generalized
Laguerre polynomials [see Eq. (6.9.2.36) of Ref. 38]

Lα
n(y) = �(α + n + 1)

�(α + 1)n!
	(−n,α + 1,y). (E13)

Introducing the functions

J n
ν (x) =

[
�(n + 1)

�(n + ν + 1)

]1/2

e−x/2xν/2Lν
n(x), (E14)

one can rewrite the solution (E12) in a more compact form

ψ1(y) = AmJn
|m+η−1|(y). (E15)

The definition (E14) generalizes the functions considered in
Ref. 42 for the case of the noninteger ν > −1. These functions
satisfy the following orthogonality condition:∫ ∞

0
dxJ n

ν (x)J n′
ν (x) = δnn′ . (E16)

Then having ψ1(y), one can find ψ2(y) from Eq. (E6b) using
the recursion formulas42

(x + ν)J n
ν (x)

= [x(n + ν)]
1
2 J n

ν−1(x) + [x(n + ν + 1)]
1
2 J n

ν+1(x),

2x(d/dx)J n
ν (x)

= [x(n + ν)]
1
2 J n

ν−1(x) − [x(n + ν + 1)]
1
2 J n

ν+1(x). (E17)

Then demanding that the spinors obey the normalization
condition∫ 2π

0
dϕ

∫ ∞

0
rdr�

†
n′m′(r,ζ )�nm(r,ζ ) = δn,n′δm,m′ , (E18)

we obtain the solutions (30)–(32) for n > 0. The zero-mode
solutions have to be considered separately. Analyzing the
initial system (E6)) one finds that the only allowed solution
is the negative energy E = −�, m � 0 with ψ1(r) = 0. The
corresponding spinor is given by Eq. (34). One can verify that
for η = 0 these solutions transform up to the phase factors to
the solutions obtained in Ref. 41. To show this, one should
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relabel the quantum numbers n + m → n for m � 1 and n +
1 → n for m � 0 and use the property J n

ν (y) = (−1)νJ n+ν
−ν (y),

which is valid only when J n
ν (y) is defined for the integer values

of ν as done in Ref. 42. After this relabeling is made, the
spectrum (33) acquires a conventional form dependent only
on the LL index, which for � = 0 reduces to Eq. (1).
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