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Entanglement measures for quasi-two-dimensional fractional quantum Hall states
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We theoretically examine entanglement in fractional quantum hall states, explicitly taking into account and
emphasizing the quasi-two-dimensional nature of experimental quantum Hall systems. In particular, we study
the entanglement entropy and the entanglement spectrum as a function of the finite layer thickness, d , of the
quasi-two-dimensional system for a number of filling fractions ν in the lowest and the second Landau levels:
ν = 1/3, 7/3, 1/2, and 5/2. We observe that the entanglement measures are dependent on which Landau level
the electrons fractionally occupy, and find that filling fractions 1/3 and 7/3, which are considered to be Laughlin
states, weaken with d in the lowest Landau level (ν = 1/3) and strengthen with d in the second Landau level
(ν = 7/3). For the enigmatic even-denominator ν = 5/2 state, we find that entanglement in the ground state is
consistent with that of the non-Abelian Moore-Read Pfaffian state at an optimal thickness, d . We also find that the
single-layer ν = 1/2 system is not a fractional quantum Hall state consistent with the experimental observation.
In general, our theoretical findings based on entanglement considerations are completely consistent with the
results based on wave-function overlap calculations.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect (FQHE)
in 19821 has proven to be one of the most significant
experimental findings in all of physics. The incompressible
quantum fluid that manifests in a two-dimensional (2D)
electron system in the presence of a strong perpendicular
magnetic field at low temperatures cannot be explained by the
“conventional” Landau theory of phase transitions.2 Instead,
this unique phase is an example of an emergent topological
state of matter, where the charged quasiparticle excitations
are governed by anyonic rather than fermionic or bosonic
statistics.3–6 The unique nature of FQHE becomes obvious
with the realization that the phenomenon occurs only in the
truly strongly interacting limit of vanishing (or extremely
small) kinetic energy with the noninteracting ground state
having a macroscopically large degeneracy. Although the
FQHE was discovered decades ago,7–9 many questions still
linger to this day. The most notable of these is the nature of
the FQH state observed at electron filling fraction ν = 5/2.
First discovered in 1987,10 the ν = 5/2 state is (so far) the
only exception to the famous “odd denominator” rule for
monolayer FQH systems given by the Laughlin ansatz2 and
the more general “composite fermion” theory.9,11 (The odd
denominator rule assumes FQHE in a monolayer system.
Bilayer FQH systems, however, have several even denominator
states that are well-understood. See, for example Refs. 12–14.)
Currently, the leading theoretical candidate for the ν = 5/2
state is the Moore-Read (MR) Pfaffian model state introduced
by Moore and Read in 1990.15 Recently, it has been noted
that the particle-hole conjugate to the MR Pfaffian, the so-
called anti-Pfaffian,16,17 is also a viable candidate for the
FQHE at ν = 5/2. An exceptional feature of these ansatz
is the prediction of anyonic quasiparticles with non-Abelian
braiding statistics.15,18,19 This prediction is attractive given the
current interest in topological quantum computing,20,21 but
the true nature of the FQH ν = 5/2 state is, by no means, a
settled question.22–24 Directly probing the topological nature

of FQH states has proven to be both a theoretical and an
experimental challenge, making definitive and uncontroversial
verification of the MR Pfaffian ansatz elusive. However, recent
developments in the field of quantum information have shown
that measures of entanglement are useful tools in examining
the global features of many-body strongly correlated quantum
states.25

The true nature of the ν = 5/2 FQHE state is one of
the most prominent open questions in condensed matter
physics and is a primary motivation for the current study.
Recent experimental studies have explored this mysterious
state and give some weight to the Moore-Read theory that
is believed to explain it. One of these studies is the recent
experiment by Venkatachalam et al.26 that measured the
charge of localized excitations in the ν = 5/2 state to be
e/4 as predicted by the MR theory.15 These results are
consistent with previous studies by Radu et al. and Dolev
et al. that used shot noise to investigate the local charge.27–29

In addition to the experiments noted above, Willett et al.30,31

have seen evidence of quasiparticle interference oscillations
that support the existence of charge e/4 excitations at ν = 5/2.
Another recent study is work performed by Bid et al.32 that
experimentally observed the theorized neutral mode of the ν =
5/2 state consistent with the MR theory.33,34 Although these
developments point to the MR theory as the likely candidate
for the ν = 5/2 state, they are not sufficient to unambiguously
establish the existence of non-Abelian anyons. Also, it should
be noted that the MR theory predicts a spin-polarized state
at ν = 5/2, but recent experimental work35,36 suggests that
this state may be unpolarized in some cases. Although we
do not consider spin in this work, we attempt to leverage
recent developments in quantum information theory to observe
topological features predicted by the Laughlin and MR theory
in numerically obtained FQHE ground states and examine how
these features change under a realistic change (in particular, the
finite-thickness effect with varying thickness) in the effective
interaction.
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These developments in quantum information theory provide
the context for our current work. In this article we provide
a detailed numerical theoretical study of entanglement for
FQHE states, incorporating the dependence on the quasi-2D
layer thickness of the transverse dimension (i.e., the finite
layer thickness effect).37–43 We emphasize physics of the
finite-thickness effect in this article partly because it provides
a qualitative understanding of the FQHE in higher Landau
levels as shown in Refs. 42 and 43. Indeed, the orbital
Landau level (LL) dependence of the FQHE is not completely
understood.44 The theory behind the MR Pfaffian model state,
for example, makes no distinction between the half-filled
second orbital Landau level (SLL) (i.e., ν = 5/2) and the
half-filled lowest orbital Landau level (LLL) (ν = 1/2), but
no FQHE has so far been observed at ν = 1/2 in monolayer
systems. Furthermore FQH states in the SLL are relatively
rare and generally “weaker” (i.e., requiring lower temperatures
and higher sample mobilities to experimentally observe due
to their relatively small energy gaps on the order of 0.5 K
or less) compared to FQH states in the LLL.10,45–50 Some
light was shed on this phenomenon of fragility of the FQHE
in the SLL in Refs. 42 and 43 where it is shown that the
finite-thickness effect is qualitatively dependent on Landau
level. In particular, it is shown that a finite, nonzero, layer
thickness, d, helps stabilize the FQHE in the SLL, whereas
in the LLL, finite d tends to “weaken” the state. Also, for the
ν = 5/2 state, there appears to be an optimal thickness where
the MR Pfaffian is “strongest.” Thus, there seems to be a
close connection between finite thickness and the SLL FQHE,
which we explore in this work by calculating the thickness
dependent entanglement properties of the FQHE. The results
given in Refs. 42 and 43 are primarily based on calculations of
the overlap between numerically obtained ground states and
model FQHE wave functions,51 in particular, the Laughlin
and MR Pfaffian model states. Although the overlap is a
powerful theoretical tool—in fact, the wide acceptance of the
Laughlin wave function as the appropriate description of the
experimentally observed odd-denominator FQHE is arguably
based on overlap results—it is not always definitive and can
be misleading in some cases. An example of this involves the
ν = 2/5 state that has been shown to have a large overlap
with both the Jain composite fermion wave function as well as
the so-called Gaffnian wave function, even though these two
states have different underlying topological order belonging
to different universality classes.52,53 Therefore, we seek alter-
native theoretical tools to probe the Landau level dependence
of the FQHE through the finite-thickness effect, which should
inevitably give insight into the nature of the enigmatic ν = 5/2
state. In this article, we examine bipartite entanglement as an
alternative measure (in particular the entanglement entropy
and the entanglement spectrum) and study its dependence on
finite layer thickness, d, in quasi-2D FQH states. One reason
for our study of the thickness-dependent FQHE entanglement
is that the thickness parameter d enables a continuous
tuning of the Hamiltonian, lending to a continuous variation
in the entanglement, allowing a comprehensive systematic
study.

Bipartite entanglement measures are tools designed to
quantify the extent to which degrees of freedom are entangled
in a bipartitioned system.54 The most straightforward of these

is the entanglement entropy (EE), defined as the the von
Neuman entropy

SE = Tr[ρA ln ρA] (1)

of the reduced density matrix ρA/B = TrB/A[|�〉〈�|] for
state |�〉 ∈ H = HA ⊗ HB in a Fock space H that has
been partitioned into two parts. The EE has proven to be
a very powerful tool in examining quantum correlations in
interacting many-body systems.25 In particular, the scaling of
the entanglement entropy with system size has been shown
to follow certain “area” laws that can identify quantum phase
transitions in certain cases.55 Also, the EE can be used to
extract the “topological entanglement entropy” that is an
indicator of topological order in the system56,57 (i.e., states
in the same topological class will have the same topological
entanglement entropy). Given these developments, the EE and
the topological EE appear to be attractive tools to probe FQH
states. However, as we discuss below in more detail, obtaining
a precise quantitative estimate of the topological entropy in
FQH states requires a technical procedure prone to introducing
significant errors.58–60 In our study, we do not attempt to make
such an estimate. Instead we focus on FQHE states with the
primary objective of observing the qualitative behavior of the
EE as a function of finite layer thickness, d, in the LLL and
SLL. Our goal is to obtain the qualitative dependence of the
EE in FQHE as a function of layer thickness, d.

We also investigate the “entanglement spectrum” of quasi-
2D FQH states in this study. Introduced by Li and Haldane,61

the entanglement spectrum (ES) provides more information
than the entanglement entropy alone. In particular, Li and
Haldane conjectured that there is a direct correspondence
between the low-lying eigenvalues of the operator ĥ =
− ln[ρA] and the edge modes of the system and, thus, ES can be
used to determine characteristics of the underlying conformal
field theory (CFT) of the corresponding FQH ground state. As
long as these “CFT-like” states are well separated from the
“generic non-CFT-like” states in the entanglement spectrum
of the ground state in the thermodynamic limit, then it is
conjectured that the identified CFT does, indeed, describe the
state. In other words, states described the by the same CFT (i.e.,
in the same universality class) will have the same low-lying
structure in their respective entanglement spectra. Numerical
studies62–66 and some recent analytical results67 support the Li
and Haldane conjecture. In our study, we carefully examine
the entanglement spectrum of finite-sized FQHE states by
quantifying the separations between the suspected low-lying
CFT and non-CFT-like states (“entanglement gaps”) as a
function of finite layer thickness. The entanglement gaps serve
as a semiquantitative measure of how well the state in a
finite system fits with the universality class described by the
CFT. By doing this we discover that the entanglement gaps
follow trends qualitatively similar to the EE, leading to similar
conclusions obtained in the overlap calculations given in
Ref. 42 and 43 (i.e., that the finite-thickness effect strengthens
the FQH states in the SLL). We also examine the entanglement
spectrum in the so-called “conformal limit.” 68 The aim of
the conformal limit is to remove finite-size artifacts from the
geometry of the system (in our case, the sphere), allowing
for a concrete definition of a full entanglement gap. We find

125141-2



ENTANGLEMENT MEASURES FOR QUASI-TWO- . . . PHYSICAL REVIEW B 84, 125141 (2011)

that the conformal limit does result in a full entanglement
gap in most cases studied but not in all situations. The lack
of an entanglement gap in these exceptional cases, however,
is likely due to our choice of planar pseudopotentials in our
work;69 further work along this line would be necessary to
fully understand these situations.

The structure of this article is as follows: In Sec. II we
describe our methods for numerically obtaining the exact
ground state of the Coulombic Hamiltonian for FQH ground
states at filling fractions ν = 1/3, 7/3, 1/2, and 5/2 and
our chosen model of the finite thickness of the quasi-2D
system as well as the model wave functions (Laughlin and
MR Pfaffian) to which we compare the numerically obtained
ground state. Further, we describe how our entanglement
measures are defined and calculated. In Sec. III we provide
our results for the entanglement entropy (III A), entanglement
gaps in the entanglement spectrum (III B), entanglement
spectra in the conformal limit (III C), and density of states
calculations of entanglement spectra (III D) for FQH ground
states at the filling fractions listed above. We provide our
conclusions in Sec. IV. Finally, in the appendix, we discuss
our choice of planar Haldane pseudopotentials over spherical
pseudopotentials and examine the implications of this choice
by comparing entanglement spectra in FQHE ground states at
zero thickness obtained with either choice of pseudopotentials.

II. METHOD

We begin by considering a quasi-2D geometry where
spinless electrons are confined in the x-y plane with layer
thickness, d, along the z axis and an external magnetic field
B also along the z axis. In the noninteracting case, the
presence of the magnetic field quantizes the electron energy
levels into highly degenerate Landau levels (LL) with energies
En = (n + 1/2)h̄ωc, where ωc = eB/mc and n = 0,1,2, . . .

is a non-negative integer that defines the LL index. The
degeneracy of each LL per unit area is given by (2πl2)−1,
where l = √

h̄c/eB is the magnetic length and defines a
length scale for the problem. The filling factor is given by
ν = Ns/(2πl2), where Ns is the particle density per unit area.
When we include spin, the degeneracy of each Landau level
is doubled. If we assume the electrons are polarized by the
magnetic field and the LL’s are filled sequentially by spin
up and spin down electrons, then 0 < ν < 2 corresponds to
states in the lowest Landau level (LLL) with LL index n = 0
and 2 < ν < 4 corresponds to the second Landau level (SLL)
with LL index n = 1. Thus, the 1/2-filled LLL corresponds to
ν = 1/2 or 3/2 and the 1/2-filled SLL corresponds to ν = 5/2
or 7/2. The identifications of the 1/3-filled filling factors is
obtained similarly.

The presence of electron-electron interactions clearly com-
plicates this picture, but if we assume the electrons are confined
to a single LL (i.e., there is no LL mixing), then the kinetic
energy is a constant that can be ignored, giving the effective
Hamiltonian:

Ĥ =
N∑

i<j

V (rij ), (2)

where N is the total number of particles and rij = |ri − rj |
is the distance between particles measured in units of the
magnetic length l. Note that our assumption of no LL mixing
might not be a very good approximation70–72 in all cases,
especially when considering the FQH state at ν = 5/2 where
it has been observed at “low” magnetic fields where the
LL mixing parameter [e2/(εl)]/h̄ωc ∼ 1 (e2/εl characterizes
the strength of the Coulomb interaction where e is the
electron charge and ε is the dielectric constant of the host
semiconductor). Furthermore, the Hamiltonian we are using is
completely particle-hole symmetric and apparently the ground
state does not spontaneously break particle-hole symmetry.73

This means that all of our conclusions about the MR Pfaffian
state apply equally to the anti-Pfaffian state since the two
ansatz are particle-hole conjugates. LL mixing, as shown
recently,70–72 can induce three-body terms that explicitly
break particle-hole symmetry, leading to a possible preference
toward the MR Pfaffian or anti-Pfaffian; however, in this work
we do not consider such terms and can make no distinction.

This Hamiltonian [Eq. (2)] can be parametrized in terms
of the relative angular momentum between two particles, mij ,
by the Haldane “pseudopotential” expansion:74

Ĥ =
N∑

i<j

V (rij ) =
∑

m(odd)

V (n)
m

N∑
i<j

P̂m(mij ) (3)

where P̂m(mij ) projects onto states with relative angular mo-
mentum, mij = m, and V (n)

m are the Haldane pseudopotentials
for a given relative angular momentum, m, and Landau level
index n. These pseudopotentials V (n)

m are the energies of a pair
of particles with relative angular momentum, m, confined to the
n-th LL. For spinless fermions, only V (n)

m for odd m enter the
Hamiltonian due to the Pauli exclusion principle. In a planar
geometry, the Haldane pseudopotentials are given in terms of
the Fourier transform of the interaction potential V (k) by

V (n)
m =

∫ ∞

0
dkk[Ln(k2/2)]2Lm(k2)e−k2

V (k), (4)

where Ln(x) are Laguerre polynomials. This expansion allows
us to work strictly in the Hilbert space of the lowest Landau
level since all necessary information about electrons confined
in higher Landau levels are contained in the pseudopotentials.

The model wave functions (Laughlin and MR Pfaffian
states) can be obtained by diagonalizing certain “hard-core”
Hamiltonians. The Laughlin wave function

�Laughlin =
N∏

i<j

(zi − zj )qe− ∑ |zi |2/4, (5)

is the zero-energy ground state of a special case of Eq. (3),
where z = x + iy. For filling fraction ν = 1/q, q odd, this
Hamiltonian is given by:

Ĥ
(q)
L =

q−2∑
m(odd)

N∑
i<j

P̂m(mij ). (6)
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This two-body “hard-core” potential penalizes any state where
two particles have a relative angular momentum smaller than
q. The MR Pfaffian wave function

�MR = Pf

{
1

zi − zj

} N∏
i<j

(zi − zj )2e− ∑ |zi |2/4 (7)

is the exact zero-energy ground state of a three-body Hamil-
tonian projecting onto electron triplets instead of pairs.75

In an ideal, strictly two-dimensional system, the electron-
electron interaction is given by the 2D Coulomb potential,
V (k) = (e2l/ε)(1/k). The finite extent of an experimental
quantum Hall system in the perpendicular direction will
alter the ideal 2D interaction, yielding an effective quasi-2D
electron-electron interaction. There are several models for
the effect of the finite layer thickness;38,76–78 however, these
models all provide similar qualitative results.42,43 Therefore,
we will focus on one particular model, the infinite square-well
potential. In this model, we average the three-dimensional
Coulomb potential over the single-particle ground state n(z)
of an infinite square well [i.e., n(z) = √

2/d cos(πz/d)] in
the perpendicular dimension, yielding the effective interaction
potential

VSQ(k) = e2

εl

1

k

∫
dz1dz2|n(z1)|2|n(z2)|2e−k|z1−z2|

= e2l

εk

{
3kd + 8π2

kd
− 32π4(1−e−kd )

(kd)2[(kd)2+4π2]

}
(kd)2 + 4π2

. (8)

Combining Eq. (8) with Eq. (4) gives us effective pseudopo-
tentials as a function of finite thickness, d; Landau level, n;
and relative angular momentum, m.

We diagonalize the FQH Hamiltonians (one for each d/l

and LL index n) in the spherical geometry,74 where N electrons
are confined to the surface of a sphere. Although we use
this geometry, we use the pseudopotentials obtained from
the infinite planar geometry [Eq. (4)] since the finite layer
thickness effect is more conveniently modeled in this case.
Furthermore, the pseudopotentials in the spherical geometry
equal those in the planar geometry as the thermodynamic limit
is approached (as the spherical radius is taken to infinity) and
it can be argued that they provide a better approximation to the
thermodynamic limit (this is discussed in detail in Ref. 43 and
in the Appendix). In the spherical geometry, the perpendicular
(radial) magnetic field is provided by a magnetic monopole
of strength, Q, quantized in half-integer units, placed at the
center of the sphere. The eigenvalues of the squared magnitude
L2 and z component Lz of the angular momentum, S(S + 1)
and m respectively, are good quantum numbers for the single
particle wave functions, where S is related to the LL index
by the constraint, S = |Q| + n and m is constrained such that
−S � m � S. Thus the degeneracy of a LL with index n is
given by g = 2S + 1 = 2(|Q| + n) + 1. The filling factor for
a LL is defined in the thermodynamic limit ν = limN→∞ N/g.
The uniform ground state has total angular momentum, L = 0,
and, therefore, can be obtained in the Hilbert subspace where
the total z component of angular momentum, Lz = 0.

In this study, we consider the FQH ground states at the
Laughlin filling fractions ν = 1/3 and ν = 7/3 with particle
number N = 6, 7, and 8 and the even-denominator filling

fractions ν = 1/2 and ν = 5/2 with particle number N = 8
and N = 10. We restrict ourselves to these relatively modest
system sizes in order to investigate a large number of FQH
ground states for various values of the finite thickness, d/l,
with reasonable computing resources. Although the Hilbert
space for particle number N = 12 at the half fillings is not
prohibitively large, this system is also aliased with ν = 2/3 and
could, therefore, yield ambiguous results. Since we are largely
concerned with the qualitative features of the finite-thickness
effect, these system sizes are adequate.

We calculate the entanglement entropy (EE) and the entan-
glement spectrum (ES) of FQH ground states by dividing the
sphere into two regions. In particular, we write our Fock space
as the tensor product of two subspaces H = HA ⊗ HB with
respective basis states |ψi

A〉 = |ni
−S,n

i
−S+1 . . . ni

−S+NA
orb−1

〉 ∈
HA and |ψk

B〉 = |nk

S−NB
orb

,nk

S−NB
orb+1

. . . nk
S〉 ∈ HB , where nm is

the occupation number of the Landau orbital with angular
momentum, m, and NA

orb + NB
orb = Norb ≡ 2S + 1 is the total

number of Landau level orbitals. For all cases, we choose
our partitions when dividing our Fock space H into HA and
HB such that for the number of single-particle orbitals Norb =
2S + 1 even, NA

orb = NB
orb = Norb/2 and for Norb odd, NA

orb =
NB

orb + 1 = (Norb + 1)/2. Geometrically this is equivalent to
dividing the sphere along a line of latitude (see Fig. 1).

FIG. 1. (Color online) Graphical illustration of the partitioning of
the Fock space. In the spherical geometry, the single-particle states
are states with the z component of angular momentum from S to −S,
represented by the solid latitudinal lines. We choose our partitions to
cut the sphere in two as close to the equator as possible, represented
by the dashed lines. Thus, for Norb = 2S + 1 even, we cut the sphere
after Norb/2 (top) and after (Norb + 1)/2 for Norb odd (bottom).
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We calculate three quantities of interest:
(i) The bipartite entanglement entropy EE of the ground

state |�〉 is given by SE = Tr[ρA log(ρA)], where ρA is the
reduced density matrix defined by ρA = TrB[|�〉〈�|].

(ii) The entanglement spectrum ξi is obtained from the
eigenvalues of the reduced density matrix, ρi , by the simple
relation ξi = 2 ln(|ρi |). This is equivalent to finding the
Schmidt decomposition of the matrix Wij , where |�〉 =∑

i,j Wij |ψi
A〉 ⊗ |ψj

B〉 = ∑
i exp(−ξi/2)|φi

A〉 ⊗ |φi
A〉, |φi

A〉 ∈
HA and |φi

B〉 ∈ HB . Since the quantum numbers for angular
momentum and particle number in each region, LA

z ,LB
z ,NA,

NB , are constrained such that LA
z + LB

z = Lz = 0 and NA +
NB = N , the reduced density matrix is block diagonal, with
LA

z and NA being good quantum numbers for the eigenstates of
ρA. Therefore LA

z and NA are good labels for the corresponding
entanglement spectrum.

(iii) The “conformal limit” of the entanglement spectrum.
Recently, Thomale et al.68 have introduced the conformal limit
when calculating the entanglement spectrum of spherical FQH
ground states. This limit is obtained by expressing the ground
state in terms of a special choice of unnormalized basis states.
The normalized single-particle wave function on a sphere with
angular momentum, m, is given by74,79

�(u,v) =
[

2S + l

4π

(
2S

S + m

)]1/2

uS+mvS−m,

where u = cos(θ/2)eiφ/2 and v = sin(θ/2)e−iφ/2 with θ and
φ the usual spherical coordinates. In the conformal limit, we
“unnormalize” the single-particle wave functions by removing
the prefactor in Eq. (9) such that the wave functions take
the simple form � ′(u,v) = uS+mvS−m. This procedure is an
attempt to remove the finite-size effects inherent in these
calculations by basically removing the “length” in the problem.
With the ground state redefined in this new basis, the
entanglement spectrum is calculated as described above.

III. RESULTS

A. Entanglement entropy

We now report numerical results for the entanglement
entropy (EE) of quasi-2D FQH ground states as a function
of the finite layer thickness, d/l, for FQH states in the LLL
(ν = 1/3 and 1/2) and the SLL (ν = 2 + 1/3 = 7/3 and
2 + 1/2 = 5/2). As mentioned above we choose the partition
to be as close to the equator of the sphere as possible to
minimize finite-size effects.

The results for EE for the Coulomb ground state at filling
fractions ν = 1/3 and ν = 7/3 are shown in Fig. 2 as a function
of finite layer thickness, d/l. For comparison, the EE of the
corresponding Laughlin model wave function is also shown
as a d/l independent horizontal line. In each of the figures,
we see that in the LLL, the EE is near that of the Laughlin
model wave function at d = 0 and rises slightly as a function
of d/l. In contrast, the EE in the SLL is large compared
to that of the Laughlin model at d = 0, but decreases as a
function of d/l and evidently reaches an asymptotic value.
The qualitative behavior is independent of system size. If
we consider �SE = SE − SE,model for both the LLL and SLL
filling fractions and speculate that �SE is a qualitative measure

of how far removed the ground state is from the Laughlin
model state, then we see that the LL dependence of �SE

as a function of d/l behaves qualitatively similar to that of
the overlap between the ground state and the model wave
function as reported in Refs. 37,38,42, and 43. In particular,
the ground state in the LLL is a “strong” FQHE state (i.e.,
�SE is small) at d = 0 and gradually becomes “weaker” for
increasing d/l (albeit only slightly), whereas in the SLL, the
ground state is initially weak at d = 0 but gets stronger with
increasing d/l (i.e., �SE decreases). Thus, the EE for these
cases qualitatively and semiquantitatively captures how well
the states are “Laughlin-like” as a function of d/l in similar
manner to the overlap.

Our operational definition of “weak” and “strong” depends
on how close the EE of the Coulomb state is to the model
state which, in this case, is the Laughlin state. In the SLL,
SE becomes closer to the SE for the Laughlin state but, as
mentioned above, appears to saturate at some asymptotic value
that is still nearly ∼1.1SE,Laughlin. In contrast, the EE in the LLL
is almost identical to that of the Laughlin state. We conjecture
as to the reason for this difference between the EE in the SLL
Coulomb ground state compared to the Laughlin state and the
difference between the EE in the LLL as compared to the SLL:
(i) It is possible that the FQHE at 7/3 is not described by the
Laughlin state and is instead described by a state in a different
topological universality class such as those given by Read
and Rezayi80 and Bonderson and Slingerland;81 (ii) perhaps
composite fermion interactions, which are thought82 to be
more relevant in higher LLs, are producing this difference
in SE and the Laughlin state; or (iii) perhaps the 7/3 FQHE
state is in fact a Laughlin state but our model system is leaving
out realistic effects such as LL mixing which are crucial to its
success.

Figure 3 gives results for the EE of FQH ground states
with even denominator filling fractions ν = 1/2 and 5/2 as a
function of finite layer thickness, d/l. Also shown in the figure
is the EE of the Moore-Read Pfaffian state for comparison.
In the LLL (ν = 1/2), the EE has a weak minima as a
function of d/l, in contrast to the Laughlin fractions (this
minimum is difficult to discern on our scale). The location of
this minima changes with N , suggesting a finite-size effect,
but the qualitative behavior is similar in both cases. In the
SLL (ν = 5/2), the EE has a very pronounced minima that
approaches the EE of the MR Pfaffian model state for N = 10
and crosses it for N = 8. This suggest that the FQH states
becomes more MR Pfaffian-like at near an optimal d/l.
However, this optimal d/l also changes with N . Similarly
to the Laughlin fractions, this LL dependence in EE as a
function of d/l is also qualitatively similar to that seen in
the overlap between the FQH ground states and MR Pfaffian
reported in Refs. 42 and 43. These results suggest that ν = 1/2
is not particularly well described by the MR Pfaffian, whereas
ν = 5/2 is better described by the MR Pfaffian model state at
finite thickness.

We note that, recently, entanglement entropy in the SLL
including finite-thickness effects has been investigated.83,84

However, the previous study did calculations using the torus
geometry, in contrast to our spherical geometry, and attempted
to isolate and calculate the so-called topological term of
the entanglement entropy. The entanglement entropy can be
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FIG. 2. (Color online) Entanglement entropy SE as a function of finite layer thickness, d/l, for Laughlin filling fractions ν = 1/3 and
ν = 7/3 for particle numbers N = 6, 7, and 8. The dashed and dotted lines in the left panels correspond to the Coulomb Hamiltonian of a
quasi-2D system in the LLL and SLL, respectively, whereas the solid lines in the left panels correspond to the finite-size Laughlin states. The
plots in the right panels give 1 minus the percentage difference in the Coulomb EE and the model state EE, i.e., 1 − |�SE |/SE,model in the LLL
(dash-dotted line) and the SLL (dotted line) and are found to be similar qualitatively and quantitatively to overlap calculations.37,38,42,43

essentially divided into two pieces

SE = αL − γ + O

(
1

L

)
, (9)

where L is the linear length of the boundary dividing
the system into parts A and B (in our case it would be
circumference of the sphere where we made our cut). The
αL term is nontopological in origin and the −γ term is the
topological entropy and for the Laughlin and MR Pfaffian
state can be calculated analytically:58 γ = ln

√
m for the

Laughlin state and γ = ln
√

4m for the MR Pfaffian state at
ν = 1/m. Extracting the topological entropy from a Coulomb
Hamiltonian requires one to numerically calculate the exact
ground state for many different systems sizes and system
cuts and perform a thermodynamic extrapolation. This is a
labor-intensive procedure that inherently induces statistical
errors. Such numerical extrapolation, without some strong
theoretical guidance about the finite-size behavior of the
system, is often unreliable in estimating quantities in the
thermodynamic limit.

The conclusion of Refs. 83 and 84 was that the topological
entropy of the ground states of the LLL or SLL Coulomb

Hamiltonians was consistent with associated model states
(we note, however, that in Ref. 83 it was concluded that
ν = 7/3 was more consistent with the k = 4 Read-Rezayi
state80 instead of the Laughlin state). However, they also
included finite thickness in the form of an infinite square-well
potential and, interestingly, found that there was not much
difference between the EE and the topological entropy with
or without finite thickness included. We, however, clearly
see a finite-thickness effect on the EE. It is possible that
this difference in the two studies (our present study and
Refs. 83 and 84) is due to the different geometry used in the
calculations (sphere vs. torus) but we find this scenario unlikely
since most quantities of interest produce consistent results
in the two geometries.42,43,85 Such a comparison between
geometries (torus versus sphere) was shown in Ref. 86 to
give similar results for the entanglement spectra of Laughlin
states, supporting our suspicion. Moreover, results given in
Ref. 60 suggest that the the extrapolation procedure performed
in Refs. 83 and 84 may have been inappropriate for the torus.
More work is clearly necessary to understand the difference
between the results in spherical and toroidal geometries, par-
ticularly in the presence of the realistic finite thickness effects.
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FIG. 3. (Color online) Entanglement entropy SE as a function of finite layer thickness, d/l, for even-denominator filling fractions ν = 1/2
and ν = 5/2 for N = 8 and 10. Similarly to Fig. 2 the plots in the right panels give 1 minus the percentage difference between SE and SE,model.

Before moving on to entanglement spectra we briefly
discuss how our results compare to the previous overlap
calculations done in Refs. 42 and 43. The right panels in Figs. 2
and 3 gives 1 minus the percentage error in the entanglement
entropy, 1 − |�SE|/SE,model. In Ref. 43 it is found that the
overlap between the Laughlin state and the Coulomb ground
state at 1/3 filled in the LLL and SLL is approximately ∼0.99
at d/l = 0 and is reduced monotonically to ∼0.98 at d/l = 8
in the LLL and is ∼0.73 at d/l = 0 and has a maximum
of ∼ 0.84 for d/l ∼ 4 in the SLL. These overlap trends are
very consistent with what we have seen previously in EE.
For the 1/2-filled LLL and SLL we find42,43 the overlap is
relatively constant in the LLL at ∼0.9 and in the SLL it
is ∼0.96 at d/l = 0 and has a maximum value of nearly
∼1 at d/l ∼ 4. Again, 1 minus the percentage error in the
entanglement entropy tracks the behavior in the overlap to
a remarkable degree. Perhaps this is not a surprise since if
the overlap 〈�0|�model〉 is close to 1 then the EE (which is
a particular combination of |�〉〈�|) should also be nearly
identical to the EE of the model state �model.

B. Entanglement spectrum

In the previous section, we saw that the entanglement
entropy SE (and, in particular, �SE) as a function of d/l

behaves qualitatively similarly to the overlap.42,43 For the
half-filled case, increasing d/l makes the calculated SE closer
to the MR Pfaffian state for the SLL (ν = 5/2) in a rather
dramatic way while increasing d/l has very little effect on the
SE in the LLL (ν = 1/2), i.e., using the entanglement entropy

as a measure we see that the MR Pfaffian is stabilized by finite
thickness. For the 1/3-filled case we find that increasing d/l

drives SE away from the Laughlin value in the LLL (ν = 1/3)
and closer to the Laughlin value in the SLL (ν = 7/3);
however, as in the previous overlap investigations, the value of
the entanglement entropy for the 7/3 case never gets as close
to the Laughlin value as the 5/2 entanglement entropy gets to
the MR Pfaffian. As discussed above, this could be a hint that
something is missing from our understanding of the physics
for the FQHE at ν = 7/3.

To gain a deeper understanding of entanglement, we now
turn our attention to the finite layer thickness dependence of
the entanglement spectrum (ES), which, as discussed earlier,
provides more information than the EE alone. To calculate the
ES, we partition the sphere the same as was done for the EE.
We follow the convention established by Li and Haldane61 and
restrict ourselves to the part of the ES where the number of
particles in the A partition, NA, is the same as that of the “root”
configuration for the corresponding Laughlin or Moore-Read
Pfaffian model wave function61,87 for a given partition size
NA

orb. The “root” configurations describe the occupancy of LL
orbitals for MR Pfaffian and Laughlin model states in the
thermodynamic limit. Root configurations with a maximum
z component of angular momentum, and their corresponding
quantum numbers, NA and LA

z , are given in Table I for different
filling fractions and partition sizes.

In order to obtain a general qualitative picture of how the
ES changes as a function of the finite layer thickness, we
calculate the “entanglement gaps” in each ES and plot it as
a function of d/l. An entanglement gap61 is defined as the
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TABLE I. Root configurations of the Laughlin (ν = 1/3, 7/3) and
MR Pfaffian (ν = 1/2, 5/2) wave functions for the given partition
sizes, NA

orb, on the sphere. The entry 10010010, for example, means
that the single-particle angular momentum, S = 7.5, S − 3 = 4.5,
and S − 6 = 1.5, are all occupied with the others unoccupied. Hence,
there are NA = 3 electrons with total z component of angular
momentum, LA

Z = 3S − 9 = 13.5, in this root configuation.

FQH state NA
orb Root config. LA

z NA

Laughlin 1/3,7/3 8 100 100 10 13.5 3
10 100 100 100 1 18 4
11 100 100 100 10 24 4

MR Pfaffian 1/2, 5/2 7 110 011 0 16 4
9 110 011 001 24.5 5

difference between the low-lying “CFT levels” (i.e., those
levels displaying the low lying CFT counting structure) and
the higher non-CFT levels for a given value of LA

z in the
spectrum. According to the Li and Haldane conjecture, the
state has an underlying CFT if the entanglement gaps are finite
in the thermodynamic limit. However, only the entanglement
gaps at relatively “small” values of �L = LA

z,root − LA
z are

relevant due to finite-size effects, where LA
z,root is the total

z component of angular momentum of the root configuration.
The finite number of LL orbitals limits the number of possible
“edge excitations.” Therefore, only a few levels are expected to
have the same counting structure as the CFT edge modes. The
“depth” (i.e., the max �L) at which the counting structure in
the ES is consistent with the CFT edge modes is dependent on
the system size, N . It has been conjectured62 that these “finite-
size” effects of the entanglement spectra contain information
such as the generalized statistics of the underlying FQH state;
however, we will not consider such conjectures in this work.

We can determine a suitable cutoff for �L by examining
when the level counting in the ES of the model states deviate
from the expected counting in the thermodynamic limit. To
illustrate this finite-size cutoff, we give the ES of the Laughlin
state in Fig. 4. For the Laughlin state, the multiplicity of CFT
levels is given by p(�L), where p(m) is the partition function
of the integer m. The first seven values of p(m), starting with
m = 0 are 1, 1, 2, 3, 5, 7, and 11. In Fig. 4, we see that for
N = 6 and 7, the level counting begins to deviate from p(�L)
at �L= 4, and for N = 8, the deviation begins at �L = 5.
Thus, for our study we will focus on the entanglement gaps
for �L = 0,1, 2, and 3 for the N = 6 and 7 Laughlin systems,
and for N = 8, we also examine the entanglement gap at
�L = 4.

We determine the finite-size cutoff for the entanglement
gaps of the half-filled FQH states in a similar manner, which
we now illustrate. The ES for the MR Pfaffian model states are
shown in Fig. 5. The counting rules for the MR Pfaffian model
state depend on where the partition is made, which correspond
to choosing one of the three sectors of the corresponding
CFT.61 For the case of N = 8, the partition along the equator
is equivalent to the P [0|0] partition in Li and Haldane’s
nomenclature (i.e., a cut between two unoccupied orbitals
in the root configuration). The CFT level counting for the
first four Virasoro levels of this partition are 1, 1, 3, and 5.
The counting in the MR Pfaffian ES given in Fig. 5 with
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FIG. 4. (Color online) Entanglement spectrum of the ν = 1/3
filled Laughlin model state for particle numbers N = 6 (top panel),
7 (middle panel), and 8 (bottom panel). The finite-size cutoff used to
examine the entanglement gaps is illustrated by the vertical line.

N = 8 deviates from this structure at �L = 3. For N = 10,
the partition along the equator corresponds to P [1|1] (i.e., a
cut between two occupied orbitals of the root configuration),
which has a CFT level counting of 1, 2, 4, and 7 for the first four
Virasoro levels. Examining the ES in the figure for N = 10,
we see this spectrum also deviates from the expected counting
at �L = 3. Thus for the half-filled FQH states we examine in
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FIG. 5. (Color online) Entanglement spectrum of the ν = 1/2
filled MR Pfaffian model state for particle number N = 8 (top panel)
and 10 (middle panel). The finite-size cutoff used to examine the
entanglement gaps is illustrated by the vertical line and the particular
partition of the Fock space is given using the Li and Haldane
notation.61
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FIG. 6. (Color online) Entanglement spectrum for ν = 1/3,
d = 0, and N = 7 as a function of the z component of angular
momentum, LA

z . Suspected CFT and generic states are labeled by red
(gray) diamonds connected by a red (gray) dash and black dashes,
respectively, as well as the entanglement gaps �n. The entanglement
gaps are given by the difference between the lowest generic state and
the highest CFT state for a given value of LA

z . The minimal gap, �0−4

is given by the difference between the lowest generic state and the
highest CFT state for �L � 4. This minimal gap is represented by
the dashed lines.

this study, we concern ourselves only with the entanglement
gaps up to �L = 2.

The entanglement gaps, which we denote as �i for i = �L,
are calculated by finding the difference between the largest
suspected low-lying CFT level and the next highest level at
the given value of LA

z in the ES of the numerically obtained
Coulomb ground states for varying d/l. We also calculate the
minimal gap between CFT and non-CFT levels for �L � m,
which we denote as �0−m, where m is the cutoff described
above. The minimal gap gives us a qualitative measure of
how well separated, overall, the CFT levels are from the
generic non-CFT levels. The suspected low-lying CFT levels
are identified by the expected counting described above. An
example of this procedure is shown in Fig. 6, which shows
the entanglement gaps in the ES of the ν = 1/3 ground state
for d = 0 and N = 7. Note that throughout this work, when
presenting figures showing ES, we color code the suspected
CFT levels with red (gray) diamonds connected by a red (gray)
dash and all other ES levels with a black dash. The suspected
CFT levels are chosen by calculating the ES for the model state
(be it the Laughlin or the MR Pfaffian) and noting how many
ES levels n(LA

z ) there are for each LA
z . Then, when we consider

the ES for the Coulomb Hamiltonians, we identify suspected
CFT levels (and color code them) as the lowest n(LA

z ) ES levels
for each LA

z .
Entanglement gaps as a function of finite layer thickness,

d/l, for the Laughlin filling fraction ν = 1/3 are shown in
Fig. 7. The entanglement gaps are slightly decreasing with d/l

for all cases, indicating that the states are weakening. These
trends are similar to those observed in the EE at ν = 1/3.
Note that the minimal gap for N = 6 and N = 8 is initially
small and becomes zero for d/l � 4. This may indicate that
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FIG. 7. (Color online) Entanglement gaps for the Coulomb
Hamiltonian as a function of finite layer thickness, d/l, for filling
fraction ν = 1/3 and particle numbers N = 6 (top panel), N = 7
(middle panel), and N = 8 (bottom panel) with partition at the
equator.

the FQH state collapses at a finite thickness, as has been shown
in previous works38,39 (the previous works showed the FQHE
to collapse at very large d/l). However, this effect is not seen
in the minimal entanglement gap for N = 7. This “even-odd”
finite-size effect is likely due in part to a trade-off between the
finite-size cutoff and the number of available orbitals. Indeed,
the finite-size cutoff is the same for N = 6 and N = 7, but the
larger Hilbert space for the N = 7 case allows for more “edge
excitations” that strengthen each entanglement gap, not just
the minimal gap, compared to N = 6. In all cases, however,
the overall trends in the entanglement gaps (i.e., slight decrease
with d/l) are qualitatively similar to those seen in the EE (in
particular, �SE) and the overlap in Refs. 42 and 43.

To illustrate this overall trend in the entanglement gaps for
ν = 1/3, we provide the ES of the ground states in Fig. 8
for d/l = 0, 2, and 6. We have marked the levels that are
consistent with the counting found in the ES of the Laughlin
model state shown in Fig. 4 for all values of �L and indicate
our chosen finite-size cutoff. We see that, qualitatively, the
ES is largely insensitive to finite d/l. Moreover, on the right
of the finite-size cutoff, except for the largest CFT state at
�L = 4, the low-lying CFT levels are well separated from the
higher-energy generic levels.

We now examine the case when ν = 7/3 in comparison. In
Fig. 9 are the entanglement gaps as a function of finite layer
thickness. For N = 6, the root entanglement gap, �0, generally
increases with d/l. �1 and �2 each have a weak, local
maxima near d/l ∼ 4 and �3 is actually decreasing with d/l.
Moreover, the minimal entanglement gap is zero throughout.
The entanglement gaps for N = 7 each monotonically increase
with d/l, similarly to �0 in the N = 6 case. The minimal gap,
which is initially zero, opens at d/l ∼ 3 and then gradually
increases with d/l in this case. The case when N = 8 shows
trends similar to the N = 6 case. Here �0, �1, and �2
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equator.

increase with d/l, �3 has a local maxima near d/l ∼ 4, and
�4 decreases with d/l. The minimal gap for N = 8 is zero
throughout. Again, we see an “even-odd” finite-size effect in
the entanglement gaps as was seen with ν = 1/3. However, in
this case, we have entanglement gaps that increase, decrease, or
have a weak maxima as a function of d/l. This is in contrast to
the ν = 1/3 case where all entanglement gaps follow the same
trend with finite d/l. The different trends in the entanglement
gaps may suggest that the topological signature of the ν = 7/3
state differs from that of the Laughlin state.

Some illustrative examples of ES at ν = 7/3 are given in
Fig. 10 with N = 8 and d/l = 0, 4, and 6. The given ES appear
to have structure similar to that seen in the ν = 1/3 case;
however, we see that for �L = 4, the higher-energy “CFT”
states are virtually indistinguishable from the “generic states.”
This “blending” appears to get worse for larger d/l. Again,
these results may suggest that the Laughlin model state is not
an accurate description for the ν = 7/3 state.

Results on the entanglement gaps for the even denominator
filling fraction ν = 1/2 are shown in Fig. 11. Here we see that
the entanglement gaps slightly decrease with d/l and behave
similarly to the EE at this filling fraction. Also note that for
N = 8, the minimal gap is small and decreases with d/l, while
for N = 10, the minimal gap is zero throughout. As mentioned
earlier, there has been no definitive experimental observation
of FQHE at ν = 1/2 in monolayer systems consistent with
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our calculations. The full ES of the ground states with
ν = 1/2 are given in Fig. 12 for d/l = 0, 2, and 6 and N = 8.
Qualitatively, we see that the ES is largely insensitive to the
finite-thickness effect. Moreover, the largest suspected CFT
level for �L = 2 is well separated from the other CFT levels
and appears to be more consistent with the generic levels.
Again, this suggests that ν = 1/2 is not described by the MR
Pfaffian wave function.

Figure 13 shows the entanglement gaps at filling fraction
ν = 5/2. For N = 8 each entanglement gap peaks at a certain
value for d/l. In particular, �2 peaks near d/l ∼ 2.5; the other
gaps peak near d/l ∼ 4. We also see peaks in the entanglement
gaps for the case when N = 10. Here, the gaps gradually rise
to a local maxima near d/l ∼ 1.5 and then slowly decay for
increasing d/l. Note that the gaps in this case are generally
smaller compared to those observed for N = 8. These results
may suggest that there is a slight difference in the finite-size
effect on the different MR Pfaffian CFT sectors. However,
these results are qualitatively similar to the EE results and
the results on the overlap in Refs. 43 (i.e., the MR Pfaffian
signature of the ν = 5/2 state is strengthened by the finite-size
effect).

We also provide the ES of the ν = 5/2 state for N = 8 in
Fig. 14 for d/l = 0, 4, and 6. Here, we see the ES “opens”
at d/l = 4, giving a larger separation between the CFT and
generic levels in the spectrum compared to d/l = 0 and 6.
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FIG. 12. (Color online) Entanglement spectrum for the Coulomb Hamiltonian as a function of the z component of angular momentum,
LA

z , for filling fraction ν = 1/2 and particle number N = 8 for d/l = 0 (left panel), d/l = 2 (middle panel), and d/l = 6 (right panel). The
suspected CFT levels consistent with the MR Pfaffian model state for each LA

z are marked.

Again, these results suggest the ν = 5/2 is, indeed, described
by the MR Pfaffian wave function, and this description is more
stable at finite thickness.

In summary, the entanglement gaps in the ES have a
similar dependence on finite thickness as the EE, leading to
similar conclusions. However, finite-size effects prevent us
from making definitive statements. In the next section, we
attempt to alleviate this problem using the conformal limit.
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FIG. 13. (Color online) Entanglement gaps for the Coulomb
Hamiltonian as a function of finite layer thickness, d/l, for filling
fraction ν = 5/2 and particle numbers N = 8 (top panel) and N = 10
(bottom panel) with partition at the equator.

C. The conformal limit

In the previous section, we used entanglement gaps in
the ES to evaluate the “strength” of a state as a function of
d/l and we were able to confirm the MR Pfaffian signature
of the ν = 5/2 state and distinguish it from the (lack of)
signature of the ν = 1/2 state. However, we have intentionally
ignored a significant part of the ES in order to avoid finite-size
effects, i.e., we focused on the region of the ES with small
�L (see Fig. 6). We determined the size of this region by
examining where the ES of the finite-sized MR Pfaffian and
Laughlin model states deviate from the conjectured structure
in the thermodynamic limit (i.e., the edge state level counting
given by the suspected CFT). Thus, we have confirmed the
MR Pfaffian and Laughlin signatures only to a certain extent
because, in fact, there is not an actual entanglement gap in the
ES.

It has been conjectured that the full entanglement spectrum
of the finite-sized model states contain information on the
topological signature of the FQH state.62,63 Thus, all states
in the ES can be used to identify the topological quantities.
With this in mind, we now examine the entanglement spectrum
of quasi-2D FQH states in the “conformal limit” (CL), which
reportedly allows the use of the entire spectrum to examine
the state by unambiguously defining a full entanglement
gap. As discussed briefly above, and at length by Thomale
et al. in Ref. 68, the CL works by removing finite-size
effects due to the curvature of the sphere and gives an ES
with a “full” unambiguous entanglement gap in the spectrum
for topologically ordered states. Thus the presence of an
entanglement gap in the conformal limit is conjectured to be
a sign of topological order. A demonstration of an ES before
and after the CL is given in Fig. 15. After taking the CL of
an ES (CLES), we determine the “minimal gap” by taking the
difference between the highest suspected CFT level and the
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FIG. 14. (Color online) Entanglement spectrum for the Coulomb Hamiltonian as a function of the z component of angular momentum,
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z , for filling fraction ν = 5/2 and particle number N = 8 for d/l = 0 (left panel), d/l = 4 (middle panel), and d/l = 6 (right panel). The
suspected CFT levels consistent with the MR Pfaffian model state for each LA

z are marked.

lowest generic level in the entire spectrum. The suspected
CFT levels are determined by comparing the CLES to that of
the model state with the assumption that all levels in the ES
of the model state are CFT levels. For comparison, we examine
the entanglement gaps for each value of LA

z and define the
“average gap” as the average of the individual entanglement
gaps. We also define the “maximum gap” as the maximum of
the entanglement gaps. Individual gaps that are near infinite
(i.e., no levels above the highest CFT level) are ignored. The
minimal gap, the average gap, and the maximum gap are
calculated for each CLES as a function of the finite layer
thickness, d/l.

CLES entanglement gaps as a function of finite layer
thickness, d/l, for ν = 1/3 (LLL) are shown in Fig. 16.
For N = 6 and 7, the entanglement gap measures decrease
with d/l but remains finite throughout. This behavior is
qualitatively similar to the ES gaps for small �L, as well as
the EE results, suggesting a weakening of the Laughlin state.
The fact that the minimal entanglement gap in the ES for the
N = 6 case (Fig. 7) differs from the minimal gap in the CLES
may indicate that the closing of the gap in the ES is due to
finite-size effects related to the curvature of the geometry rather
than the limited number of LL orbitals. However, the minimal
gap for the case where N = 8 seems anomalous. Although the
average and maximum gaps follow similar qualitative trends,
the minimal gap is at or near 0 for all values of d/l, including
d = 0. How to interpret this result is unclear since there is a
general consensus that the Laughlin state does, indeed, model

the ν = 1/3 state. We can shed some light on this anomaly
by examining the CLES of the FQH states directly. Figure 17
shows the CLES for the ν = 1/3, N = 8 FQH state at finite
thicknesses d/l = 0, 2, and 6. The suspected CFT levels are
marked in each plot.

We examine CLES in the SLL case (ν = 7/3) in Fig. 18. In
general, the behavior of each gap measure differs with varying
d/l. The minimal gap appears fragile and virtually disappears
for larger N . The average gap has two local maxima in d/l

for N = 6. Only one of the local maxima in the average
gap is preserved when we look at the N = 7 case, and for
N = 8, the average gap fluctuates. The maximum gap, in
general, increases with increasing d/l but has a notable peak
near d/l ∼ 0.7 for N = 8. The inconsistency in these results
may suggest, from the ES and EE results, that the Laughlin
model state is not a suitable model for the ν = 7/3 state or
other ignored effects are needed for the Coulomb state to be
adequately described by the Laughlin state.

Figure 19 shows the CLES results for ν = 7/3, N = 8
at finite thicknesses d/l = 0, 4, and 6. We note that for
each value of d/l, there is very little separation between
the suspected CFT levels and the generic levels. Indeed, if
the suspected CFT levels were not marked, there is no clear
entanglement gap across the whole spectrum. However, there
does appear to be structure in the CLES for small values
of �L (i.e., near the “root” configuration). What this may
imply about the topological signature of the ν = 7/3 state is
not clear.
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Results for the CLES gap measures in the even denominator
ν = 1/2 FQH state are shown in Fig. 20. We see that the
minimal gap is nonzero and gradually increases with d/l

for N = 8. However, for N = 10 the minimal gap is zero

0 1 2 3 4 5 6 7 8
0

5

10

15

20

d/l

minimal gap

avg gap

max gap

5

10

15

20

C
L

 E
n

ta
n

g
le

m
e

n
t 

G
a

p

5

10

15

20

ν = 1/3

N=7

N=8

N=6

FIG. 16. (Color online) Conformal limit entanglement gaps for
the Coulomb Hamiltonian as a function of finite layer thickness, d/l,
for filling fraction ν = 1/3 and particle numbers N = 6 (top panel),
N = 7 (middle panel), and N = 8 (bottom panel).

throughout. The maximum and average gaps decrease with
d/l for N = 8. For N = 10, the average gap has several local
maxima, while the maximum gap decreases then suddenly
becomes constant with d/l with two sharp peaks. Given our
results on the EE and the ES for this state, the inconsistency
between the N = 8 and N = 10 in the CLES gap measures
may suggest that the MR Pfaffian model state is not a
suitable model for ν = 1/2. We also provide the CLES of
the ground states in Fig. 21 for N = 10 and d/l = 0, 4, and 6.
Qualitatively, the CLES do not change very much as a function
of d/l, and there is no clear separation between the CFT and
generic levels. This, again, suggests that there is no FQH state
at this filling fraction.

The CLES gap measures for ν = 5/2 in the SLL are given
in Fig. 22. For N = 8, the minimal gap has a very pronounced
peak near d/l ≈ 4. The average and maximum gaps, however,
have local minima near where the minimal gap is maximum.
These “cusps” are a result of level crossings. For N = 10, the
minimal gap is initially zero but becomes finite for nonzero
d/l and peaks near d/l ≈ 4.5. The average and maximum
gap in this case has similar shapes, with a peak near d/l ≈ 3.
These results are qualitatively similar to the results of the ES
and EE and the overlap in Refs. 42 and 43. Moreover, the
difference between N = 8 and N = 10 may suggest that finite
thickness affects each sector of the suspected CFT differently,
but larger system sizes are necessary to verify this. In the
CLES plots shown in Fig. 23 for N = 10 and d/l = 0, 4,
and 6, respectively, we see the entanglement gap between
CFT and generic levels “open” at finite d/l = 4 compared
to d/l = 0 and 6. These results are consistent with results
observed with the EE and the ES, indicating that MR Pfaffian
signature strengthens with a finite d/l.
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FIG. 17. (Color online) Conformal limit entanglement spectrum for the Coulomb Hamiltonian as a function of the z component of angular
momentum, LA
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FIG. 18. (Color online) Conformal limit entanglement gaps for
the Coulomb Hamiltonian as a function of finite layer thickness, d/l,
for filling fraction ν = 1/3 and particle numbers N = 6 (top panel),
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In summary, taking the conformal limit of the entanglement
spectra provides us with a full entanglement gap in most cases
with a finite thickness dependence that is qualitatively similar
to the results on the EE. The notable exceptions are the ν =
1/2 which has little or no entanglement gap, consistent with
experimental observations; the ν = 1/3 case at N = 8 that is
not expected given results with other system sizes; and the
ν = 7/3 case that is consistent with the results on the EE
and ES suggesting that other physics besides the Laughlin
state alone is needed to explain this FQHE. The case with
N = 8 and ν = 1/3, however, is inconsistent with most theory
and experiment, but when we examine the spectra directly,
there are a few “spurious” states that cross an otherwise full
gap. The origin of these “spurious” states are related to our
use of planar Haldane pseudopotentials rather than spherical
pseudopotentials and is discussed in the appendix. However,
we do not expect this choice to alter the topological features
of the state. Therefore, this result may suggest that a “full”
quantitative entanglement gap is not necessary to identify a
topological state. In the next section, we introduce the concept
of a entanglement spectral density of states where a qualitative,
“soft” gap may be identified in such cases.

D. Entanglement spectrum density of states

In the entanglement results presented above, we require
a model-state wave function for comparison in order to
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FIG. 19. (Color online) Conformal limit entanglement spectrum for the Coulomb Hamiltonian as a function of the z component of angular
momentum, LA

z , for filling fraction ν = 1/3 and particle number N = 8 for d/l = 0 (left panel), d/l = 4 (middle panel), and d/l = 6 (right
panel). The suspected CFT levels consistent with the Laughlin model state for each LA

z are marked.

systematically define and calculate the entanglement gaps.
These methods have the obvious disadvantage of requiring an
ansatz for comparison. In the conformal limit case, we assume
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FIG. 20. (Color online) Conformal limit entanglement gaps as a
function of finite layer thickness, d/l, for filling fraction ν = 1/2 and
particle numbers N = 8 (top panel) and N = 10 (bottom panel).

the low-lying states in the entanglement spectrum should have
the exact counting as seen in the model entanglement spectrum.
This assumption may be premature since other finite-size
effects may cause the counting to deviate, even after taking
the conformal limit especially at the largest �L; see Fig. 17.
With this in mind, we attempt to obtain a general qualitative
sense for how the entanglement spectra vary with finite layer
thickness by extending the analogy with “energy levels” a bit
further by calculating the “density of entanglement spectral
states.” With the density of states, we can qualitatively look
for entanglement gaps without relying on a model state for
comparison. Also, we may be able to detect “soft” gaps where
a small number of states may be present within an otherwise
prominent gap between two peaks in the density of states. Thus
in this section we briefly examine this extension by providing
results for the density of states (DOS) of the entanglement
spectrum, both with and without the conformal limit, as a
function of finite layer thickness, d/l.

The plots shown in Fig. 24 give the density of states of
the ES and CLES for ν = 1/3 as a function of finite layer
thickness, d/l, for N = 7. In the DOS for the ES before taking
the CL, we see sparse low-lying states that are separated from
a denser cloud of higher states by a series of gaps. These
low-lying states are the CFT states from the Li and Haldane
conjecture. The states appear, largely, to be insensitive to the
finite layer thickness. Turning to the DOS for the CLES, a
clear gap is much more evident for the N = 7 cases. Here
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FIG. 21. (Color online) Entanglement spectrum as a function of the z component of angular momentum, LA
z , for filling fraction ν = 1/2

and particle number N = 10 for d/l = 0 (left panel), d/l = 4 (middle panel), and d/l = 6 (right panel). The suspected CFT levels consistent
with the MR Pfaffian model state for each LA

z are marked.
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FIG. 22. (Color online) Entanglement gaps as a function of finite
layer thickness, d/l, for filling fraction ν = 5/2 and particle numbers
N = 8 (top panel) and N = 10 (bottom panel) with partition at the
equator.

the higher-energy states appear to makeup a wide, low-density
band that is well separated from a low, dense band of states by
a gap that decreases with d/l. This case seems to illustrate the
effect of using the CL.

For comparison, we provide the DOS results for N = 8 in
Fig. 25. Here there also appears to be low-lying CFT states
in the ES below a high-density region of higher-energy states.
In the DOS of the CLES, a “clear” gap does not appear. But the
low-lying band in this case does appear qualitatively similar
to the N = 7 case. One may possibly associate a “soft” gap
in this case, where a few states appear to be present between
two somewhat distinct regions in the DOS. This “soft” gap is
qualitatively similar to the “clear” gap in the N = 7 case and it
does appear to slightly decrease as a function of d/l. However,
it is difficult to distinguish this “soft” gap from the other small
gaps in the spectrum.

In Fig. 26 we provide DOS plots for the ν = 5/2 FQH
state for N = 10 as a function of d/l. In this case, the ES is
especially sensitive to finite layer thickness. However, we still
see a series of small gaps separating thin, dense bands at lower
energies. After taking the CL, a clear gap at finite (nonzero)
thickness has a definite peak corresponding to a level crossing.
Below the gap, there appears to be some band crossings as d/l

is varied.
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FIG. 23. (Color online) Entanglement spectrum as a function of the z component of angular momentum, LA
z , for filling fraction ν = 5/2

and particle number N = 10 for d/l = 0 (left panel), d/l = 2 (middle panel), and d/l = 6 (right panel). The suspected CFT levels consistent
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FIG. 24. (Color online) Density of entanglement energies before
(top panel) and after (bottom panel) the conformal limit for ν = 1/3
and particle number N = 7 as a function of finite layer thickness,
d/l.

In summary, the DOS of the entanglement spectra (with
and without the conformal limit) gives us a general qualitative
picture of how the ES evolve with a varying parameter (i.e.,
the finite layer thickness d in our case). Thus we expect the
DOS of the ES to be a good initial cursory tool in examining
topological states with varying parameters.

IV. CONCLUSIONS

In this work we study entanglement in finite-sized, quasi-2D
FQH states via the entanglement entropy and the entanglement
spectrum as a function of the finite layer thickness of the
transverse dimension in a realistic FQH system and compare
them to the entanglement signatures of the Laughlin and MR
Pfaffian model states. For the Laughlin filling fractions, we find
that the EE increases (decreases) with finite layer thickness
for ν = 1/3 (ν = 7/3) in the LLL (SLL) with increasing
(decreasing) deviation from the EE of the Laughlin model
state. However, the EE in the SLL reaches an asymptotic value
larger than the EE of the Laughlin state, possibly suggesting the
ν = 7/3 state is modeled by different physics than the Laughlin
state. Similar behavior is also seen in the entanglement gaps
of the ES for the Laughlin filling fractions. Here we find that
the entanglement gaps decrease with finite layer thickness for
the Laughlin filling fractions in the LLL. But in the SLL, the
behavior of the entanglement gaps depend on the “depth” of
the gap. These results suggest that the Laughlin FQH states
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FIG. 25. (Color online) Density of entanglement energies before
(top) and after (bottom) the conformal limit for ν = 1/3 and particle
number N = 8 as a function of finite layer thickness, d/l.

“weaken” with increasing thickness in the LLL, which is
consistent with previous work on quasi-2D FQH states,42,43

but in the SLL, other physics beyond just the Laughlin state
alone is needed to describe the FQH state. The LL dependence
of the finite thickness effect at half-filling differs slightly.
The EE of the ν = 1/2 state in the LLL is largely insensitive
to the finite layer thickness in contrast to that of the SLL
ν = 5/2 state where the EE has a local minima that approaches
the EE of the MR Pfaffian at finite d/l. This qualitative
behavior is also seen in the entanglement gaps of the ES
for half-filled LLs. For ν = 5/2 in the SLL, we see peaks
(local maxima) in the entanglement gaps at finite thickness,
suggesting the ν = 5/2 is more “MR Pfaffian-like” at an
optimal thickness, which, again, is consistent with previous
work42,43 and strongly suggests the ν = 5/2 state is, indeed,
MR Pfaffian. In contrast, the entanglement gaps of the ES
for the ν = 1/2 state suggest that it is not modeled by the
MR Pfaffian. Thus, the entanglement gaps in the ES allows
us to differentiate the ν = 1/2 and ν = 5/2 states, which we
could not definitively establish with the EE or the overlap
calculations. Of course, we must be cautious with these
results since the calculated entanglement gaps made use of
only a few “Virasoro levels” in the low-lying CFT due to
finite-size effects. Assuming the Li and Haldane conjecture
to be correct, we can only say that we have observed the
Laughlin and MR Pfaffian signatures up to a few “Virasoro
levels.”

We also investigate the conformal limit of the entanglement
spectrum that is conjectured to remove curvature in the
spectrum due to finite-size effects and allow the use of the

FIG. 26. (Color online) Density of entanglement energies before
(top) and after (bottom) the conformal limit for ν = 1/3 and particle
number N = 7 as a function of finite layer thickness, d/l.

entire spectrum to determine the topological signature of
the state. Our results on the conformal limit, however, are
inconsistent between varying system sizes and are difficult
to interpret. This appears to be due to our choice of using
planar pseudopotentials rather than spherical pseudopotentials
in obtaining the FQHE ground states. In the appendix we
examine this choice by comparing the entanglement spectra
of ground states obtained by using either spherical or planar
pseudopotentials at d = 0 and observe that the conformal limit
can be affected by components of the ground state that have
exponentially small contributions and, therefore, are sensit-
ive to minor details in the interaction (such as the difference
between planar and spherical pseudopotentials). Thus, the
presence of the entanglement gap in the conformal limit is
sensitive to certain details in the effective interaction that may
not be relevant in determining the topological features of the
state. Further work using much larger system sizes would be
necessary to resolve this issue, which is well beyond the scope
of the current work.

We have also introduced the notion of entanglement density
of states as a method for examining the idea of an entanglement
gap without an explicit reliance on a model wave function.
Although far from definitive, the entanglement DOS suggests
itself as a powerful tool to determine the topological nature
of a particular ground state. Our detailed numerical study
establishes the entanglement DOS to be a useful quantity
underlying topological FQHE, particularly in the context of
finite-size numerical calculations.

It is interesting to observe that the entanglement measures
give results similar to those obtained with overlaps in Refs. 42
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and 43. Whereas the overlap is a simple measure of how
well a numerically obtained ground state matches a particular
model state (e.g., the Laughlin state or the MR Pfaffian state),
the entanglement measures (in particular, the ES) is a more
general measure of how well a state fits a suspected CFT (i.e.,
universality class) that describes the model state. Therefore,
it can be said that these results confirm the conclusions
in Refs. 42 and 43 in a more general sense in respect to
the Laughlin and MR Pfaffian CFTs. However, we must
be cautious in this generalization given that we have only
observed the Laughlin and MR Pfaffian signature up to a few
“Virasoro levels” and different theories can result in the same
low-level structure in the ES.88 More work is necessary to
understand how well entanglement measures can definitely
identify universality classes in finite systems.

In interpreting our results and conclusions, one may wonder
about the importance of finite-size effects on our numerical
diagonalization. The possible limitations associated with
finite-size effects are, of course, always present in any exact
diagonalization study of any FQHE system, and the possibility
that some of the conclusions are affected by finite-size effects
can never be ruled out even if the calculations are carried out
on systems much larger than what we use in this work, since,
in the end, any statement about an experimental system based

on calculations performed on few-particle systems is always
subject to an extrapolation to the thermodynamic limit. We
believe that all our conclusions regarding the importance of
finite quasi-2D thickness effect on the FQHE entanglement
spectra are valid, independent of the rather modest size of our
finite system diagonalization study, because earlier work42,43

clearly established, when compared with calculations22,89

carried out on much larger systems, that the system size
we use in this work, namely N = 8, is certainly adequate
in making qualitatively correct conclusions about the SLL
FQHE. Our goal in this paper has been to study as many
FQHE states as feasible as a function of the quasi-2D layer
thickness in depth, thus necessarily (due to the computational
time restrictions) limiting our system size to N = 8, which
should be adequate. Nevertheless, we feel that future work
should explore larger system size diagonalization in order to
study the finite-thickness effect on the entanglement spectra
of various FQHE states.

We also note that there are various alternatives to the
infinite square-well effective potential in examining the finite-
thickness effect. The Zhang-Das Sarma potential is likely the
most well known and often-used alternative in this regard.
We choose to focus on the infinite square well instead of
the Zhang-Das Sarma potential because the infinite square
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FIG. 27. (Color online) Entanglement spectra and conformal limit entanglement spectra of the exact FQHE ground state for N = 7 at filling
fraction ν = 1/3 obtained with either planar or spherical Haldane pseudopotentials at d = 0. CFT states associated with the Laughlin model
wave function are marked.
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well is more closely aligned to realistic quasi-2D systems.
Moreover, many observables calculated with the Zhang-Das
Sarma potential besides the overlap have been shown to give
similar results compared to the infinite square well. Therefore,
we expect the two potentials to give similar results with
entanglement measures as well, but since investigating the
nature of these potentials is not a goal of the present study,
we leave explicit verification of this assertion for a future
work.

It should be noted that the concept of entanglement spectra
(or, for that matter, the entanglement entropy itself) has no di-
rect experimental or observational implications since it cannot
be directly measured. The concept is useful conceptually and
theoretically in ascertaining the quantum topological nature
of a particular interacting Hamiltonian, and, in that sense, its
experimental consequences are indirect since the topological
nature of a system has obvious experimental consequences.
We have investigated in this work the utility of the concept
of the entanglement spectra in ascertaining the underlying
topological nature of realistic FQHE states as a function of
the quasi-2D layer thickness, finding that the entanglement
spectrum provides results consistent with what has earlier been
established in the literature based on the wave-function overlap

studies. Our very detailed study also indicates that, at this
stage of theoretical development, the entanglement approach
is perhaps no more predictive in providing experimental
implications of various FQHE states than what is already
available in the literature based on the direct wave-function
overlap studies. Further work would be necessary to see if
the entanglement approach has some specific advantages in
predicting experimental properties of FQHE states not already
apparent in wave-function-based analyses.

In conclusion, we have extended the concept of topolog-
ical entanglement spectra and entanglement gaps to finite-
thickness FQH systems by calculating the FQHE topological
properties systemically as a function of finite thickness of
the quasi-2D systems, establishing, in the process, that the
FQHE entanglement measures calculated as a function of
system thickness are completely consistent with the results
obtained earlier in the literature using wave-function overlap
calculations. While our work establishes various entangle-
ment measures as important theoretical quantities classifying
FQHE, more work will be necessary to understand the finite-
size aspects of entanglement spectra and entanglement gaps
in the context of realistic fractional quantum Hall systems.
Although it is gratifying that the qualitative conclusions
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FIG. 28. (Color online) Entanglement spectra and conformal limit entanglement spectra of the exact FQHE ground state for N = 8 at filling
fraction ν = 1/3 obtained with either planar or spherical Haldane pseudopotentials at d = 0. CFT states associated with the Laughlin model
wave function are marked.
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of our entanglement-measure-based results in this work are
completely consistent with earlier FQHE results obtained on
the basis of wave-function overlap calculations, it remains
to be seen whether the entanglement-measure-based probes
have more predictive power regarding the nature of FQHE
than the wave-function-overlap-based probes or it is simply a
deeper way of looking at the same physics with no obvious
additional implications for the experimental occurrence of
FQHE.
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APPENDIX: PLANAR VERSUS SPHERICAL
PSEUDOPOTENTIALS AT d = 0

The analysis presented above is based on ground-state wave
functions obtained by diagonalizing the quasi-2D Coulomb
potential in a spherical geometry. However, the Haldane
pseudopotentials used to construct the Hamiltonian are derived
from a infinite planar geometry rather than a spherical
geometry. We choose to use planar rather than spherical

psuedopotentials because (i) the effective Coulomb potential
in a quasi-2D system is more naturally obtained in the infinite
planar geometry and (ii) we expect the spherical and planar
pseudopotentials to be indistinguishable in the thermodynamic
limit. Moreover, given the mostly qualitative nature involved
in studying entanglement spectra, we expected this choice to
make little difference in the results. Nevertheless, there are
cases under study where this choice matters. The goal of this
appendix is to highlight some of these cases. We show that for
d = 0, the low-energy spectrum in the entanglement spectra
are qualitatively similar between ground states obtained from
either spherical or planar pseudopotentials, but higher-energy
spectra can can differ in some cases. This difference does not
change the qualitative conclusions drawn from the low-energy
spectra, but when we consider the conformal limit which looks
for a full entanglement gap, the difference can lead to different
conclusions (in particular, the case of ν = 1/3 with N = 8).
We leave the comparison of cases with d > 0 and larger N for
future work.

In Table II we provide several overlap calculations between
exact ground states at d = 0 obtained using either spherical or
planar pseudopotentials. In column 3 of the table, we see that
the overlap between the ground states from the spherical and
planar cases is generally high. The notable exception is the
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FIG. 29. (Color online) Entanglement spectra and conformal limit entanglement spectra of the exact FQHE ground state for N = 7 at filling
fraction ν = 7/3 obtained with either planar or spherical Haldane pseudopotentials at d = 0. CFT states associated with the Laughlin model
wave function are marked.
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TABLE II. Overlap integrals between (i) the exact ground-
state wave function using spherical (|�sphere〉) and planar Haldane
pseudopotentials (|�plane〉) and (ii) the overlap between the Laughlin
or Pfaffian wave function (|�model〉 and the exact ground-state wave
function using spherical or planar pseudopotentials.

N ν 〈�sphere|�plane〉 〈�sphere|�model〉 〈�plane|�model〉
6 1/3 0.9988 0.9964 0.9921
6 7/3 0.9480 0.5285 0.7369
7 1/3 0.9999 0.9964 0.9952
7 7/3 0.8648 0.6071 0.8737
8 1/3 0.9996 0.9954 0.9954
8 7/3 0.9675 0.5719 0.7441
8 1/2 0.9978 0.9213 0.8953
8 5/2 0.9688 0.8674 0.9639
10 1/2 0 0.8891 0
10 5/2 0.9720 0.8376 0.9342

case when N = 10 and ν = 1/2 where the overlap is 0. In this
case the ground state obtained with the planar pseudopotentials
possesses a different symmetry compared to the ground state
of the spherical case, which leads to a vanishing overlap.
Excluding these, columns 4 and 5 of the table show that the

overlap between the spherical and planar ground states with
the model Laughlin or MR Pfaffian states are qualitatively
similar.

We now turn our attention to the entanglement spectra
and how they may differ with choice of pseudopotentials.
ES (with and without the conformal limit) for the exact
ground state of the FQHE state at N = 7 and ν = 1/3 using
spherical and planar pseudopotentials are given in Fig. 27. In
the figure, we see that the ES with planar pseudopotentials
[Fig. 27(a)] is qualitatively similar to the spectra obtained
with spherical pseudopotentials [Fig. 27(b)]. The same can
also be said with the ES in the conformal limit between the
planar case [Fig. 27(c)] and the spherical case [Fig. 27(d)].
Thus, given the results in Fig. 27, we would expect that the
choice of pseudopotenials makes little difference in obtaining
a qualitative understanding of the ES in this case.

Figure 28 compares the ES of the FQHE state at filling
fraction ν = 1/3 with N = 8. In this case we see that in
the ES before the conformal limit [Fig. 28(a) and 28(b)],
the low-energy spectra are qualitatively similar between the
planar and spherical cases. The higher-energy spectra in the
ES, however, show notable differences with the planar case,
having a few CFT levels at much higher energy compared to the
spherical case. In the conformal limit, these higher-energy CFT
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FIG. 30. (Color online) Entanglement spectra and conformal limit entanglement spectra of the exact FQHE ground state for N = 10 at
filling fraction ν = 1/2 obtained with either planar or spherical Haldane pseudopotentials at d = 0. CFT states associated with the MR Pfaffian
model wave function are marked.
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FIG. 31. (Color online) Entanglement spectra and conformal limit entanglement spectra of the exact FQHE ground state for N = 10 at
filling fraction ν = 5/2 obtained with either planar or spherical Haldane pseudopotentials at d = 0. CFT states associated with the MR Pfaffian
model wave function are marked.

levels lead to a vanishing entanglement gap in the conformal
limit for the planar case [Fig. 28(c)] compared to the spherical
case [Fig. 28(d)] where there is a full entanglement gap.
These are the same “spurious” levels identified earlier in
Sec. III C. These results suggest that the vanishing minimal
gap seen in Fig. 16 is due to our choice of planar rather
than spherical Haldane pseudopotentials. This may seem
surprising given the large overlaps seen in Table II. However,
the states associated with the the higher-energy CFT levels
have exponentially small contributions to the ground-state
wave function and, thus, contribute little to the overlap. We
might also expect these states to be more sensitive to certain
quantitative details of the potential that do not affect the
qualitative picture of the FQHE ground state (e.g., values of
Vm for “large” m). Thus, when taking the conformal limit,
the choice of pseudopotential may matter in some cases in
order to observe a full entanglement gap. But a qualitative
understanding can still be gleaned from the planar case since
there does appear to be two distinct regions in the CLES that
we can identify, at least qualitatively, as CFT and non-CFT
levels.

We now compare the spherical and planar pseudopotentials
in the SLL with ν = 7/3. Figure 29 gives the ES [Figs. 29(a)
and 29(b)] and CLES [Figs. 29(c) and 29(d)] for the

ν = 7/3 FQHE state obtained with either planar or spherical
pseudopotentials with N = 8. The planar and spherical cases
are qualitatively similar in both the ES and CLES and both
suggest that the Laughlin wave function may not describe this
state, as discussed in Secs. III A–III C.

Results for the even-denominator filling fraction ν = 1/2
with N = 10 are given in Fig. 30. In this case, the planar
results [Figs. 28(a) and 28(c)] differ considerably from that of
the spherical case [Figs. 28(b) and 28(d)]. This is not surprising
since the overlap between these two states given in Table II
vanishes. However, it appears that neither state is consistent
with the MR Pfaffian.

Comparison of FQHE ground states obtained with planar
and spherical pseudopotentials for the ν = 5/2 state with
N = 10 is given in Fig. 31. Similarly to the ν = 1/3 case,
the low-energy spectra in the ES [Figs. 31(a) and 31(b)] are
qualitatively similar between the two cases. The higher-energy
levels in the spectra do differ, but the CLES [Figs. 31(c)
and 31(d)] does appear to give the same qualitative picture.
Recall that, in Sec. III C, the minimal gap for this case
becomes nonzero only at finite d for the planar case. We
would expect a similar result to occur using the spherical
psuedopotentials. Verification of this is left for a future
work.
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