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Sondheimer oscillation as a signature of surface Dirac fermions
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Topological states of matter challenge the paradigm of symmetry breaking, characterized by gapless boundary
modes and protected by the topological property of the ground state. Here, we present compelling evidence for
the existence of gapless surface Dirac fermions from transport in Bi2Te3. We observe Sondheimer oscillation in
magnetoresistance (MR). This oscillation originates from the quantization of motion due to the confinement of
electrons within the surface layer. Based on Sondheimer’s transport theory, we determine the thickness of the
surface state from the oscillation data. In addition, we uncover the topological nature of the surface state, fitting
consistently both the nonoscillatory part of MR and the Hall resistance. The side-jump contribution turns out to
dominate around 1 T in Hall resistance while the Berry-curvature effect dominates in 3–4 T.
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I. INTRODUCTION

Symmetry breaking is the paradigm in not only classifying
quantum states of matter but also describing phase transitions
between them, where the correlation length of fluctuations
between local order parameters diverges at the critical point
of a continuous transition.1,2 On the other hand, topological
states of matter are classified by topological quantum
numbers,3,4 associated with gapless boundary electronic
states, and are protected from the topological properties of the
ground state.5,6 Instead of a divergence in correlation length,
topological phase transitions are accompanied by changes of
the gapless boundary modes. One possible mechanism for this
phenomenon is that the extent of the transverse wave function
or the length scale of the boundary state becomes of the same
order as the bulk size, causing the gapless modes in opposite
boundaries to be mixed and making such boundary modes
gapped.7 In this case, this length scale for the boundary mode
plays basically the same role as the correlation length for the
phase transition, which is the fundamental length scale for a
topological phase [Fig. 1(a)].

Recently, the semiconductor materials Bi2Se3 and Bi2Te3

have been verified to be three-dimensional topological insula-
tors. These insulators are regarded as a novel quantum state
of matter,8–11 where gapless surface electrons are uncovered
in angle-resolved photoemission spectroscopy (ARPES).12–14

Although the surface states in these materials and the electronic
structure in graphene are described by Dirac theory [Fig. 1(b)],
the surface state of topological insulators is profoundly differ-
ent from the electronic structure of graphene.15 This difference
originates from the absence of both the sublattice symmetry
and valley degeneracy. The direction of spin is locked with
that of the momentum in surface Dirac electrons.16 This
completely suppresses backscattering due to time-reversal
invariant impurities, allowing a supermetallic state.17

In this paper we focus on MR and Hall measurements, both
of which are of high importance for the fundamental under-
standing and practical applications of topological insulators.

We observe an oscillatory behavior in MR at low magnetic
fields up to 4 T. This behavior can be identified as Sondheimer
oscillation,18 where the oscillation is periodic in H . Sond-
heimer’s transport theory,18 combined with Dirac dispersion,
enables us to determine the fundamental length scale of the
topological insulator from our experimental data, which turns
out to be about five atomic layers. In this respect the Sond-
heimer oscillation can be regarded as an inevitable result of the
surface state. The nature of the surface state can be explained
by the single Dirac-fermion theory. This explains not only the
nonoscillatory part of MR but also the topological properties
implicit in Hall resistance in a quantitative and consistent way.
In particular, we show that the Hall resistance of the surface
state is dominated by the side jump around 1 T and below, while
the Berry-curvature contribution is dominant at higher fields.

II. EXPERIMENT

In our measurements we used defect-controlled Bi2Te3

single crystals. Single crystals of Bi2Te3 were grown by a
modified Bridgman method, where Bi2Te3 powder is melted
and crystallized in an evacuated quartz ampoule several times
by slow cooling. The sample was cooled from 850 ◦C to 550 ◦C
with a cooling rate of −10 K/h. Usually, as-grown Bi2Te3

single crystals are p doped because of the antisite defects in
Bi sites.19 In order to tune the Fermi level, we have controlled
the amount of defects by adding extra Bi or Te; the doped Bi
tends to increase the antisite defects, while the doped Te tends
to decrease them. Based on this strategy, we have succeeded in
growing a range of Bi2Te3 single crystals, from fully p-doped
to fully n-doped regions. The carrier type is determined by
thermoelectric power at room temperature and also by Hall
sign measured at 4.2 K. For our experiments, we selected two
p-Bi2Te3 samples (fully p type sample 1 and lightly p type
sample 2), two insulating Bi2Te3 samples (TI samples, 3 and
4), and one n-Bi2Te3 sample (5). Samples 3 and 4 are expected
to show the topological properties of the surface state well.
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FIG. 1. (Color online) (a) The schematic diagram for Bi2Te3

shows the surface layer with thickness a. The surface thickness a

is determined from Sondheimer oscillation in magnetoresistance. (b)
The Dirac dispersion of the surface state gives rise to topologically
nontrivial physical properties such as the dominant anomalous Hall
effect in the Hall resistance.

Magnetoresistance (MR) and Hall-effect measurements
have been carried out by a six-probe method at 4.2 K using
a superconducting magnet up to 4 T and a 60 T pulse
magnet at ISSP in Tokyo University up to 55 T. Here, the
direction of the magnetic fields is perpendicular to the naturally
cleaved plane, on which the current is applied. For the MR
and Hall measurements, the six contacts are carefully made
on the top surface of the sample to detect the maximum
portion of the surface character and to reduce the induction
noise for high-field pulse-magnet experiments. We have taken
the antisymmetrized and the symmetrized parts as Hall and
longitudinal resistances, respectively.

Figure 2 shows the temperature dependency of the resistiv-
ity for the p-, TI-, and n-Bi2Te3 single crystals. The resistivity
for both the p- and n-type samples (1, 2, and 5) decreases
monotonically with decreasing temperature, which is a typical
metallic characteristic, while the resistivity for the TI samples
(3 and 4) increases below ∼180 K and then tends to saturate
below 50 K. The magnitude of the resistivity for the TI-Bi2Te3

single crystals is 5–10 times larger than those for the p- and n-
type samples. The nonmetallic nature observed for the TI sam-
ples is consistent with those reported by the Princeton group.21

III. SONDHEIMER OSCILLATION

ARPES has unveiled only a single Dirac-fermion band at
the surface of Bi2Te3.13,14 Therefore, in order to analyze our

FIG. 2. (Color online) Temperature dependency of resistivity for
samples 1–5.

experimental data, we introduce an electromagnetic vector
potential �A and a Zeeman term into the single Dirac-fermion
theory. In addition, we take into account impurity scattering
at the level of a Born approximation. Our theoretical analysis
reveals that the orbital contribution or the effect of the vector
potential on experimental data is irrelevant in the region of
magnetic fields below 4 T. However, its influence on MR and
Hall resistance can appear at higher magnetic fields, where
Landau levels are fully developed.

Although Bi2Te3 is a bulk semiconducting material, the
topological structure of the ground state gives rise to a surface
state protected from time-reversal invariant perturbations
whose extent of transverse wave function is confined within
a.8–11 Therefore, we model the surface state as a thin layer with
thickness a [Fig. 1(a)], which is used in the Boltzmann equa-
tion below. This approach is essentially the same as what Sond-
heimer performed in metallic thin films except for the band
structure, where nonrelativistic electrons are replaced with
Dirac fermions in the presence of the Zeeman term. The main
consequence is the quantization of motion along the direction
normal to the surface, which produces an oscillatory compo-
nent of MR. In our measurements at magnetic fields below 4 T,
the oscillation is shown to be periodic in H .18 This oscillation
is distinguished from the Shubnikov–de Haas oscillation; due
to the formation of Landau levels, it is periodic in 1/H .

We start from the Boltzmann equation

− e

h̄

(
E + v̄

c
× H

)
· ∇kf + v̄ · ∇rf = −f − f0

τ
. (1)

f = f0 + f1(v̄,z) is a nonequilibrium distribution function
with its equilibrium part f0. The nonequilibrium part f1 de-
pends on the z coordinate. v̄ = h̄k̄/m∗ is the average velocity,
where m∗ is an effective mass of the surface Dirac electrons,
and k̄ is the average momentum, which is determined later.
The dispersion is given by εk = −μ +

√
v2

f k2 + (g∗H )2 in the
presence of a z-directional magnetic field H , where vf is the

Dirac velocity and the Fermi momentum is kf =
√

μ2−g∗H 2

vf
.

μ is the chemical potential at the surface, and g∗ is the Landé g

factor of the surface electron. H = Hẑ is an applied magnetic
field in the z direction and E = Exx̂ + Eyŷ is an electric
field, where a y-directional electric field is induced. τ is the
mean-free time, which measures the strength of disorder.

Following the same procedure as that in the original paper
of Sondheimer,18 we obtain

ρ(H,T ) = ρ0

κ
�φ(s), (2)

where ρ(H,T ) is the resistivity. ρ0 = m∗
ne2τ

is the residual
resistivity with the density n = 8π

3 (m∗v̄
2πh̄

)3 of surface electrons,
and κ = a

l
, where l = v̄τ is the mean-free path and a is the

surface thickness, determined from fitting. φ(s) results from
the distribution function in the hard-wall boundary condition
for the z direction, given by

1

φ(s)
= 1

s
− 3

8s2
+ 3

2s2

∫ ∞

1
du e−su

( 1

u3
− 1

u5

)
(3)

after integrating over z. s = κ + iβ, where β = a
rc

with the

magnetic length rc = m∗v̄c
eH

, which is proportional to 1/H . Two
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FIG. 3. (Color online) (a) Dependence of Sondheimer oscillation on the Fermi energy. γ = h/H measures the distance of the Fermi energy
from the Dirac point. Increasing γ , i.e., as the Fermi surface becomes close to the Dirac point, the period of the Sondheimer oscillation
decreases. (b) Dependence of Sondheimer oscillation on the disorder strength. κ = a/l measures the mean-free path. It does not affect the
periodicity, changing the amplitude of the oscillation only. (c) Peak and dip number vs peak and dip position (magnetic fields) as a function of
γ with a fixed κ .

parameters appear in this expression: κ = a/l and β = a/rc.
This transport theory produces the H -linear periodicity. It is
worth noting that the periodicity in MR depends only on β,
while κ modifies the amplitude of oscillation, as shown in
Fig. 3(b).

For the numerical analysis, it is important to express the
β variable in terms of dimensionless parameters because the
surface thickness a is determined from an appropriate choice
of one parameter in β, referred to as γ , which will be discussed
later. It is given by

β = 1

2
(kf a)

h̄ωL

EF

kf

k̄
, (4)

where h̄ωL = h̄
eg∗H
2m∗c is the effective Zeeman energy and EF =

k2
f

2m∗ is the Fermi energy with an effective mass m∗. k̄/kf is
determined from

k̄

kf

= 1

t

∫ ∞

0
dε

ε√
ε2 + h2

e
√

ε2+h2−μ′/t

(e
√

ε2+h2−μ′/t + 1)2
, (5)

where we introduce several dimensionless parameters, scaled
by the Fermi energy, such that an effective dispersion ε =
vk/EF with v = h̄2kf

2m∗ , the Zeeman energy h = h̄ωL/EF , the

chemical potential μ′ = μ/EF = √
1 + h2, and an effective

temperature t = T/EF .
Based on this formulation, we fit the oscillation data of MR.

First, we determine κ ≈ 0.02, which characterizes the strength

of the disorder for the best match of the amplitude with the
Sondheimer oscillation. Although the variation of κ changes
the oscillation amplitude, it does not modify the periodicity of
the Sondheimer oscillation.

Our experimental data shows that the Sondheimer oscilla-
tion turns into the Shubnikov–de Haas oscillation above 3–4 T
(Fig. 4). This is consistent with several recent transport mea-
surements that show Shubnikov–de Haas oscillation beginning
at around 4 T.20–23 The appearance of the Shubnikov–de Haas
oscillation is the origin for the mismatch of the oscillation
amplitude.

An important point is that h also enters the nonoscillatory
part of both MR and Hall resistance. Therefore, the actual
value of h influences not only the periodicity of the Sondheimer
oscillation but also the nonoscillatory part of both MR and Hall
resistance. In order to obtain the fitting parameters reliably and
consistently, we optimize not only Sondheimer oscillation but
also MR and Hall resistance, simultaneously. The theoretical
and experimental aspects of MR and Hall resistance will be
discussed in a later section.

Combined with the longitudinal and transverse resistances,
we can optimize the thickness a and the coefficient γ simulta-
neously, where γ is the ratio h̄ωL/EF at H = 1 T. We found
that γ ≈ 0.44 and a ≈ 5 atomic layers fit the experimental
data well. It is interesting to note that the optimized γ

almost coincides with the bulk value. For example, if we use
bulk values of the Landé g factor and effective mass, which
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(a)

(b)

(c)

(d)

FIG. 4. (Color online) (a) The second derivative of the resistance with respect to the applied magnetic field shows oscillation with a
periodicity in H , compared to the theoretical curve (red thick line) based on Sondheimer’s transport theory. The experimental periodicity
deviates from theoretical values around H = 3.25 T. (b) Peak and dip number vs peak and dip position (magnetic fields) in (a). This confirms
the H linear periodicity instead of the 1/H periodicity. The second derivative of the magnetoresistance measured up to 55 T is plotted with
respect to H (c) and 1/H (d). This comparison reveals that the Sondheimer oscillation exists at low magnetic fields, while the Shubnikov–de
Haas oscillation with a periodicity in 1/H appears at high magnetic fields.

are g∗ ≈ 13.7 and m∗ ≈ 0.1me (me is the bare mass of an
electron), we obtain h̄ωL ≈ 100 K at H = 1 T, giving rise
to h ≈ 0.44 with a typical bulk value for the Fermi energy
EF ≈ 230 K. Since we cannot determine g∗, m∗, and EF at
the surface from our experiment, each value at the surface may
not be the same as the bulk one. However, we would like to
emphasize that the ratio γ seems to be universal in both Bi2Te3

and Bi2Se3, although both g∗ and EF in Bi2Se3 are almost four
times larger than those in Bi2Te3.

Our fitting for the oscillatory part of MR, performed
consistently for the nonoscillating part of both MR and
Hall resistance, gives a result for the surface thickness of
approximately five atomic layers. This is quite remarkable
in that this value is consistent with that in molecular beam
epitaxy-grown Bi2Te3 thin films.24

IV. MAGNETORESISTANCE AND HALL EFFECT

Next, we focus on the topological nature of the surface
state. Strictly, the role of the single Dirac-fermion theory is not
essential in Sondheimer oscillation although Dirac dispersion
is utilized. It might be the case that the surface state is realized
due to the good surface quality of our samples. However,
we will show that the Sondheimer oscillation is a signature
of surface Dirac electrons in Bi2Te3, verifying that the Hall

resistance originates from the anomalous Hall effect of Dirac
theory. In addition, we show that the side-jump contribution
dominates at low magnetic fields and the Berry-curvature
effect dominates at high magnetic fields.

Theoretically, the longitudinal resistance results from the
transport of electrons near the Fermi surface, and can be
described quasiclassically or quantum mechanically. In this
case, the quasiclassical treatment based on the Boltzmann
equation gives the same result as the quantum mechanical
treatment based on the Kubo formula. On the other hand, there
are various contributions with a topological origin in the Hall
resistance, which is beyond the conventional treatment used
in the Boltzmann-equation approach. The Boltzmann equation
needs additional terms25 in order to mimic the Kubo formula.3,4

The single Dirac-fermion theory gives an analytic expres-
sion for the longitudinal conductance25

σxx(H,T → 0) = α
e2

2πh̄

√
1 + h2

1 + 4h2
, (6)

where α ≡ 4ne2(2πh̄)3vf

m∗nI [V (0)
I ]2kf

is a dimensionless parameter, which

measures the strength of disorder with an impurity density nI

and an impurity potential V
(0)
I , while vf is the Dirac-fermion

velocity with the Fermi momentum kf . We note that although
both α and κ measure the strength of disorder, they differ from
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(a)

(b)

(c)

FIG. 5. (Color online) Magnetoresistance for (a) 1, (b) 2, and (c)
5, where the disorder strength is utilized as a fitting parameter, given
by α ≈ 0.4, α ≈ 0.5, and α ≈ 1.5, respectively. The presence of bulk
conduction channels does not allow us to describe these samples
purely within the single Dirac-fermion theory.

each other due to the presence of the Fermi momentum in
their relation of κ ∝ kf a/α. Remember that either the Fermi
momentum or the Fermi energy enters our analysis in a scaling
form, not separately. h is the dimensionless magnetic field,
introduced in the Sondheimer oscillation.

The same Dirac theory results in Hall conductance25

σxy(H,T → 0) = σ FS
xy (H,T → 0) + σA

xy(H,T → 0),

σA
xy(H,T → 0) = σB

xy(H,T → 0) + σ SJ
xy (H,T → 0) (7)

+ σ SK
xy (H,T → 0).

Hall conductance consists of two contributions. The first
results from electrons near the Fermi surface, referred to as
normal Hall conductance, while the second contribution comes
from both the Fermi surface and Fermi sea, called anomalous
Hall conductance. We use the normal Hall conductance

from the Boltzman-equation approach for the Sondheimer
oscillation, which is given by

σ FS
xy (H,T → 0) = κσxx(H,T → 0)

φ(s)

[�φ(s)]2 + [φ(s)]2
.

The anomalous Hall conductance is also composed of two
contributions. The first comes purely from the topological
character of the band structure, identified with the Berry-
curvature term σ B

xy(H,T → 0) = − e2

4πh̄
h√

1+h2 , while the sec-
ond originates from scattering with disorder in the pres-
ence of the spin-orbit interaction. This disorder contribu-
tion is separated into the side-jump term σ SJ

xy (H,T → 0) =
− e2

4πh̄
h√

1+h2 { 4
1+4h2 + 3

(1+4h2)2 } and the skew scattering term

σ SK
xy (H,T → 0) = −η e2

2πh̄
h

(1+4h2)2 . It is interesting to observe
that the side-jump term does not depend on the disorder

strength. The dimensionless parameter η ≡ [V (1)
I ]3vf kf

2πnI [V (0)
I ]4

in the

skew scattering term measures the disorder strength in the
third order, where V

(1)
I is a disorder strength of the third order.

Based on Eqs. (6) and (7), we obtain the longitudinal and
Hall resistances as follows:

ρxx(H,T → 0) = σxx(H,T → 0)

[σxx(H,T → 0)]2 + [σxy(H,T → 0)]2
,

ρxy(H,T → 0) = σxy(H,T → 0)

[σxx(H,T → 0)]2 + [σxy(H,T → 0)]2
.

(8)

It should be noted that σxy in the denominator cannot be
ignored in this case because this term is comparable to
σxx . Here we have two dimensionless parameters, α and η.
However, the contribution from the skew scattering turns out
to be negligible. Only one fitting parameter α remains for both
MR and Hall resistance.

When either holes (samples 1 and 2) or electrons (sample
5) are heavily doped, MR curves greatly deviate from the
single Dirac-fermion theory, as shown in Fig. 5. On the other
hand, nearly insulating samples (samples 3 and 4) display
reasonable matches between experiment and theory (see
Fig. 6). The Hall resistance also shows deviation from the
single Dirac-fermion theory for heavily doped samples (Fig. 7)
but not much for nearly insulating samples (samples 3 and 4),
implying that insulating samples are explained by the theory
in a quantitative and consistent way. These results provide
compelling evidence for topological properties of surface
Dirac electrons. In particular, the dominant contribution in the
Hall resistance turns out to be the side-jump mechanism at
fields below 1 T and the Berry-curvature effect at higher fields.
Each contribution in the Hall resistance is displayed in Fig. 8.

It is also worth noting that the curvature of the Hall
resistance in sample 4 is larger than that in sample 3. According
to Dirac theory with disorder, two parameters affect the shape
of the Hall resistance: the disorder strength α and the parameter
γ that measures the distance from the Dirac point. In Fig. 9,
we show how these parameters influence the curvature of Hall
resistance. Roughly speaking, to vary γ is to rescale the x axis,
while to change α is to rescale the y axis. By decreasing γ ,
the Hall resistance becomes straighter because the anomalous
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FIG. 6. (Color online) The magnetoresistance and Hall resistance of sample 3 are displayed in (a) and (b), respectively, together with
theoretical curves (red thick line). The same quantities of sample 4 are presented in (c) and (d). We emphasize that the theoretical curves
for Hall data are based on the parameters from our fitting of magnetoresistance data. We found that the Berry-curvature term dominates the
experimental data around 3–4 T, while the side-jump mechanism works around H = 1 T, confirming the topological origin of the transport
phenomena in the surface state of topological insulators.

Hall effect weakens. These results suggest that if we do not
choose γ correctly, it is difficult to get a reasonable match
between the experiment and theory.

V. CONTRIBUTION FROM LANDAU LEVEL

In the Sondheimer oscillation we have pointed out that
the predicted oscillation amplitude does not match the exper-

imental data because of the Shubnikov–de Haas oscillation,
which occurs above 4 T. In order to confirm irrelevance of the
formation of Landau levels at low magnetic fields, we take into
account the vector potential for the MR and Hall resistance.
This has been performed in the context of the quantum Hall
effect in graphene, where the two valley contributions are
simply added.26

The longitudinal conductance is given by26

σxx(H,T ) = e2Nf �

4π2T

∫ ∞

−∞
dω

1

cosh2
(

ω+μ

2T

) �( v2
f eH

c

)2 + (2ω�)2

[
2ω2 + (ω2 + �2 + �2)

( v2
f eH

c

)2 − 2ω2(ω2 − �2 + �2)
( v2

f eH

c

)
(ω2 − �2 − �2)2 + 4ω2�2

− ω(ω2 − �2 + �2)

�
�

(
�2 + �2 − ω2 − 2iω�

2v2
f |eH |/c

)]
, (9)

with Nf = 1 (Nf = 2 for graphene), where � = h̄ωL is the Zeeman energy, � is the imaginary part of the electron self-energy
due to disorder, and �(z) is the digamma function.

The Hall conductance is26

σxy(H,T ) = e2Nf

2π
νB, (10)

where νB is the filling factor, given by

νB =
∫ ∞

−∞

dω

2π
tanh

(
ω + μ

2T

)[
�

(ω − �)2 + �2
+ (ω ←→ −ω) + 2

∞∑
n=1

(
�

(ω − Mn)2 + �2
+ (ω ←→ −ω)

)]
, (11)

where Mn =
√

�2 + 2nv2
f |eH |/c is the dispersion of surface Dirac electrons in the presence of the Landau level.
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(a)

(b)

(c)

FIG. 7. (Color online) Hall resistance for (a) 1, (b) 2, and (c)
5, where the same strength of disorder is utilized as in Fig. 3,
respectively. We believe that the origin of this mismatch between
experiment and theory lies in the contribution from the bulk transport,
which is not included in the single Dirac-fermion theory.

FIG. 8. (Color online) Each contribution in Hall conductance
shows that the dominant term is the side-jump term in low fields and
the Berry-curvature term in high fields. These curves are generated,
resorting to the parameter values from sample 3, i.e., α = 0.5 and
γ = 0.44. Here, B, SJ, and SK stand for Berry curvature, side jump,
and skew scattering, respectively. Total refers to the sum of all
anomalous Hall contributions. The formula of each term is presented
in the main text.

(a)

(b)

FIG. 9. (Color online) (a) Hall resistance deviates from the α =
0.7 line with γ = 0.44, changing α. (b) Hall resistance separates
from the γ = 0.44 line with α = 0.7, varying γ . The Hall resistance
of sample 4 is well fitted by α = 0.7 and γ = 0.44.

Resorting to these expressions, we plot the Hall conduc-
tance in Fig. 10. First of all, the plateau in the Hall conductance
is clearly shown. This behavior is far from that given by the
experimental data. We conclude that our regime is far from
being described by the quantum Hall effect. The introduction
of the Zeeman term is sufficient to explain the transport data
at low magnetic fields.

VI. SUMMARY AND DISCUSSION

In summary we have measured the fundamental length scale
of the topological insulator, the thickness of the surface state,
from the Sondheimer oscillation in magnetoresistance. This
surface state is described by the single Dirac-fermion theory.
The topological nature was verified by the fact that the Hall
resistance results mainly from the anomalous Hall effect of

FIG. 10. (Color online) Quantized Hall conductance, expected to
be relevant in high magnetic fields.
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Dirac theory, which in turn is dominated by both the side-jump
mechanism and the Berry-curvature effect.

The surface thickness will diverge at the critical point
of a phase transition from a band insulator to a topological
insulator. Such a phase transition was demonstrated in the
HgTe quantum well structure when the size of the quantum
well was tuned.27,28 On the other hand, the topological phase
transition has not yet been achieved in three-dimensional
topological insulators. Our measurement for the surface
thickness can be utilized as an important tool, revealing the
mechanism of such a topological phase transition.

It is worth discussing the physical implication of the surface
length scale. In our analysis, the theory of Sondheimer oscil-
lation was worked out for a thin film within the semiclassical
Boltzmann-equation approach, where electrons can move in
all three directions while scattering from two hard surfaces
of the thin film.18 On the other hand, the surface states of a
topological insulator may not be described by thin films but are
expected to be truly two dimensional without any dispersion
along the z direction.29 This surface state is identified with a
localized zero mode in the z direction and the transverse length
scale in this case is the extent of the transverse wave function
of the Dirac electrons.

Therefore, if the oscillation of MR in H at low magnetic
fields is identified with the Sondheimer oscillation, this
experimental data and our theoretical analysis suggest that
Dirac electrons can have dynamics along the z direction. One
possible mechanism for this z-directional dynamics is the
existence of hybridization between the surface Dirac band and
bulk channels. As clearly shown in our analysis of MR and Hall
resistance, the two-dimensional single Dirac theory cannot
explain anomalous transport in metallic samples, implying that
the bulk channels may play a certain role. If the hybridization
effect is introduced, the surface thickness is not just the
transverse extent of the wave packet but the combination of the
localized length in the z direction and an effective dynamics
length, determined from the hybridization. Even though no
definite answer exists for this important issue, we believe
that a more elaborate quantum mechanical treatment with the
hybridization effect will shed light on the possible interplay
between the surface channel and bulk channels for transport
in topological insulators.

We would like to point out that the Sondheimer oscillation
was observed not only in insulating samples but also in
metallic ones (Fig. 11). This indicates that the oscillation
of MR in H is not screened by the bulk conducting
channels, expected to be responsible for the oscillation in
1/H . Actually, the Shubnikov–de Haas oscillation begins to
appear at higher fields above 4 T, consistent with previous
oscillation measurements.20–23 In this respect we believe that
the Sondheimer oscillation could be safely measured in a
relatively low-field region.

(a)

(b)

FIG. 11. (Color online) (a) Sondheimer oscillation for sample
2. The periodicity is well matched, but the oscillation amplitude
deviates rather a lot due to the appearance of the Shubnikov–de Haas
oscillation around 3–4 T. Sondheimer oscillations are also observed
for other p- and n-doped samples, where the surface channel for
conduction coexists with the bulk conduction. (b) Peak and dip
number vs peak and dip position (magnetic fields) in (a). Data points
are located on a straight line, confirming the H linear periodicity
instead of the 1/H periodicity.

It is also an important issue to determine whether the
Shubnikov–de Haas oscillation originates from surface states
or from bulk states. One way will be to compare Shubnikov–de
Haas oscillations of insulating samples with those of metallic
ones. We expect that both the amplitude and period in 1/H

for the Shubnikov–de Haas oscillation will vary, depending
on the concentration of impurities, which allows us to control
bulk conduction through localization while the conduction of
surface Dirac fermions will not be affected so much due to
topological protection.
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