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Influence of the pulse shape and the dot size on the decay and reappearance
of Rabi rotations in laser driven quantum dots
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We study the dynamics of strongly confined semiconductor quantum dots coupled to acoustic phonons and
driven by external laser pulses by a numerical path integral method. The field-dependent damping, caused by
the non-Markovian processes of pure dephasing and manifesting itself in the peculiar decay and reappearance
phenomenon of Rabi rotations is found to depend notably on the dot size and the shape of the applied laser
pulses. In the limit of strong fields rectangular pulses yield a significant weaker damping than Gaussian or other
bell-shaped profiles. As a consequence, the undamping of Rabi rotations at high pulse areas is most clearly visible
for rectangular pulses.

DOI: 10.1103/PhysRevB.84.125304 PACS number(s): 03.65.Yz, 73.63.Kv, 42.50.Md, 63.20.kk

I. INTRODUCTION

The ability of integration in solid-state devices together
with the possibility of designing tailored spectra make
quantum dots (QDs) very attractive for the realization of
quantum information processing devices.1 Many proposals
for quantum information applications in a solid-state envi-
ronment base upon the idea to manipulate localized excitonic
states in a controlled way by applying ultrafast laser pulses.2–6

A key ingredient of all these schemes is the manipulation
by means of Rabi oscillations (ROs). As the occupations
as a function of time are often difficult to measure, many
experiments investigate Rabi rotations (RRs) instead of ROs,
i.e., the final exciton occupation is recorded as a function of
the applied pulse area.7–10

The major obstacle to deal with when realizing those
proposals is decoherence, arising from the unavoidable
coupling of the electronic system to the environment. If
semiconductor quantum dots are used as building blocks in
quantum information theory, a detailed knowledge of the
dephasing processes present in these systems is of utmost
importance in order to be able to face this challenge. In
the limit of strong electronic confinement the energetically
large separation between different electronic levels justifies the
restriction to only two levels, and the contribution of phonon-
assisted virtual transitions, which do not change the electronic
occupation, provides the dominant dephasing mechanism on
a picosecond time scale.11,12 This holds for temperatures up
to ∼ 100 K, where other dephasing mechanisms such as
radiative decay evolve on much longer time scales.13 The
virtual processes, usually referred to as pure dephasing, can
be regarded as a prototype of a genuine non-Markovian
interaction and give rise to several interesting features, such as
a phonon-induced renormalization of the Rabi frequency,14–16

a nonmonotonic temperature dependence of the initial decay,12

or strongly non-Lorentzian line shapes in photoluminescence
spectra.17,18 Experimental data are in excellent quantitative
agreement with these theoretical predictions12 and clearly
confirm that even at T = 100 K in typical self-assembled
QDs the initial decoherence is dominated by pure dephasing
processes.

Using a numerically exact path integral method19–23 we
have shown recently that the phonon-induced damping of
ROs, which manifests itself in a damping of RRs and thus
limits the fidelity in the control of electronic excitations
in QDs, is a nonmonotonic function of the applied laser
field.15,24 In the limit of weak fields the damping increases
with rising field strengths, while it decreases at high fields.
This nonmonotonic behavior, which can be understood as
a resonance phenomenon25 and occurs for all temperatures
and carrier-phonon coupling strengths, therefore results in
a peculiar reappearance of RRs at strong fields. We would
like to stress that this reappearance of RRs is different from
the collapse and revival phenomenon within the Jaynes-
Cummings model,26 which describes the temporally periodic
modulation of ROs in a two-level system coupled to a single-
mode quantized photon field.

Recent progress in experimental techniques10 provided
access to higher values of the pulse area, which is a pre-
requisite for the observation of the reappearance of RRs in
the experiment. It has been demonstrated that the period of
RRs decreases with the pulse area and increases with rising
values of the temperature, which is consistent with theoretical
calculations.15,24 Moreover, these experiments gave some first
evidence for the predicted onset of the reappearance of RRs at
high pulse areas.

In this work we characterize the dependence of the decay
and reappearance phenomenon on the dot size and the shape
of externally applied laser pulses, comparing results for
rectangular, Gaussian, and sech-shaped pulses. As elaborated
below, both dependencies strongly affect the system dynamics.
In particular, a proper choice of the pulse envelope function
can lead to a reduction of the dephasing. Our studies may
be helpful to support the interpretation of experimental data
as well as to guide further experimental work. Namely, we
identify parameter regions which are favorable to observe
the decay and reappearance phenomenon experimentally. In
addition, we deepen our knowledge about phonon-induced
damping of ROs and the corresponding renormalization of
the Rabi frequency, which is important for constructing
quantum information schemes that rely on controlled excitonic
excitations.
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The paper is organized as follows. In Sec. II we briefly intro-
duce the model. The influence of both the dot size and the pulse
shape on the field-dependent damping is presented in detail in
Sec. III. Finally, we summarize our results in Sec. IV.

II. MODEL

We consider a GaAs QD in the strong confinement limit
modeled by an electronic two-level system coupled to an
external laser field and to a continuum of acoustic phonons,
and concentrate on pure dephasing processes. This allows us
to use the well-known two-level independent boson (TLIB)
model:11,27
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2
(̂1 − σ̂z) + h̄

2
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∑
q
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Here σ̂± = σ̂x ± iσ̂y , where σ̂x , σ̂y , and σ̂z denote Pauli
matrices acting on the electronic space, � defines the energy
gap between the two QD states, and b

†
q (bq) are bosonic

creation (annihilation) operators of a phonon with momentum
q and energy h̄ωq. The interaction with the classical light
field E is treated in the usual dipole and rotating wave
approximation and takes the form dE(t) = h̄

2f (t)e−i�t with
a real envelope function f (t) representing the instantaneous
Rabi frequency and the laser frequency � being in resonance
with the polaron-shifted exciton transition. For brevity, we
shall refer to f as the field strength in the following. We
assume that the electric field is circularly polarized. This leads
to the creation of excitons in a circularly polarized state and
justifies the restriction to a two-level system by preventing the
generation of biexcitons.28 The coupling to phonons is only
present if the system is in its upper state and characterized by
the exciton-phonon coupling constants γq = γ e

q − γ h
q , which

are given as the difference between the electron-phonon and
the hole-phonon coupling constants. Assuming that the dot
and the surrounding barrier material do not differ significantly
in their lattice and dielectric properties, the phonon modes can
be approximated by three-dimensional bulk modes and the
coupling constants separate into two factors,18

γ e(h)
q = �e(h) (q) Ge(h)

q . (2)

The form factor �e(h) is defined as the Fourier transformation
of the square modulus of the carrier wave functions. For
simplicity, we consider spherical dots with wave functions
given by the ground state solution of a harmonic potential,
yielding

�e(h) (q) = exp
(−q2a2

e(h)/4
)
, (3)

where ae(h) represents the electron (hole) geometrical con-
finement. In the following, we will refer to the quantity
a := ae as the dot size and set ah = 0.87 a. The second
factor in the coupling constants, G

e(h)
q , depends on the

specific coupling type. As for GaAs self-assembled QDs the
deformation potential coupling to LA phonons provides by far
the largest contribution to pure dephasing we concentrate on

this mechanism. The explicit form of G
e(h)
q for this case can be

found in Ref. 18.

III. RESULTS

The theory described so far is used to study the influence
of varying dot sizes and different pulse shapes on the
time evolution of the electronic system. To obtain these
results we use a numerically exact real-time path integral
method.19–23 Recently, this elaborate scheme was compared
to more widely used methods invoking perturbative and Born-
Markov approximations.22,29 Although approximate methods
yield trustable results for a certain range of parameters,9,10

pronounced quantitative and even qualitative differences were
found in the cases of strong coupling or high temperatures.29

A detailed description of our algorithm analyzing both the
necessary physical requirements as well as the actual imple-
mentation is presented in Ref. 19.

As previously shown in Ref. 24, for rectangular pulses the
exciton occupation experiences a phonon-induced damping
which is a nonmonotonic function of the applied field strength.
The maximal dephasing occurs if the Rabi frequency is in
resonance with the frequency of the most strongly coupled
phonons. Note that a stronger damping in the time domain
corresponds to weaker oscillations at long times and translates
into a stronger reduction of the amplitude of RRs. Hence,
the nonmonotonic dependence of the damping on the laser
intensity leads to an undamping of RRs at high pulse areas.
Here, we analyze how this interesting phenomenon, and
therefore, the field-dependent damping changes by varying
the dot size or using differently shaped pulses.

A. Dependence on the dot size

Let us first concentrate on the influence of the dot size.
Figure 1 shows the exciton occupation after excitation with
rectangular pulses of 20 ps duration for different temperatures
and dot sizes as a function of the pulse area

A =
∫ ∞

−∞
f (t) dt, (4)

given as the total rotational angle in the phonon-free dynamics.
With decreasing dot size a the field-dependent damping re-
flected in the reduction of the amplitude of RRs is considerably
enhanced: The maximal reduction taking place at a critical
pulse area A = Ac becomes stronger, and the region with
likewise strong damping increases as well. In addition, the
critical pulse area rises significantly with smaller width of the
electronic confinement.

The enhancement of the dephasing for reduced dot sizes
can be explained easily by means of the coupling constants
as given in Eq. (2): With decreasing size of the QD, the form
factors �e(h) entering these coupling constants extend to higher
q values. Probing a considerably wider range of frequencies
contained in the continuum of acoustic phonons, the dephasing
in small QDs is significantly enhanced. This leads to a stronger
damping of ROs during the evolution in time, which is reflected
in a stronger reduction of the amplitude of RRs.

For arbitrary pulse shapes, the dynamics of the TLIB
model may be quite involved. However, it turned out that for
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FIG. 1. (Color online) Quantum dot occupation after excitation
with rectangular pulses of 20 ps duration as a function of the pulse
area A at different temperatures and for dot sizes of a = 7 nm (left),
a = 5 nm (middle), and a = 3 nm (right).

excitations with rectangular pulses, the time dependence of the
exciton occupation during the pulse can be approximated by
the simple exponential expression15

ρ11 = 1
2 [1 − cos(ωt) exp(−γd t)], (5)

that allows one to extract both the effective damping rate γd of
ROs as well as their frequency ω by fitting the numerical data.
In Fig. 2 we concentrate on this case and show the damping
constant γd at T = 10 K and T = 100 K for dots of 3 nm (red
solid), 5 nm (blue dashed), and 7 nm (green dotted) size as a
function of the field strength f , which in the case of rectangular
pulses is given as the quotient of the pulse area and the pulse
duration. In our calculations, we fixed the pulse duration to
20 ps and varied the pulse area. However, fixing the latter
and varying the pulse length leads to identical results, as the
damping rate (as well as the frequency ω) is solely determined
by f . It should be noted that this contrasts to the results in
Fig. 1, which significantly depend on the pulse length, as
shown below. The main differences already discussed for the
decay and reappearance of RRs in Fig. 1 become apparent.
For decreasing dot sizes, the maximal damping increases,
the region with pronounced damping becomes larger, and
the critical field strength is shifted to higher values. As
commonly expected, rising temperatures strongly enhance the
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FIG. 2. (Color online) Damping rate γd as a function of the field
strength f at (a) T = 10 K and (b) T = 100 K for different dot sizes.

damping. Interestingly, for weak fields the damping is almost
independent on the dot size for all temperatures.

As explained in Refs. 15 and 24 and already mentioned
above, the damping is dominated by the most strongly coupled
phonons having wavelengths comparable to the quantum dot
size. It turns out that the critical field strength fc, defined
as the field strength with maximal damping, can roughly be
approximated by fc = 2π/τ , where τ is the flight time of a
phonon through the dot. As the time a phonon needs to pass the
dot decreases with decreasing dot size, the shift of the maximal
damping to higher values of the field strength can intuitively
be understood.

Considering small values of the field strength below f =
0.5 ps−1, the damping is approximately independent on the
dot size. However, in this parameter range the normalized
frequency ω norm = ω/f , defined as the ratio between the
frequency ω of ROs and the phonon-free Rabi frequency
f , shows a pronounced dependence on the dot size. The
extracted values of ω norm as a function of f are presented
in Fig. 3. For all dot sizes, the normalized frequency shows
a nonmonotonic behavior, being considerably smaller than 1
for weak fields, exceeding unity at intermediate fields, and
reaching the value ω norm = 1 in the strong-field limit. This
behavior is more pronounced for both higher temperatures and
decreasing dot sizes. For a 3-nm-sized QD at T = 100 K and
for field strengths tending to zero, the normalized frequency
drops down to 0.44 leading to a normalized period which
exceeds the phonon-free period by more than a factor of 2
[cf. Fig. 3(a)]. As a consequence an applied 2π pulse with
a small field strength will not even provide full inversion
instead of a complete Rabi flop, which would be expected
in the phonon-free case. These strong deviations from what
one would expect when thinking about the limiting case of
a two-level system without dephasing due to phonons may
be important for many proposals for quantum information
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FIG. 3. (Color online) Normalized frequency ω norm, defined as
the ratio of the Rabi frequencies with and without phonons, as a
function of the applied field strength at temperatures of (a) T = 10 K
and (b) T = 100 K for different dot sizes.

applications in a solid-state environment that rely on the
controlled manipulation of localized excitonic states in QDs by
using ROs.2–4,6 For a 2-nm-sized dot the normalized frequency
is further decreased for a wide range of field strengths, falling
below 0.3 in the weak-field limit. We would like to stress that
for smaller dots the model presented in this work becomes
questionable as it is not possible to localize electronic wave
functions in an arbitrarily small dot.

B. Dependence on the pulse shape

Let us now turn to the influence of the pulse shape f (t).
Besides rectangular pulses with f (t) = const, which are often
used due to their simplicity, we investigate more realistic
profiles, namely, Gaussian and sech-shaped ones, naturally
provided by many laser sources. In contrast, rectangular pulses
are to some extent artificial but they can, in principle, be
realized applying well-known pulse-shaping techniques.30 For
our calculations, we choose the full width at half maximum
(FWHM) of the Gaussian and sech-shaped pulses to be 5.4 ps
and compare pulses having the same pulse area. However,
this condition does not fix the length of the rectangular pulse.
Therefore, we consider two different rectangular pulses with
durations of τ = 5.4 and 20 ps, respectively: Choosing τ =
5.4 ps, the length of the rectangular pulse conincides with the
FWHM of the Gaussian and sech-shaped pulses, whereas for
τ = 20 ps, the envelope functions of both bell-shaped pulses
are localized in the time interval given by the rectangular pulse,
yielding another interesting comparison. All four profiles are
displayed in Fig. 4(a).

Figure 4(b) shows ROs of a 3-nm-sized QD at T = 1 K
for the four pulses presented in Fig. 4(a) and a pulse area
of A = 6π . Independent on the pulse shape, the system
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FIG. 4. (Color online) (a) Envelope functions f (t) for rectangular
pulses of 20 and 5.4 ps duration, a Gaussian pulse, and a sech-shaped
pulse having identical pulse areas. The full width at half maximum
for both the Gaussian and the sech-shaped pulse is 5.4 ps. (b) ROs
of a 3-nm-sized QD, driven by the four pulses introduced in (a) for
A = 6π and at T = 1 K.

shows three Rabi flops. The temporal evolution, however,
depends significantly on the chosen profile. In the case of
rectangular pulses the excitonic occupation oscillates with a
fixed frequency. Contrarily, the occupation oscillates with a
temporally varying frequency for Gaussian or sech-shaped
pulses as the strength of the optical driving is here time
dependent. For times near the pulse maximum at t = 0 the
field strengths of both bell-shaped pulses exceed the constant
field strength of the 20 ps lasting rectangular pulse by far, and
therefore, the system dynamics develops much faster, but still
slower than for the 5.4 ps lasting rectangular pulse with an
even larger field strength. Note that according to Eq. (1), the
exciton occupation can only change as long as a laser pulse is
applied. For rectangular pulses with an unsteady envelope this
leads to a kink in the occupation when the laser is switched
off.

In the following, we will demonstrate that the choice of the
pulse shape considerably affects the decay and reappearance
of RRs and concentrate first on the case where the length of the
rectangular pulse coincides with the FWHM of the Gaussian
and the sech-shaped pulse. To this end, we calculated RRs
at T = 10 and 100 K using rectangular, Gaussian, and sech-
shaped pulses of 5.4 ps duration. For QDs of 5 and 3 nm size,
the results are shown in Figs. 5(a) and 5(b), respectively. As
the differences between Gaussian and sech-shaped pulses are
less pronounced, we will first discuss rectangular and Gaussian
profiles and comment later on sech-shaped ones.

Comparing the decay and reappearance phenomenon of
RRs for the Gaussian pulse with respect to the rectangular
pulse, we find two main differences: (i) The minimal amplitude
is shifted to higher pulse areas, causing a later onset of the
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FIG. 5. (Color online) Quantum dot occupation after excitation
with rectangular, Gaussian, or sech-shaped pulses (duration/FWHM:
5.4 ps) as a function of the pulse area A at T = 10 K and T = 100 K
for a dot of (a) a = 5 nm and (b) a = 3 nm size.

reappearance. (ii) At high pulse areas the damping is stronger
and, most important, the reappearance rate is significantly
reduced, i.e., the increase of the amplitude of RRs as a function
of the pulse area is less. Thus, the decay and reappearance is
more clearly visible for rectangular pulses. The physical reason
underlying these differences is that unlike rectangular pulses,
Gaussian pulses contain a broad interval of instantaneous
field strengths that are smaller than (in the tails) or at most
similar to (in the peak region) the constant field strength of
a rectangular pulse with equal pulse area [cf. Fig. 4(a)]. This
leads to components with reduced or enhanced damping, and
the differences specified above can be explained as follows.

In the limit of weak fields, f < fc, the field strengths
contained within the Gaussian pulse correspond to smaller
damping rates than the rate belonging to the rectangular pulse
(cf. Fig. 2). This implies that for the Gaussian pulse, higher
pulse areas have to be applied to reach the strongest damping,
and thus, the critical pulse area Ac is shifted to higher values.
In Fig. 6 this shift is presented as a function of the dot size. As
seen in Fig. 4(b), for a Gaussian pulse the electronic occupation
oscillates with a frequency varying with time, and therefore,
it is not possible to extract the damping rate γd via fitting
the numerical solution with Eq. (5). Nevertheless, the pulse
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FIG. 6. (Color online) Pulse area with maximal damping Ac as a
function of the dot size a for rectangular, Gaussian, and sech-shaped
pulses (duration/FWHM: 5.4 ps) at temperatures of (a) T = 10 K and
(b) T = 100 K.

area with maximal damping can easily be determined from
the extrema of the envelope functions of RRs (cf. Fig. 5). Due
to the fact that a Gaussian pulse contains a wide range of
field strengths, its mean damping rate is always less than the
rate of a rectangular pulse with f = fc. From this one could
expect that the maximal reduction of the amplitude of RRs
should be stronger for the rectangular pulse. However, it is
clearly seen from Fig. 5 that the maximal reduction is stronger
for the Gaussian pulse. This is because here, the Gaussian
pulse extends over a longer time interval than its rectangular
counterpart (cf. Fig. 4). Thus, for the Gaussian pulse the longer
lasting damping may overcompensate the reduced damping
rate and lead to a more pronounced suppression of RRs. This
also helps to explain why for high pulse areas the reduction of
the RR amplitude is stronger for the Gaussian pulse. However,
the reduced reappearance rate is mainly due to the smaller field
strengths contained in the tails of the Gaussian pulse. In the
limit of strong fields some of these components are close to fc

and experience a much stronger damping than the single field
strength of a rectangular pulse. Applying even higher pulse
areas does not eliminate these components from the frequency
spectrum contained in the Gaussian pulse, and therefore, the
undamping of RRs at high pulse areas is less pronounced.
As the range of field strengths with likewise strong damping
is wider at higher temperatures and for smaller dot sizes (cf.
Fig. 2), the effects of different pulse shapes become more
distinctive in this parameter region.

Let us now come to the case of sech-shaped pulses. As
the hyperbolic secant distribution shares many properties with
a Gaussian distribution, the differences in comparison with
the rectangular pulse are similar. However, the hyperbolic
secant shows a lower peak and heavier tails than a Gaussian
distribution with the same FWHM. These differences are
reflected in the RR scenario shown in the last column of Fig. 5.
As the maximum of the distribution is smaller, the shift of the
critical pulse area to higher values is larger than for a Gaussian
pulse (cf. Fig. 6). In addition, the reappearance rate at strong
fields is even more suppressed, as the tails containing field
strengths for which the damping is stronger become more
important. Therefore, the washing out of the reappearance is
more pronounced and it will be more difficult to observe the
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FIG. 7. (Color online) Quantum dot occupation as a function of
the pulse area A at T = 100 K for a dot of a = 5 nm size. Comparison
between a 20 ps lasting rectangular pulse (red, thick) with (a) a
rectangular pulse of 5.4 ps duration (blue, thin) and (b) a Gaussian
pulse of 5.4 ps duration (black, thin).

decay and reappearance phenomenon experimentally when
using sech-shaped pulses.

So far, we discussed results comparing bell-shaped pulses
with a FWHM of 5.4 ps with a 5.4 ps lasting rectangular
pulse. We demonstrated that the undamping of RRs is most
clearly visible for excitations with rectangular pulses, as the
reappearance sets in earlier and shows a stronger reappearance
rate. However, as already stated above, for a rectangular pulse
of 5.4 ps duration, both bell-shaped pulses extend over a longer
time interval than their rectangular counterpart. In contrast,
all profiles are localized in the time interval given by the
rectangular pulse if its duration is increased to 20 ps [cf.
Fig. 4(a)]. To complete our discussion, in Fig. 7 we compare
the Rabi rotation scenario for this longer rectangular pulse
with results discussed so far, presenting calculations for a
5-nm-sized dot at T = 100 K.

Shown in Fig. 7(a) are RRs for both rectangular pulses. For
the longer pulse, the critical pulse area Ac rises significantly
and the reappearance rate is less. Note that for rectangular
pulses, f = A/τ , where τ denotes the pulse duration. There-
fore, to reach f = fc or to excess this value in order to
come into the undamping regime, for a longer pulse higher
pulse areas have to be applied. Thus, both differences can be
understood as a consequence of the resonant nature of the
carrier-phonon coupling.

Comparing the 20 ps lasting rectangular pulse with the
Gaussian pulse in Fig. 7(b), the reappearance rate for the
Gaussian pulse is still less than for the rectangular pulse, which
follows straightforwardly from the discussion above. However,
here, the reappearance sets in earlier for the Gaussian pulse.
This is due to the fact that the peak of the Gaussian pulse
contains field strengths much higher than the constant field
strength of the rectangular pulse [cf. Fig. 4(a)]. In addition, for
small pulse areas, the damping is less for the Gaussian pulse.
The latter can be explained by a closer look on the dependence
of the damping rate on the field strength as presented in
Fig. 2. In the limit of weak fields the damping constant γd

is a convex function, while it is concave at intermediate fields.
One important property of convex functions is the validity of
Jensen’s inequality, stating in its simplest form that the mean
after a convex transformation is more than or equal to the
convex transformation of a mean. Let us now consider a pulse

area corresponding to a mean field strength f � fc, where fc

marks the critical field strength of a rectangular pulse. For a
constant, rectangular pulse that contains only this field strength
f , the exciton occupation will experience a certain damping.
However, as the different field strengths contained within the
Gaussian pulse enter the damping function, which is convex
for small fields, the effective damping rate after the weighting,
which is introduced by the Gaussian shape, is stronger. As
both envelope functions are localized in the time interval
given by the rectangular pulse, this directly translates into
a stronger damping. Along similar lines, one can understand
that the maximal reduction of the RR amplitude is less for a
Gaussian pulse: In contrast to a rectangular pulse with f = fc,
a Gaussian pulse always contains less damped field strength,
and therefore, the maximal damping is less. Even if this is
trivial, it is related to the concavity of the damping rate at
intermediate fields. We would like to stress that in this context,
it is the dot size that defines, via the field-strength-dependent
damping, the characterization of fields as weak, intermediate,
or strong.

In the previous discussions we have seen that practically
all dependencies of RRs on the pulse shape or length can
be traced back to the dependence of the damping rate on
the field strength, as shown in Fig. 2, and the corresponding
consequences for excitations with pulses with different field
strength composition. Thus, rectangular pulses containing only
one field strength most directly translate the nonmonotonic
dependence of the damping rate to the decay and reappearance
of RRs. In contrast, pulses containing more than one field
strength more or less smear out the undamping effect as seen
in the representative examples of Gaussian or sech-shaped
pulses. This argument also holds for pulse sequences. Indeed,
we have performed additional calculations for rectangular
double pulses. Double pulses or even more sophisticated
pulse sequences are discussed in the context of control of
decoherence in optically excited quantum dots4,5,31 but also to
enhance the charge transfer in double dot structures.32–35 In
fact, our calculations for double pulses having the same total
length as the single rectangular pulses considered so far show
a slightly changed damping, but there is practically no effect
on the visibility of the decay and reappearance.

IV. CONCLUSIONS

We have analyzed the dependence of the phonon-induced
damping in an optically driven QD on the dot size and the
shape of externally applied laser pulses, concentrating on
pure dephasing processes. As demonstrated above, the choice
of both parameters considerably affects the field-strength-
dependent dynamics. For smaller dots the exciton-phonon
coupling is effectively enhanced and the system experiences a
much stronger damping, whereby the pulse area with maximal
dephasing is shifted to higher values. However, we found that
in the limit of weak fields, which may be most convenient
in experimental investigations, the damping is approximately
independent on the dot size. This is an opposite trend compared
with the renormalization of the Rabi frequency, which in the
weak-field limit shows a pronounced temperature-dependent
decrease for smaller widths of the electronic confinement and
leads to a normalized period of ROs which can exceed the
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phonon-free period by more than a factor of 2. A comparison
between the decay and reappearance of RRs in the cases of rect-
angular and Gaussian or sech-shaped pulses revealed marked
differences. For a rectangular pulse, whose length coincides
with the FWHM of the bell-shaped pulses, the reappearance
sets in for smaller pulse areas and the reappearance rate is
stronger. Thus, the decay and reappearance is most pronounced
for rectangular profiles.

We believe that our studies may inspire future experimental
investigations. Our results can be used as a guideline to

choose proper parameters in order to observe the decay and
reappearance of RRs, resulting from the non-Markovian nature
of pure dephasing, experimentally.
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