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Joint time-dependent density-functional theory for excited states of electronic systems in solution
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We present a joint time-dependent density-functional theory for the description of solute-solvent systems
in time-dependent external potentials. Starting with the exact quantum-mechanical action functional for both
electrons and nuclei, we systematically eliminate solvent degrees of freedom and thus arrive at coarse-grained
action functionals that retain the highly accurate ab initio description for the solute and are, in principle,
exact. This procedure allows us to examine approximations underlying popular embedding theories for excited
states. Finally, we introduce an approximate action functional for the solute-water system and compute the
solvatochromic shift of the lowest singlet excited state of formaldehyde in aqueous solution, which is in good
agreement with experimental findings.
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I. INTRODUCTION

Electronic excited states are important in many areas
of physics, chemistry, and biology. They are probed in
spectroscopic experiments, such as absorption, reflectivity, or
photoluminescence measurements. In addition, they are impor-
tant in many technical applications, such as photovoltaics,1,2

laser technology,3 and light-emitting diodes.4,5 However, in
most situations the excited system is not in isolation but in
contact with an environment. For example, dyes in Grätzel
cells6,7 are in contact with an electrolyte and spectra of DNA
molecules are typically obtained in an aqueous solution.8,9

Various methods for the theoretical modeling of electronic
excited states have been developed. For extended systems,
such as periodic solids or surfaces, excitation energies are
typically extracted from the single-particle and two-particle
Green’s functions by solving the quasiparticle10 and the
Bethe-Salpeter equation11 in the GW approximation. Quantum
chemistry methods, such as configuration interaction12 or
coupled cluster theory,13 yield highly accurate excitation
energies for atoms and small molecules. In contrast to the
aforementioned methods, which scale unfavorably with the
system size, in recent years time-dependent density-functional
theory14,15 emerged as an economical yet accurate theory for
larger molecules and clusters.6,16,17

However, despite its good scaling properties, the application
of time-dependent density-functional theory to electronic
systems, which are not in isolation, but in contact with an
environment, remains numerically challenging. To capture
solvent effects on excited states, a number of embedding
approaches have been developed.18–25 These methods model
the solvent atomistically, for example, by using the molecular
dynamics technique19,21,24 or via a continuum approach.18,20,22

Due to its simplicity, the latter approach has enjoyed great
popularity. In particular, many calculations employed time-
dependent density-functional theory in conjunction with the
“polarizable continuum model,”6,7,18,26 where the molecule
is placed inside a cavity in a linear dielectric medium. The
solute-solvent interactions are then separated into equilibrium
and nonequilibrium contributions, accounting for the fact that

the electronic excitations on the molecule are screened by the
high-frequency dielectric constant, which in many systems is
much smaller than the static dielectric constant.

Despite the success of these continuum models, it is
important to recall that their construction is purely phenomeno-
logical. To improve on these theories and understand their
limitations, it is necessary to understand their origin from
first principles. In this paper, we derive different levels of
continuum embedding theory starting from the exact quantum-
mechanical action functional for the full solute-solvent system
(Sec. II). Next, as a demonstration that the approach can
lead to practical calculations, we introduce a time-dependent
continuum model (Sec. III), which takes into account the
deviation from bulk behavior of the solvent response in the first
solvation shells and also retains the full frequency dependence
of the dielectric response and then apply this functional to the
excitations of a formaldehyde molecule in aqueous solution
(Sec. IV). Finally, in Sec. V we discuss our conclusions and
describe possible future developments and applications.

II. JOINT TIME-DEPENDENT DENSITY-FUNCTIONAL
THEORY

In this section, we consider a physical system composed of
an explicit subsystem (solute) in contact with an environment
(solvent). Both solute and solvent consist of electrons and
nuclei of various species. Examples of such solute-solvent
systems are a molecule dissolved in water or a defect in a
host crystal. To investigate the behavior of a solute-solvent
system in a time-dependent external potential, we employ
time-dependent density-functional theory.14 Here, we begin
with the straightforward generalization of the standard, fully
causal expression for the action of a single-component system
at zero temperature27 to multicomponent systems at finite
temperature. This generalization is similar to the theory of
Li and Tong.28 Those authors, however, worked only at
zero temperature and employed the Frenkel-Dirac action
functional, which violates the causality requirement of van
Leeuwen.27 Generalizing the approach of van Leeuwen to the
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present situation yields for the action functional S of the full
solute-solvent system,

S[n,{Nα}] = A[n,{Nα}] −
∫

�

d r
∫

C

dτn(r,τ )v(r,τ )

−
∑

α

∫
�

d r
∫

C

dτNα(r,τ )Vα(r,τ ), (1)

where n(r) and Nα(r) denote the density of electrons and
the various nuclear species, while v(r) and Vα(r) denote the
respective external potentials. Also, � denotes an open volume
as required when working in the grand canonical ensemble
and τ denotes the Keldysh time,29 which is defined on
the contour C ranging from 0 to ∞ just above the real time
axis and then back from ∞ to 0 just under the real time axis
and, finally, from 0 to −iβ on the imaginary time axis, with
β = 1/(kBT ) being the inverse thermal energy. Finally, in Eq.
(1), the intrinsic action A is the Legendre transform, with
respect to the potentials v and Vα ,27 of

Ã[v,{Vα}]
= i log Tr

{
exp

[
β

(
μelN̂el +

∑
α

μαN̂α

)]
Û (−iβ; 0)

}
,

(2)

where μel and μα are the chemical potentials of the electrons
and nuclei, while N̂el and N̂α denote the respective particle
number operators. In the above, Û = TC exp[−i

∫
dτĤ (τ )]

denotes the quantum-mechanical evolution operator27 with TC

being the Keldysh time-ordering operator and Ĥ (τ ) denotes
the standard many-body Hamiltonian for the electrons and
nuclei of the solute-solvent system.

We note that, relatively recently, Butriy et al. have also con-
sidered multicomponent time-dependent density-functional
theory30 but chose as the variational variables the electron
density in body-fixed coordinates and the diagonal of the
nuclear N-body density matrix, whereas we here employ as
the variables the much more tractable densities n(r,τ ) and
Nα(r,τ ). Butriy et al. employed their formalism to study
correlated electron-nuclear excitations in isolated molecules.
By contrast, we here are interested in electronic excitations
of the system while treating the solute nuclei in the Born-
Oppenheimer approximation, holding them fixed in place, so
they present a simple fixed external potential in which the
electrons and solvent nuclei evolve. With the solute nuclear
coordinates fixed, there is no need to work in body-fixed
coordinates and a simple density description is sufficient for
us to extract the density fluctuations of interest.

We do, however, find it mathematically convenient as a
matter of bookkeeping to treat the solute and environment
nuclear densities on an equal footing for as long as possible;
therefore, we treat the solute nuclear densities as time
dependent in our derivation and fix only the locations of the
solute nuclei in the final step. Consequently, the index α in
Eqs. (1) and (2) ranges over all nuclear species in both the
solvent and the solute.

Because of the many environment degrees of freedom, find-
ing the time-dependent densities that make the action in Eq. (1)
stationary is numerically challenging. Moreover, the explicit
details of the density fields describing the solvent are often
irrelevant, because one is typically interested in properties of

the solute. We, therefore, seek a fundamental description which
treats the solute explicitly and the solvent either at a simplified
level or implicitly. Petrosyan and coworkers31,32 have devel-
oped just such a rigorous “joint” density-functional theory for
the static, equilibrium case. Specifically, Petrosyan et al. first
minimize the full solute-solvent free-energy functional over
the solvent electron density to arrive at a free-energy functional
in terms of the solute electron and the solvent nuclear densities.
The resulting theory treats both solute and solvent explicitly,
but the solvent at a more coarse-grained level. Ultimately, for
specific solute-solvent systems the coarse-grained free-energy
functional is minimized over all solute electron and solvent
nuclear densities to obtain the free energy of the overall system
and its equilibrium properties. Petrosyan et al. developed
accurate and numerically tractable approximations to the
coarse-grained functional and employed them to study surfaces
and small molecules in aqueous solution with encouraging
results.31,32 We note that Fattebert and Gygi33 have developed
a computationally similar approach for carrying out electronic
structure calculations in aqueous environments but without the
underlying exact framework of joint density-functional theory.

To generalize the theory of Petrosyan and coworkers
to the present nonequilibrium context, we split the total
electron density in Eq. (1) into solute (ns) and environment
(ne) contributions, n(r,τ ) = ns(r,τ ) + ne(r,τ ). Fundamen-
tally, a rigorous partitioning of electrons into solute and
environment electrons is, of course, impossible because of
their quantum-mechanical indistinguishability. Nonetheless,
making S stationary with respect to all physically allowed
environment electron densities and, subsequently, with respect
to all physically allowed solute electron densities is guaranteed
to recover the correct total electron density. There are, of
course, many ways to express the total electron density as a sum
of two subsystem densities. Thus, instead of a unique solution,
there exists, in principle, a vast degenerate set of solutions
in joint time-dependent density-functional theory consisting
of all solute and environment electron densities that sum up
to the correct total electron density. In practice, however, we
find that practical approximations break this degeneracy and
pick out a sensible particular solution. This is reminiscent
of the equilibrium case, where Petrosyan et al.32 observed
that the use of molecular pseudopotentials34 leads to sensible
nondegenerate solutions.

A. Explicit solvent functionals

Making the action stationary with respect to the environ-
ment electron density while holding the solute electron and
environment nuclear densities fixed, we obtain the coarse-
grained explicit-solvent functional Sex,

Sex[ns,{Nα}]
= statne

{
A[ns + ne,{Nα}] −

∫
�

d r
∫

C

dτ

[
ne(r,τ )v(r,τ )

+
∑

α

Nα(r,τ )Vα(r,τ )

]}
−

∫
�

d r
∫

C

dτns(r,τ )v(r,τ )

≡A(v,{Vα})[ns,{Nα}] −
∫

�

d r
∫

C

dτns(r,τ )v(r,τ ), (3)

where statne
indicates that the expression in curly brackets

is made stationary with respect to variations of ne and the
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superscript of A makes explicit the additional dependence of
this functional on the external potentials. Note that we include
the coupling term for the nuclear densities (

∑
NαVα) in A:

This partitioning is not functionally necessary, because the
coupling term does not depend on ne and therefore maintains
its simple form. This choice, however, ensures thatA describes
a neutral system: Maintaining charge neutrality is important
both formally to ensure the existence of the thermodynamic
limit35 and practically to mitigate the need to capture long-
range couplings within an approximate functional. We stress
that our partitioning does not fundamentally complicate the
functional dependence of the new functional A because the
coupling to Vα will retain its simple form in terms of Nα .

To find practical approximations, we partition A into
various physically meaningful contributions according to

A = Ael,s[ns] + Anuc,s[{Ns,α}] − A
({Vs,α})
nuc/ext,s[{Ns,α}]

−Anuc/el,s[ns,{Ns,α}] + Ae[{Ne,α}] − �A(v,{Ve,α})
ext,e [{Ne,α}]

−�A(v,{Ve,α},{Vs,α})
s,e [ns,{Ns,α},{Ne,α}], (4)

where the first four terms describe the solute: The first term,
Ael,s, denotes the intrinsic action of the solute electrons and is
typically27 written as

Ael,s = AKS − AH − AXC, (5)

where AKS denotes the action of noninteracting electrons,
AH = 1/2

∫
d r

∫
d r ′ ∫ dτns(r,τ )ns(r ′/|r − r ′| is the Hartree

contribution, and AXC the exchange-correlation term. The
second and third terms in Eq. (4), respectively, are the intrinsic
action of the solute nuclei (with densities Ns,α) and their
coupling to the external potentials. The fourth term captures
the interaction between solute electrons and solute nuclei. In
our actual calculations, we hold the solute nuclei fixed in space,
finding Anuc/el,s = ∫

d r
∫

dτns(r,τ )vst(r), with vst being the
static potential created by the solute nuclei. Under these condi-
tions, the second and third terms in Eq. (4) become independent
of all time-dependent degrees of freedom (although not of
time-dependent potentials) and can be dropped for the purpose
of the variational calculations. However, for later convenience
we retain Anuc,s = ∫

dτ
∑

I<J ZIZJ /|RI − RJ | with RI and
ZI denoting the positions and charges of the solute nuclei.

The fifth term in Eq. (4) describes the isolated neutral
environment in terms of its nuclear densities, Ne,α . Accurate
approximations for this action functional are less well known
than for electrons. However, there has been much progress
recently in the construction of such action functionals for
classical liquids,36,37 which constitute an important and tech-
nologically relevant class of solvents.

Finally, having identified all interactions between charged
species, we expect the remaining two contributions in Eq. (4)
to be relatively small. The sixth term, �Aext,e, describes
the interaction between the neutral solvent and the external
potentials. The final, seventh term, �As,e, maintains the full
functional dependence and captures by definition all remaining
interactions. We find that the coupling between the neutral
solute and the neutral solvent constitutes the most important
contribution to this term.

To find approximations to �Aext,e, we observe that the
best form for this term depends on the physical system under
consideration, because the solvent electrons screen the bare

nuclear charges in qualitatively different ways depending on
the physical nature of the solvent. If the solvent consists
of ions of charge Z̄α , the corresponding action would be∑

α

∫
dτ

∫
d r[Ne,αVα + (Zα − Z̄α)Ne,αv], with Zα being the

true charge of the nucleus. If, however, the solvent is composed
of neutral polar molecules, where each “effective” nucleus
carries a partial charge qα and all partial charges in a
molecule add up to zero, one should replace Z̄α in the above
expression by qα . Finally, if the solvent consists of apolar
molecules or neutral atoms, we can approximate the coupling
by

∑
α

∫
dτ

∫
d rπαNe,α|∇v|2 with πα being the polarizability

of the “effective” nucleus α.
The final term, �As,e, has the full functional dependence

and thus can capture all remaining interactions. In typical
density-functional theory fashion, because we have separated
out by various approximations all other possible interactions
and ensured that this term represents a charge-neutral in-
teraction, we expect this term to be relatively small with
mild functional dependencies and thus amenable to simple
approximations. Accordingly, we expand �As,e as a Taylor
series in the various densities, keeping only the lowest-order
coupling terms,

�As,e

=
∫

�

d r
∫

�

d r ′
∫

C

dτ

∫
C

dτ ′∑
α

Ne,α(r ′,τ ′)

×
⎡
⎣wα(r,r ′,τ,τ ′)ns(r,τ )+

∑
β

wαβ(r,r ′,τ,τ ′)Ns,β(r ′,τ ′)

⎤
⎦,

(6)

where wα(r,r ′,τ,τ ′) = δ2�As,e/δns(r,τ )δNe,α(r ′,τ ′) and
wαβ(r,r ′,τ,τ ′) = δ2�As,e/δNe,α(r,τ )δNs,β (r ′,τ ′) denote ef-
fective time-dependent interaction potentials between solvent
nuclei and solute electrons or solute nuclei. Note that, in
principle, the Taylor series contains various other coupling
terms: for example, a term quadratic in the solute electron
density can occur. However, such a term only renormalizes
the Hartree contribution in Ael,s and is therefore neglected in
Eq. (6). Table I summarizes all of the above considerations,
listing all of the various contributions to Sex and the terms
which capture them.

Recently, Kaminski and coworkers25 have constructed
a time-dependent embedding theory similar to the explicit
solvent approach described in this section. In particular, these
authors first use the theory of classical molecular liquids25

to obtain averaged nuclear solvent densities which they then
“dress up” with electrons to obtain the total equilibrium
potential created by the solvent. Next, they compute orbital
wave functions and energies of the embedded solute which are
used as input into time-dependent density-functional theory
calculations. This approach is very promising and may be
viewed as an approximate implementation of the formally
exact explicit solvent approach presented in this section.

B. Implicit solvent functionals

1. General considerations

Rather than follow the above route of dealing explicitly
with the solvent nuclei, for this initial work, we take a simpler
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TABLE I. The table shows the various contributions to Sex due to
interactions between solute nuclei (Ns), solute electrons (ns), solvent
nuclei (Ne), solvent electrons (ne), and the external potentials (v and
V ). Note that in Sex the solvent electrons are treated implicitly.

Contribution Contained in

Ns/Ns Anuc,s

Ns/ns Anuc/el,s

Ns/Ne �As,e

Ns/ne �As,e

NS/V Anuc/ext,s

ns/ns Ael,s

ns/Ne �As,e

ns/ne �As,e

ns/v Last term in Eq. (3)
Ne/Ne Ae

Ne/ne Ae

Ne/V �Aext,e

ne/ne Ae

ne/v �Aext,e

tack that allows us to make contact with standard continuum
solvent models. For this purpose, we eliminate the environment
nuclei from Sex and introduce a new action functional Sim that
depends on the solute densities only and treats the solvent
implicitly as follows,

Sim[ns,{Ns,α}] = stat{Ne,α}A(v,{Vα})[ns,{Ns,α},{Ne,α}]
−

∫
�

d r
∫

C

dτns(r,τ )v(r,τ )

≡ G(v,{Vα})[ns,{Ns,α}]−
∫

�

d r
∫

C

dτns(r,τ)v(r,τ).

(7)

Again, we partition G into meaningful contributions according
to

G = Ael,s[ns] + Anuc,s[{Ns,α}] − A
({Vs,α})
nuc/ext,s[{Ns,α}]

−Anuc/el,s[ns,{Ns,α}]− �G(v,{Ve,α})[ns,{Ns,α}] (8)

where �G = −stat{Ne,α}[Ae − �Aext,e − �As,e] and Ael,∫ is
given by Eq. (5). Note that �G depends on the solute densities
of electrons and nuclei but also on the time-dependent external
potential. To understand the consequences of the additional
functional dependency, we now investigate the linear response
behavior of Sim in greater detail (assuming fixed solute
nuclei).

The time-dependent solute electron density corresponding
to v makes Sim stationary, δSim = 0, which implies δG/δns =
v. Using (8) we thus have (assuming fixed solute nuclei)

v(r,τ ) = vKS(r,τ ) − vH (r,τ ) − vXC(r,τ )

− vst (r) − v(v,{Ve,α})
e (r,τ ), (9)

where vKS = δAKS/δns denotes the Kohn-Sham potential,
vH = δAH/δns , vXC = δAXC/δns , and vst is the static poten-
tial due to the solute nuclei. Also, ve = δ�G/δns denotes the
additional potential due to the presence of the environment.
Note that �G and, therefore, ve depend on the solute density
ns and the external potential separately.

A small change δv in the external potential causes a change
δns in the solute electron density. In the linear response regime,
these quantities are related via the response function χ

δns(r,τ ) =
∫

�

d r ′
∫

C

dτ ′χ (r,r ′,τ,τ ′)δv(r ′,τ ′). (10)

To compute χ , which is the observable in spectroscopic
experiments on the solute-solvent system, we first determine
the change in the Kohn-Sham potential δvKS corresponding
to δv. (Strictly speaking, only the total response function
χtot = δn/δv = δns/δv + δne/δv is measured. However, for
solute-solvent systems where the response of the solute occurs
in a frequency range that differs from the response of the
solvent can determine experimentally the solute response
function χ . This is the case for the lowest singlet excitation of
formaldehyde in water, which we study in the Sec. IV.) Using
Eq. (9), we find

δvKS(r,τ ) = δv(r,τ ) +
∫

�

d r ′ δns(r ′,τ )

|r − r ′|
+

∫
�

d r ′
∫

C

dτ ′fXC(r,r ′,τ,τ ′)δns(r ′,τ ′)

+
∫

�

d r ′
∫

C

dτ ′f A
e (r,r ′,τ,τ ′)δns(r ′,τ ′)

+
∫

�

d r ′
∫

C

dτ ′f B
e (r,r ′,τ,τ ′)δv(r ′,τ ′)

+
∑

α

∫
�

d r ′
∫

C

dτ ′f C
e,α(r,r ′,τ,τ ′)δVe,α(r ′,τ ′),

(11)

where f A
e = δve/δns , f B

e = δve/δv, and f C
e,α = δve/δVe,α

denote additional contributions to δvKS caused by the environ-
ment. In an actual experiment, where the whole solute-solvent
system is probed, for example, by an electromagnetic wave,
we expect δVe,α to be related to δv. In this case, we can express
the last term in Eq. (11) as f D

e δv with f D
e = ∑

α f C
e,αδVe,α/δv.

The change in the Kohn-Sham potential is related to δns

via

δns(r,τ ) =
∫

�

d r ′
∫

C

dτ ′χKS(r,r ′,τ,τ ′)δvKS(r ′,τ ′), (12)

where χKS denotes the response function of noninteracting
electrons. Combining Eqs. (12), (11), and (10) and adopting a
matrix formulation for the space and Keldysh time variables
then yields

χ−1 = [
1 + f B

e + f D
e

]−1{
χ−1

KS − [
K + fXC + f A

e

]}
, (13)

where K denotes the matrix corresponding to the Coulomb
interaction K(r,r ′,τ,τ ′) = δ(τ,τ ′)/|r − r ′| with δ(τ,τ ′) de-
noting the δ function on the Keldysh contour.

Compared to the familiar equation for χ without solvent,
given by χ−1 = χ−1

KS − [K + fXC], we find that Eq. (13) con-
tains three extra terms due to the presence of the solvent: f A

e

describes the change of the solvent potential due to a change in
the solute electron density, while f B

e and f D
e describe changes

induced by a variation in the external potential. Without justifi-
cation, “polarizable continuum model” approaches typically18

approximate the potential due to the solvent as a functional
of the solute density only, which means they only include f A

e
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and neglect f B
e and f D

e . This insight into the assumptions
underlying popular embedding approaches underscores the
value of following the density-functional approach rigorously
to identify all potentially relevant functional dependencies.

2. Practical approximations

To develop practical approximations, we separate �G into a
contribution �Gs,e[ns,{Ns,α}], which describes the interaction
among solute particles mediated by the environment, and
a remainder �G(v,{Ve,α})

ext [ns,{Ns,α}]. Taylor expanding �Gs,e

yields

�Gs,e

=
∫

�

d r
∫

�

d r ′
∫

C

dτ

∫
C

dτ ′
{

1

2
ns(r,τ )W (r,r ′,τ,τ ′)ns(r ′,τ ′)

+
∑

α

Ns,α(r,τ )

[
Wα(r,r ′,τ,τ ′)ns(r ′,τ ′)

+ 1

2

∑
β

Wαβ(r,r ′,τ,τ ′)Ns,β (r ′,τ ′)
]}

, (14)

where W (r,r ′,τ,τ ′), Wα(r,r ′,τ,τ ′), and Wαβ(r,r ′,τ,τ ′) denote
effective interaction potentials between the various solute
particles. In the next section, we approximate these interaction
potentials by screened Coulomb interactions, which results
in a simple, yet accurate, joint density-functional theory for
solute-water systems.

Approximating �Gext is more difficult: A possible route
to finding explicit functionals is to express the environment
nuclear densities in terms of solute densities according to
Ne,α(r) = gα[ns,{Ns,β}](r) and insert this relation into the
various forms for �Aext,e discussed in the last section. We
expect that gα has a similar form as the dielectric function
employed in the next section [Eq. (18)], where we employ a
local ansatz to describe the crossover from bulk screening to
vacuum.

However, for our first implementation of joint time-
dependent density-functional theory for solute-water systems
presented in the next section we neglect �Gext. We expect,
however, that the additional solvent response due to this term
can be included by “renormalizing” the dielectric function
describing the environment (see Sec. III). Future work should
explore the consequences and importance of this term.

III. AN IMPLICIT ACTION FUNCTIONAL FOR THE
WATER-SOLUTE SYSTEM

To allow us to explore and test the potential of the above
ideas in an actual application, in this section, we introduce a
relatively simple, approximate joint time-dependent density-
functional for the solute-water system. In particular, we assume
that all solvent effects can be described via a position and
frequency-dependent local dielectric function, which depends
on the electronic structure of the solute. Inclusion of the
spatial dependence of screening effects is crucial, because
the dielectric response of water in the first solvation shells
differs notably from the bulk response. Also, in contrast
to “polarizable continuum model” approaches,18,38 where a
particular value for the high-frequency dielectric constant is

chosen, we employ the full frequency-dependent dielectric
function.

Specifically, the assumption of dielectric screening implies
that all effective interactions introduced in Eq. (14) are
proportional to the screened interaction W̃ between two unit
charges and only rescaled by the charges of the interacting
species. In particular, we approximate W = W̃ , Wα = −ZαW̃ ,
and Wαβ = ZαZβW̃ . The resulting action functional for the
solute-water system is then given by

G = AKS − AXC − �Vps − 1

2

∫
�

d r
∫

�

d r ′
∫

C

dτ

∫
C

dτ ′

× ρs(r,τ )K̃(r,r ′,τ,τ ′)ρs(r ′,τ ′), (15)

with ρs(r,τ ) = −ns(r,τ ) + ∑
I ZI δ(r − RI ) denoting the

solute charge density and K̃ = K + W̃ , where K is the
bare Coulomb interaction defined as above. Also, �Vps

reflects the fact that, in practical calculations, we employ
the pseudopotential approximation,39 in which the nuclei are
replaced with ionic cores of charge ZI , whose potentials at
large distances (when not screened by the environment) go as
ZI/|r − RI | but which differ from this by a localized function
�Vps(r − RI ) within a small “core radius” that represents a
distance much smaller than where we would expect screening
from the environment to occur. Within our framework, the
long-range parts enter through the solution of Eq. (16), and
thus are properly screened, and the short-range parts contained
in �Vps enter directly as they require no such screening.

The screened potential corresponding to a physical charge
density ρs(r,t), which is equal on both vertical branches of the
Keldysh contour, is given by φ̃s ≡ K̃Rρs , where K̃R denotes
the retarded interaction.27 In actual calculations, we obtain φ̃s

by solving the screened Poisson equation

∇ · ε(r,ω)∇φ̃(r,ω) = −4πρs(r,ω). (16)

All information about the environment is contained in the
dielectric function ε(r,ω). In principle, both the ionic and
the electronic degrees of freedom of the solvent contribute
to the dielectric response. We demonstrate below that for the
frequencies of interest, we can safely ignore the motion of the
ions and only deal with the electronic response corresponding
to a fixed nuclear solvent density. We make the natural
assumptions that the system is in equilibrium before the
excitation and that the equilibrium nuclear solvent density is
determined locally by the equilibrium solute electron density
n0(r). This suggests the following local ansatz for the dielectric
function:

ε(r,ω) = ε(n0(r),ω). (17)

This ansatz is physically reasonable in that it interpolates
smoothly between the dielectric response of vacuum and the
bulk liquid and thus avoids the need to specify a cavity shape. If
we further assume that the frequency dependence of ε(n0(r),ω)
enters only through the frequency dependence of the bulk
dielectric function εb(ω), we can generalize the form employed
by Petrosyan and coworkers31 to

ε(r,ω) = 1 + εb(ω) − 1

2
erfc

{
log[n0(r)/nc]√

2σ

}
, (18)
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where the parameters nc and σ determine the location
and width, respectively, of the crossover from the vacuum
to the bulk liquid dielectric response. Petrosyan et al.31

determined the numerical values nc = 4.73 × 10−3 Å−3 and
σ = 0.6 for these parameters by fitting solvation energies of
small molecules obtained by their equilibrium joint density-
functional theory to experimental data. We choose to work
with these values as well.

To complete the theory, we need an expression for the
frequency-dependent bulk dielectric constant εb(ω). At fre-
quencies corresponding to electronic excitations, we may
ignore the complicated low-frequency dielectric response of
water and employ a model that describes the high-frequency
range reliably. For this, we use the Clausius-Mossotti form40

εb(ω) − 1

εb(ω) + 2
= 4π

3
nbᾱ(ω), (19)

where nb denotes the bulk molecular particle density of water
and ᾱ(ω) = ∑

j Fj/(E2
j − ω2) denotes the mean polarizability

of an isolated water molecule, with Fj and Ej being the
oscillator strength and excitation frequencies, respectively, for
excited state j . In the next section, we compute ᾱ(ω) using
time-dependent density-functional theory and demonstrate
that Eq. (19), which neglects the contribution from the
permanent dipole moments, indeed reliably describes the bulk
screening response of water to low-lying electronic excitations.
To obtain excitation energies of the solute, we analyze the
linear response of Eq. (15), resulting in

χ−1 = χ−1
KS − [K̃ + fXC], (20)

which lacks the subtleties appearing in Sec. II B because the
present model lacks any explicit environment dependence on
the external potential. Our final working equation is obtained
by expressing Eq. (20) in transition-space notation,15 where
the fused index κ = (k,j ) denotes a transition between two
equilibrium Kohn-Sham orbitals ψj (r) and ψk(r). We arrive at
a self-consistent eigenvalue problem15 for excitation energies
Ej of the solute,
∑

ν

[
δκν�ε2

ν + 4
√

�εκ�ενM̃κν(Ej )
]
C(j )

ν = E2
j C

(j )
κ , (21)

where �εκ = εj − εk with εk denoting the equilibrium orbital
energies and the eigenvector C

(j )
κ determines the oscillator

strength of the transition.15 The coupling matrix is given by

M̃κν(ω)

=
∫

�

d r
∫

�

d r ′�∗
κ (r)

[
K̃R(r,r ′,ω) + f R

XC(r,r ′,ω)
]
�ν(r ′),

(22)

where �κ (r) = ψ∗
k (r)ψj (r) and f R

XC denotes the retarded
exchange-correlation kernel. Note that even for a frequency-
independent exchange-correlation kernel, the solvent response
makes M̃ frequency dependent. Equation (21) is solved
iteratively: setting K̃R(Ej ) = K yields an initial estimate
E

(1)
j for the excitation energy. Next, we solve Eq. (21) using

K̃R(E(1)
j ) and iterate until self-consistency is achieved.

IV. APPLICATION TO FORMALDEHYDE IN
AQUEOUS SOLUTION

As a test case, we study the lowest singlet excited state
of a formaldehyde molecule in aqueous solution. A number
of theoretical approaches have been applied to study solvato-
chromic shifts of formaldehyde in water.18,19,38,41–44 However,
the agreement with experimental findings has generally been
unsatisfactory.

In this section, we first compute the mean polarizability
of an isolated water molecule from time-dependent density-
functional theory and obtain the frequency-dependent bulk
dielectric function of liquid water using the Clausius-Mossotti
equation. Next, we explore the excitations of formaldehyde in
the gas phase and in solution using the joint time-dependent
density-functional theory described in the previous section.

All calculations are carried out in a plane-wave basis
with a cutoff of 40 hartree. We use Kleinman-Bylander
pseudopotentials45 and a cubic supercell of length 20 bohr.
For the ground-state calculations we employ the local density
approximation46,47 and for the excitations the adiabatic local
density approximation.15

A. Dielectric function of liquid water

To compute excitation energies of a formaldehyde molecule
in aqueous solution, we need the frequency-dependent dielec-
tric response of water. According to Eq. (19), this requires
the mean polarizability of an isolated water molecule. We
first carry out ground-state calculations and fully relax the
electronic and ionic structure. We then employ time-dependent
density-functional theory to obtain excitation energies and os-
cillator strengths using all four occupied Kohn-Sham orbitals
plus an additional 220 unoccupied orbitals. Table II shows
our results for the three lowest singlet excitation energies of
an isolated water molecule and compares them to previous
theoretical work48 and to experiment.48 The discrepancy
between theory and experiment is around 1 eV or larger for
all excited states. The poor performance of time-dependent
density-functional theory for the water molecule can be traced
to the Rydberg character of the excitations, which cannot be
described in the adiabatic local density approximation due to
the incorrect asymptotic behavior of the exchange-correlation
potential at large distances.48,49

Despite these problems, the adiabatic local density ap-
proximation gives good results for the static polarizability
and for the low-frequency dielectric constant of liquid water:
Table III compares our results for these quantities with
previous calculations50 and also with experiment.50–52 We
observe that the Clausius-Mossotti formula (19) describes the

TABLE II. Comparison of the lowest singlet excitation energies
of an isolated water molecule with previous theoretical work by
Bernasconi48 and experiment.48 All results are given in eV.

This work Ref. 48 Expt.48

6.47 6.39 7.4
7.74 7.78 9.1
8.01 8.05 9.7
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TABLE III. Comparison of our results for the static mean
polarizability of an isolated water molecule and for the optical
dielectric constant εopt ≡ εb(ω = 1 eV) of liquid water with previous
theoretical work by Hu et al.50 and experiment.50–52

Units This work Ref. 50 Expt.50–52

ᾱ(ω = 0) Bohr3 10.50 10.52 9.6–9.9
εopt 1.83 — 1.78

dielectric response of liquid water very well in the frequency
range corresponding to low-lying electronic excitations.

B. Formaldehyde in the gas phase

Next, we explore the excitations of formaldehyde in the
gas phase. Table IV compares our results for the three
lowest singlet excited states with a previous calculation by
Bauernschmitt and Ahlrich,53 who also employ the adi-
abatic local density approximation and with experimental
findings.18,53 We observe that our excitation energy for the
lowest state is relatively close to the experimental value, while
the higher states deviate more than 1 eV from experiment.
Again, the relatively large deviation for the higher excited
states is due to the incorrect long-distance behavior of the
exchange-correlation potential in the adiabatic local density
approximation.

Comparison of Tables IV and II shows that the lowest
excitation energy of formaldehyde is several eV smaller than
the corresponding value for water. Therefore, in our joint
time-dependent density-functional calculations we evaluate
only the dielectric function at frequencies smaller than its
first pole. In this region, εb(ω) is close to unity and can be
approximated by a constant. This is a common approximation
in “polarizable continuum model” approaches, which for the
nonequilibrium response employs a frequency-independent
dielectric function derived from the index of refraction of
water.18

However, this approximation breaks down for solutes with
higher-energy excited states that are comparable or larger than
the lowest excited state of water. In this case, the full frequency
dependence of the dielectric response must be retained and a
self-consistent solution of Eq. (21) is necessary.

C. Formaldehyde in aqueous solution

We now apply joint time-dependent density-functional
theory to calculate excitations of a solvated formaldehyde
molecule. We use the static joint density-functional theory

TABLE IV. Comparison of the three lowest singlet excitation en-
ergies of an isolated formaldehyde molecule with previous theoretical
work by Bauernschmitt et al.53 and experiment.18,53 All energies are
given in eV.

This work Ref. 53 Expt.18,53

3.66 3.64 3.8–4.2
5.68 5.93 7.13
6.78 6.79 8.14

TABLE V. Comparison of our results for the equilibrium dipole
moment of formaldehyde in vacuum (pvac) and aqueous solution
(psolv) with experiment54 and previous theoretical work.42 Dipole
moments are given in bohrs.

This work Ref. 42 Expt.54

pvac 0.91 0.90 0.91
psolv 1.32 1.32 —

of Petrosyan et al.31 to determine the equilibrium electronic
structure neglecting ionic relaxations induced by the aqueous
environment, which as was shown by Kongsted et al. only led
to shifts in the excitation energies of about 0.01 eV.19 Table V
shows that the equilibrium dipole moment obtained in our
calculation is in excellent agreement with previous theoretical
work.42

We then solve the linear response Eq. (21) of joint
time-dependent density-functional theory self-consistently, as
described in the last section. The lowest excitation energy is
converged to within 0.01 eV after two iterations. Table VI
summarizes our results for the excitation energies in vacuum
and solution and the resulting solvatochromic shift, which is
in good agreement with the experimental value.19

To physically understand the observed solvatochromic blue
shift, we express the excitation energy as

Evac/solv = �εvac/solv + γvac/solv, (23)

where �εvac/solv denotes orbital energy difference in vacuum or
solution and γvac/solv denotes the correction from (joint) time-
dependent density-functional theory. For gas-phase formalde-
hyde, �εvac = 3.34 eV already gives a reasonable approxi-
mation to Evac = 3.66 eV with the correction γvac = 0.32 eV
being relatively small. In solution, we find �εsolv = 3.56 eV
and γsolv = 0.27 eV. We conclude that the solvatochromic
shift is determined mostly by the change of the orbital energy
differences, �εvac − �εsolv = 0.22 eV, which is quite close to
the total solvatochromic shift of 0.17 eV, while the correction
term changes relatively little (only 0.05 eV).

The change of �ε on solvation is caused by the different
coupling of ground and excited states to the aqueous environ-
ment: the ground state has a large dipole moment (pvac

gs = 0.91
bohr) and couples strongly to the aqueous environment leading
to a large negative solvation energy, while the dipole moment
of the excited state (pvac

ex = 0.14 bohr) and the resulting
solvation energy are much smaller.

Table VII compares our result for the solvatochromic shift
of the lowest singlet excitation with previous theoretical
work18,38,41–44 and also with experiment.19 In contrast to

TABLE VI. Lowest singlet excitation energy of formaldehyde in
vacuum (Evac) and aqueous solution (Esolv) obtained from joint time-
dependent density-functional theory. The resulting solvatochromic
shift (Esolv − Evac) is shown in the third column and compared to
experiment.19 All results are given in eV.

Evac Esolv Shift Expt.19

3.66 3.83 0.17 0.21
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TABLE VII. Comparison of our joint time-dependent density-
functional theory results, previous theoretical work18,38,41–44 and
experiment19 for the solvatochromic shift of the lowest singlet excited
state of formaldehyde in aqueous solution. The second column
lists the solvent model: joint time-dependent density-functional
theory (JTDDFT), the “polarizable continuum model” (PCM), the
supermolecular approach (SM), or the reference interaction-site
model (RISM). All results are given in eV.

Method Shift

Ref. 18 PCM 0.12
Ref. 38 PCM 0.12
Ref. 42 SM 0.33
Ref. 43 SM 0.39
Ref. 44 RISM 0.25
Ref. 41 SM + PCM 0.23
This work JTDDFT 0.17
Expt. 19 — 0.21

our calculation, which gives very good agreement with the
experimental data, calculations employing the “polarizable
continuum model” to describe the solvent underestimate the
shift,18,38 while approaches that treat the solvent atomistically
within a supermolecular approach42,43 typically overestimate
the shift. We point out that both methods suffer from
weaknesses that are absent in our approach. In particular,
the results of the “polarizable continuum model” approach
depend sensitively on the chosen cavity size and shape.55

This indicates that a more realistic description of the solvent
response in the vicinity of the solute is of great importance.
Atomistic solvent models, on the other hand, offer a reliable
description of the solvent structure close to the solute, but
to compute converged thermodynamic averages the sampling
of many solvent configurations is required. In addition,
supermolecular approaches that model the solvent by a finite
cluster surrounding the solute do not capture the long-range
dielectric response of the solvent.

Our approach includes both long-range screening effects
and a reliable description of the solvent response close to the
solute. Similarly, Naka et al.,44 who employ the reference
interaction-site model to describe the solute, and Kongsted
et al.,41 who combine an atomistic treatment of the first
solvation shells with the “polarizable continuum model,”
also obtain solvatochromic shifts in good agreement with
experiment. However, unlike our action functional, these
models are not derived from first principles: Instead, they start
out with a partitioning of the action and then approximate each
contribution typically with a different level of theory, making
it difficult to judge the limits of their applicability a priori and
to systematically improve on them. For example, Naka et al.
combine a complete active space self-consistent field treatment
of the solute electrons with an electrostatic coupling scheme
between solute and solvent and the reference-interaction site
model for the solvent structure.44

Finally, we discuss the intensity of the transition from the
ground state of formaldehyde to the lowest singlet excited
state. In our calculations we employ the Franck-Condon
approximation,56–58 keeping the ions fixed at their equilibrium
positions. Within this approximation, we find that the transition

is dipole forbidden both in vacuum and in solution. However,
due to vibronic couplings, the transition gains intensity and can
be observed in experiments.59 In solution, particular solvent
configurations can also distort the solute orbitals, making the
transition weakly dipole allowed.60 The effects of the latter
mechanism are contained in the exact implicit functional (7),
but the relatively simple dielectric mean-field approximation
presented in Sec. III lacks the correlation effects between
the solvent and the solute electrons needed to capture the
intensity enhancement. Future work should aim at improving
the implicit functional and in particular the effective interaction
potential W (r,r ′,τ,τ ′) to include the necessary correlations,
which would also allow for the study of the inhomogeneous
broadening of the absorption lines in solution.44 We also
plan to study vibronic effects in solution by employing the
Herzberg-Teller theory of vibronic transitions.61,62

V. SUMMARY AND CONCLUSIONS

In sum, we describe the construction of a joint time-
dependent density-functional theory for the modeling of
solute-solvent systems. We derive coarse-grained action func-
tionals by eliminating environment degrees of freedom. This
procedure enables us to examine the underlying assumptions
and uncover previously ignored functional dependencies in
popular approaches, such as the time-dependent “polarizable
continuum model,” and to explore their domains of validity.
In particular, we find additional contributions to the action
functional that are typically neglected in standard approaches.
Also, in order to replace the full frequency-dependent solvent
response by a high-frequency dielectric constant, as is often
done in standard approaches, the excitation energy of the solute
has to be far from the poles of the solvent dielectric function.
Otherwise, a self-consistent solution of the linear response
equation is necessary.

We also introduce an explicit, approximate action func-
tional for the modelling of electronic systems in aqueous
solution. Application of this functional to solvated formalde-
hyde leads to good agreement with experiment for the
solvatochromic shift of the lowest singlet excited state. The
implicit functional we introduced can now be applied to more
complicated systems, such as dyes in Grätzel cells7 or solvated
DNA molecules.8,9

The framework is now in place for future work to develop
approximate forms for the explicit solvent functionals by
making use of existing forms of time-dependent functionals
for classical liquids37 and to generalize time-independent
functionals for molecular liquids developed by us63,64 to
include time-dependent response of the solvent electrons.
The resulting theory would then allow us to describe the
nuclear dynamics of the environment during the excitation
and to compute solvation relaxation functions that have been
measured experimentally.65,66
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